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Stochastic processes in finance: motivation

• Stock prices - it is clear that their evolution is not
deterministic, for modelling we need the theory of
stochastic processes:

http://finance.google.com

• Stochastic process: t-parametric system of random
variables {X(t), t ∈ I}, I - interval or a discrete set

• This means: at each time t, the value X(t) of the process is
a random variable
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Random walk

• Karl Pearson , 1905: modelling migration of mosquitoes
infesting jungle regions

http://www-history.mcs.st-

andrews.ac.uk/history/Biographies/Pearson.html

Writes in Nature, 27 July 1905:

A man starts from a point O
and walks l yards in a straight
line, he then turns though any
angle whatever and walks
another l yards in a second
straight line. He repeats the
process n times. I require the
probability that after these n
steps he is a distance between
r and r + δr from his origin O.

II. Stochastic processes – p.3/55



Random walk

• Answered by Lord
Rayleigh (John William
Strutt) - refering to his
paper from 1880
concerned with sound
vibrations

• The answer, given for
large n (number of steps),
is an expression
originating from normal
distribution

http://www-history.mcs.st-

andrews.ac.uk/Biographies/Rayleigh.html
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Random walk

• Pearson comments in Nature:

The lesson of Lord Rayleigh’s solution is that in
open country the most probable place of finding a
drunken man who is at all capable of keeping on
his feet is somewhere near his starting point.

• PLAN FOR THE NEXT PART OF THE LECTURE:
◦ A random walk example, known as drunken sailor

problem or drunkard problem.
◦ We study it in one-dimensional case
◦ Then we make a limit to a continuous case ("random

flight")
◦ We arrive to a so called Wiener process
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The drunken sailor problem

• The sailor moves on a line starting off at x0 = 0
• With probability 1/2 makes one step forward; with

probability 1/2 makes one step back
• We denote by Xn his position after n steps

• i-th step: si = ±1, each with probability 1/2; steps are
independent

• Position after n-th step: Xn =
∑n

i=1 si
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The drunken sailor problem

• Sample trajectories:
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The drunken sailor problem

• We derive the distribution of Xn

• We have:
◦ i-th step: si = ±1, each with probability 1/2⇒

E[si] = 0, D[si] = 1
◦ independent steps

• So for Xn we obtain
◦ the expected value:

E[Xn] = E [
∑n

i=1 si] =
∑n

i=1 E[si] = 0

◦ and - using independence of the steps - the dispersion:
D[Xn] = D [

∑n
i=1 si] =

∑n
i=1D[si] = n

• From central limit theorem: for large n, the distribution is
close to normal
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The drunken sailor problem

EXAMPLE:

• Position after 50 steps - a sample histogram:

• Our earlier compuations: the distribution should be close to
N(0, 50) - agrees with the simulations
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The drunken sailor problem

INTUITIVE APPROACH TO LIMIT:

• Shorter time interval between steps:
◦ now, it is a unit of time
◦ let us make it 1/k (i.e., k steps during a unit of time)

• We need to scale the step length to keep the distribution:
◦ step of length si = ±ℓ, each with probability 1/2

⇒ the expected value is 0 and the dispersion is ℓ2

◦ at time n, the sailor’s position is
∑nk

i=1 si
⇒ the expected value is 0 and the dispersion is nkℓ2

◦ to keep variance at time n equal to n, we need to take
step length ℓ = 1/

√
k

• We would like to make a limit as k → ∞
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The drunken sailor problem

• EXAMPLE: 5 and 10 steps during a unit of time:
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The drunken sailor problem

• EXAMPLE: 100 and 1000 steps during a unit of time:
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The drunken sailor problem

INTUITIVE EXPECTATIONS ABOUT THE LIMIT:

• Distribution of the increment on interval [t, t+∆t] is the
limit of the following setting:

we make k∆t steps and each step has length ℓ = 1/
√
k

where the increment has
◦ expected value equal to zero
◦ dispersion equal to k∆tD[ℓ] = ∆t
◦ approximately normal distribution

• In the limit, we expect exact normal distribution N (0,∆t)
• Increments on non-overlapping time intervals are

independent
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Wiener process: definition

• Wiener process {w(t), t ≥ 0} is a random process which
satisfies:

i) w(0) = 0

ii) increments w(t+∆t)−w(t) have a normal distribution
with expected value 0 and dispersion ∆t

iii) for every partition t0 = 0 < t1 < t2 < t3 < ... < tn the
increments

w(t1)− w(t0), w(t2)− w(t1), . . . , w(tn)− w(tn−1)

are independent
iv) the sample paths (trajectories) are continuous
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Wiener process - example

• Sample trajectories of a Wiener process
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• Distribution of a Wiener process at time t :

w(t) = w(t)− w(0) ∼ N(0, t)
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Wiener process - remark on dispersion

QUESTION:
Does the dispersion of the increment w(t+∆t)− w(t)

have to be ∆t , or could it be also for example ∆2,
√
∆, . . . ?

