III. Short rate models: Evolution of the short rate

Beáta Stehlíková Financial derivatives, winter term 2014/2015

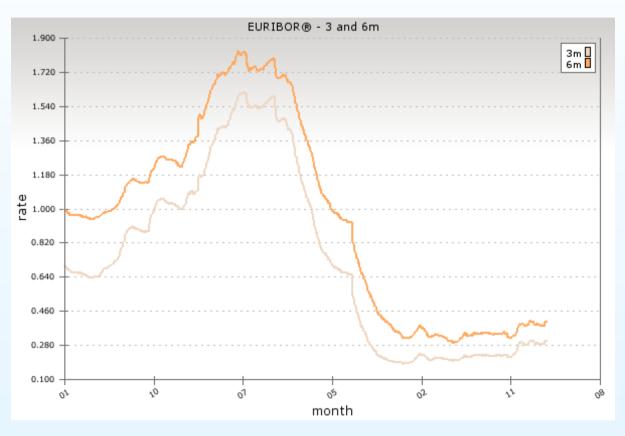
Faculty of Mathematics, Physics and Informatics Comenius University, Bratislava

Interest rate

- Assumptions in several models: the interest rate is constant, for example when pricing a riskless portfolio in the derivation of the Black-Scholes model (dP = rPdt, cf. partial differential equations lectures)
- Reasonable in some cases, but not for example if the derivative directly depends on the interest rate (bond, swap, ...)
- What