• We arrived to dispersion ∆t by considering (intuitively) a
limit of a certain random walk

• Is it possible to arrive to a different dispersion via another
discrete process?

• Can we simply define another random process by setting
another dispersion in point ii) of the definition?
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Wiener process - remark on dispersion

• Let 0 = t0 < t1 < ... < tn = t be a partition of [0, t]. Then:

w(t)− w(0) =

n
∑

i=1

w(ti)− w(ti−1).(1)

• From the independence of increments (dispersion of a sum
of random variables equals the sum of their dispersions):

D

[

n
∑

i=1

w(ti)− w(ti−1)

]

=

n
∑

i=1

D[w(ti)− w(ti−1)]

• Dispersions of the left- and right-hand side of (1) have to
be equal:

D [w(t)− w(0)] =

n
∑

i=1

D[w(ti)− w(ti−1)]

- this holds of D[w(t+∆)− w(t)] is a multiple of ∆, we
norm it to ∆
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Wiener process - remark on dispersion

• Denote f(x) = D[w(t+ x)− w(t)] ; then we have the
condition

f(x1 + x2 + . . . xn) = f(x1) + f(x2) + . . . f(xn)(2)

• Furthemore, if we require the function f to be continuous
or increasing (both are natural in this context), then

f(x) = cx,

where c is a constant, is the only solution
• HOMEWORK:

Prove the proposition above.
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Wiener process - remark on dispersion

https://archive.org/stream/
coursdanalysede00caucgoog

(see page 104 for the equation)

REMARK

• The equation (2) is known
as Cauchy’s functional
equation

• Appears in the
(equivalent) form
f(x+ y) = f(x) + f(y)
with a condition of
continuity in his Cours
d’analyse de l’École
royale polytechnique from
1821.

• Nontrivial solutions if no
additional condition
required
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Wiener process - proof of existence

HOMEWORK:

• State the theorem and show its application for this case,
which is used to prove the existence of a process with the
properties from p. 14, cf. Financial mathematics lectures
So far we only used intuitive limit (recall different kinds of convergence for random

variables; this was not specified here) and did not arrive to a contradiction when

considering dispersion

• Where does it fail for (e.g.) D[w(t+∆t)− w(t)] = (∆t)2?
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Brownian motion

• Brownian motion :
x(t) = µt+ σw(t),

where w(t) is a Wiener process

• Probability distribution x(t) ∼ N(µt, σ2t)

• Sample trajectories together with the expected value:
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Brown, Wiener et al.: Historical remarks

• Robert Brown (1773 -
1858), a Scottish botanist

• Paper entitled A brief
account of microscopical
observations made in the
months of June, July and
August, 1827, on the
particles contained in the
pollen of plants; and on
the general existence of
active molecules in
organic and inorganic
bodies

Henry William Pickersgill: Portrait of Robert Brown, 1864

http://nla.gov.au/nla.pic-an11278663
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Brown, Wiener et al.: Historical remarks

http://en.wikipedia.org/wiki/File:Clarkia pulchella.jpg

http://commons.wikimedia.org/wiki/File:Clarkia pulchella flower.jpg

• Observing pollen of the
plant Clarkia pulchella
(photos in the left)
immersed in water with
his microscope

• Small particles from
pollen grains in vivid
motion

• Motion exhibited also by
particles obtained from
inorganic material

• Today we can explain the
phenomenon by collisions
of molecules
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Brown, Wiener et al.: Historical remarks

• Albert Einstein (1905), Marian Smoluchowski (1906):
explanation of the Brownian motion

• Jean Baptiste Perrin : a series of experiments
(1900-1912), determinig a value of Avogadro’s number;
awarded the Nobel Prize in Physics 1926
Perrin’s Nobel prize lecture:

http://www.nobelprize.org/nobel prizes/physics/laureates/1926/perrin-lecture.html

• Norbert Wiener (1923): the first complete mathematical
construction of a Brownian motion as a continuous
stochastic process

• Norbert Wiener, Paul Lévy, ... : mathematical properties
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Applications in finance: Historical remarks

Louis Bachelier (1900): defends his thesis Théorie de la
spéculation at Sorbonne University

• Beginning of the thesis: description of the products
available in the French stock market of that time

• Model: Brownian motion as a model for a stock price
• Results:

◦ he derives probability distribution, relates the density
function to the heat equation

◦ calculates the probability that a Brownian motion does
not exceed a fixed level

◦ finds the distribution of the supremum of the Brownian
motion
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Applications in finance: Historical remarks

Full text: http://www.numdam.org/item?id=ASENS 1900 3 17 21 0 (in French)

CURRENT MODELLING: Brownian motion - not a model for the
stock price, but its logarithm
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Geometric Brownian motion: motivation

• Motivation - real stock prices (AMZN) and their trend:

http://finance.yahoo.com

• Continuous risk-free investment grows exponentially
x(t) = x0e

rt

• We add random component: x(t) = x0e
µt+σw(t)
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Geometric Brownian motion

• Geometric Brownian motion:

x(t) = x0 exp(µt+ σw(t)),

where w(t) is a Wiener process
• Sample trajectories:
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• We derive the expected value and the dispersion of a GBM.
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GBP - expected value, dispersion

• Recall from the probability:
If X is a random variable with density f , then the expected
value of g(X) equals

∫

∞

−∞
g(x)f(x)dx.

• Hence, for example: E[eX ] =
∫

∞

−∞
exf(x)dx.

• In our case we need:

E [x0 exp(µt+ σw(t))] = x0E [exp(µt+ σw(t))] ,

while we know that

µt+ σw(t) ∼ N(µt, σ2t);

therefore µt+ σw(t) has the density

f(x) =
1√
2πσ2t

e−
(x−µt)2

2σ2t
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GBP - expected value, dispersion

• Hence:

E

[

eµt+σw(t)
]

=

∫

∞

−∞

ex
1√
2πσ2t

e−
(x−µt)2

2σ2t dx

=

∫

∞

−∞

1√
2πσ2t

e
−

[

(x−µt)2

2σ2t
−x

]

dx

=

∫

∞

−∞

1√
2πσ2t

e−
[x−(µt+σ2t)]2−2µσ2t2−σ4t2

2σ2t dx

= eµt+
σ2t

2

∫

∞

−∞

1√
2πσ2t

e−
[x−(µt+σ2t)]2

2σ2t dx

= eµt+
σ2t

2
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GBP - expected value, dispersion

• Dispersion:
D [x0 exp(µt+ σw(t))] = x20 D [exp(µt+ σw(t))]

• Recall that the dispersion of a random variable X can be
expressed as D[X] = E[X2]− (E[X])2 - we therefore need

E

[

(

eµt+σw(t)
)2
]

• Similarly as in the computation of the expected value:

E

[

(

eµt+σw(t)
)2

]

=

∫

∞

−∞

(ex)2
1√
2πσ2t

e−
(x−µt)2

2σ2t dx

= e2µt+2σ
2t
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GBP - expected value, dispersion

• Summary:

E [x0 exp(µt+ σw(t))] = x0 e
µt+ σ2t

2

D [x0 exp(µt+ σw(t))] = x20 e
2µt+σ2t

(

eσ
2t − 1

)

• Another derivation:

◦ we derive the density of a GBM (lognormal distribution - we will work with it
on exercises session) and use it to compute the expected value and
dispersion → textbook [Ševčovič, Stehlíková, Mikula] - HOMEWORK

◦ using Itō lemma → later in this lecture
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Model for stock prices

• Model: stock price S(t) follows geometric Brownian motion

S(t) = S0 exp(µt+ σw(t)),

• We use logarithmic returns:

returnt = log

(

St

St−∆t

)

REMARK ON RETURNS:

• computation I:
St−St−∆t

St−∆t
- discrete compounding:

St − St−∆t

St−∆t

= r ⇒ St = (1 + r)St−∆t

• computation II: log
(

St

St−∆t

)

- continuous compounding:

log

(

St

St−∆t

)

= r ⇒ St = erSt−∆t
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Model for stock prices

• Then, we have

returnst = log

(

St

St−∆t

)

= log

(

S0e
µt+σw(t)

S0eµ(t−∆t)+σw(t−∆t)

)

= log
(

eµ∆t+σ(w(t)−w(t−∆t))
)

= µ∆t+ σ(w(t)− w(t−∆t)) ∼ N(µ∆t, σ2t)

and these returns are independent
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Stock prices - estimating parameters of a GBP

We proceed as follows:

1. Denote ∆t = the legth of the time interval between two
observations [in years]

2. Compute the returns - according to the model, they are IID
N (µ∆t, σ2∆t) random variables

3. We estimate their expected value and dispersion:
• m = arithmetic mean of the returns → estimate of the

expected valule µ∆t

• s2 = sample dispersion of the returns → estimate of
the dispersion σ2∆t

4. We estimate the parameters of the GBP:

µ =
m

∆t
, σ =

√

s2

∆t
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Estimating parameters - example

• We use the daily data of AMZN stock prices (page 26)
• We compute returns:

• The returns - time serie and histogram:

II. Stochastic processes – p.36/55



Estimating parameters - example

• Computing the estimates:

• Results:
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Estimating parameters - example

• Applications → ON THE EXERCISES SESSION:

◦ simulation of the future prices, expected value,
comparison with reality

◦ probability distribution of stock prices and returns
◦ computation of probabilities of different events
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Itō lemma
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Itō lemma

Guillermo Ferreyra: The Mathematics Behind the 1997 Nobel Prize in Economics

http://www.ams.org/samplings/feature-column/fcarc-black-scholes-ito

• Feature Column at the American Mathematical Society
website:

Black and Scholes determined explicitly a
stochastic process model for the evolution of the
price s of certain assets, and, further, developed a
formula for the value V = V (s, t) of the European
call option. This is a function of the random
variable s and of the time variable t. Once again,
the work of K. Itô supplies the needed chain rule
to differentiate V as a function of these two
variables .
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Itō lemma

• Continued:

Differentiation of composition of real valued
functions is studied in freshman calculus. Itô’s rule
is similar in spirit, but it is the differentiation rule for
functions of random processes when the random
processes are solutions of SDE’s. Moreover, the
rule looks like the ordinary chain rule studied in
calculus, but with an additional summand called
Itô’s correction term. Using this rule Black and
Scholes were able to deduce their formula for V

• Later in this course we explain also:
As a byproduct of their deduction, they obtained a
ratio for the mix between options and assets so
that the resulting mix is hedged against
fluctuations in the market price of the asset.
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Itō lemma

• Itō lemma - how to compute differentials of random
functions:

Eightieth Birthday Lecture, Kyoto University, 1995

http://www.kurims.kyoto-u.ac.jp/ k̃enkyubu/past-director/ito/ito-kiyosi.html

• In the photo:
What is dx, if x = w3, where w is a Wiener process?

• We see: d(w3) = 3w2 dw+ . . . - what is the additional term?
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Itō lemma: special simpler case

• Let us consider f = f(t, w) where w is a Wiener process
• Taylor expansion up to the second order:

df =
∂f

∂t
dt+

∂f

∂w
dw+

1

2

(

∂2f

∂x2
(dw)2 + 2

∂2f

∂w∂t
dw dt+

∂2f

∂t2
(dt)2

)

+. . .

• From dw = Φ
√
dt, where Φ ≈ N(0, 1), it follows that

(dw)2 ≈ dt

• Similarly:dw dt = O((dt)3/2)

• Terms of order dt, dw in the expansion of df therefore are:

df =
∂f

∂w
dw +

(

∂f

∂t
+
1

2

∂2f

∂w2

)

dt
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Itō lemma - example

• EXAMPLE:
Problem from the photo (p. 41); we have f(t, w) = w3:

d(w3) = 3w2dw + 3wdt
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Itō lemma - formulation

Let f(x, t) be a C2 smooth function of x, t variables and let a
process {x(t), t ≥ 0} satisfy a stochastic differential equation

dx = µ(x, t)dt+ σ(x, t)dw,

Then

df =
∂f

∂x
dx+

(

∂f

∂t
+
1

2
σ2(x, t)

∂2f

∂x2

)

dt

=

(

∂f

∂t
+ µ(x, t)

∂f

∂x
+
1

2
σ2(x, t)

∂2f

∂x2

)

dt+ σ(x, t)
∂f

∂x
dw
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Itō lemma - intuition behind the proof

• As before: expansion up to the second order:

df =
∂f

∂t
dt+

∂f

∂x
dx+

1

2

(

∂2f

∂x2
(dx)2 + 2

∂2f

∂x∂t
dx dt+

∂2f

∂t2
(dt)2

)

+. . .

• From dw = Φ
√
dt, where Φ ≈ N(0, 1), it follows that

(dx)2 = σ2(dw)2 + 2µσdw dt+ µ2(dt)2

≈ σ2dt+O((dt)3/2) +O((dt)2)

• Similarly: dx dt = O((dt)3/2) +O((dt)2)

• Terms of order dt, dw in the expansion of df therefore are:

df =
∂f

∂x
dx+

(

∂f

∂t
+
1

2
σ2(x, t)

∂2f

∂x2

)

dt
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Itō lemma - example

• EXAMPLE: Stock price following a geometric Brownian
motion S(t) = S0e

µt+σw(t):

dS =

(

µ+
σ2

2

)

Sdt+ σSdw

• EXAMPLE: Sometimes the model is written as

dS = µSdt+ σSdw

- also a GBM, but with different parameters:

S(t) = S0e

(

µ− σ2

2

)

t+σw(t)

• More practice on exercises session

II. Stochastic processes – p.47/55



Moments of a GBP: derivation using Itō lemma

• Let Y (t) = x0 exp(X(t)), where X(t) = µt+ σw(t)

• We set f(t, x) = x0e
x ⇒

dY =

(

µ+
σ2

2

)

Y dt+ σY dw

• Then:

dE[Y ] =

(

µ+
σ2

2

)

E[Y ]dt+ σE[Y dw]

=

(

µ+
σ2

2

)

E[Y ]dt

which is an ODE for EY (t)

• Initial condition: EY (0) = x0

• Solution to this ODE with the initial condition:

E[Y ] = x0e

(

µ+ σ2

2

)

t
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Moments of a GBP: derivation using Itō lemma

To compute D[Y ] we need E[Y 2] = E[x20 exp(X(t))
2]:

• We set f(t, x) = x20(e
x)2 = x20e

2x ⇒

d(Y (t)2) = df = 2(µ+ σ2)Y (t)2dt+ 2σY (t)2dw

• Then
dE[(Y (t)2)] = 2(µ+ σ2)E[(Y (t)2]dt

which is an ODE for E[Y 2]

• Initial condition: E[Y (0)2] = x20
• HOMEWORK: Finish this computation.
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Itō lemma in pricing financial derivatives

• First step in the derivation of the Black-Scholes model for
pricing financial derivatives:

◦ Suppose that stock price follows the stochastic
differential equation dS = µSdt+ σSdw

◦ Price of a derivative V (e.g., an option) depends on
time t and on the underlying stock price S, hence
V = V (S, t)

◦ Stochastic differential equation for the price of a
derivative is therefore obtained using the Itō lemma
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Multidimensional Itō lemma - motivation

• A derivative may depend on several underlying assets
• Example: spread option - for example and option with a

payoff

V (S1, S2, T ) = max(0, S1 − S2)

• We need dV for V = V (S1, S2, t)
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Multidimensional Itō lemma: general case

• Random processes (for i = 1, . . . , n)

dxi = µi(~x, t)dt+

n
∑

k=1

σik(~x, t)dwk,

where ~w = (w1, w2, ..., wn)
′ is a vector of Wiener

processes with correlation matrix (ρij)ni,j=1

E[dwi dwj ] = ρijdt

• Smooth function

f = f(~x, t) = f(x1, x2, ..., xn, t) : R
n × [0, T ]→ R

• We compute df
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Multidimensional Itō lemma: general case

• Again Taylor expansion:

df =
∂f

∂t
dt+∇xf.d~x

+
1

2

(

(d~x)T∇2xf d~x+ 2
∂f

∂t
.∇xfd~x dt+

∂2f

∂t2
(dt)2

)

+ . . .

• Terms dt dxi, (dt)2 are of higher order than dt

• Terms dxi dxj :

dxi dxj =

n
∑

k,l=1

σikσjldwk dwl +O((dt)3/2) +O((dt)2)

≈
n
∑

k,l=1

σikσjlρkldt+O((dt)3/2) +O((dt)2)
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Multidimensional Itō lemma: concrete example

We demonstrate this on a concrete example:
• EXAMPLE:

Compute dV , if V = V (t, S1, S2) where S1 and S2 are
geometric Brownian motions

dSi = µiSidt+ σiSidwi (i = 1, 2)

and Cor(w1, w2) = ρ.
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Words of Kiyoshi Itō (1915-2008)

In precisely built mathematical structures, mathematicians find
the same sort of beauty others find in enchanting pieces of
music, or in magnificent architecture.

...

Without numerical formulae, I could never communicate the
sweet melody played in my heart. Stochastic differential
equations, called "Ito Formula", are currently in wide use for
describing phenomena of random fluctuations over time. When I
first set forth stochastic differential equations, however, my
paper did not attract attention. It was over ten years after my
paper that other mathematicians began reading my "musical
scores" and playing my "music" with their "instruments".

K. Ito, Abstract of the commemorative lecture
My Sixty Years along the Path of Probability Theory (1998).

The whole lecture: http://www.inamori-f.or.jp/laureates/k14 b kiyoshi/img/lct e.pdf
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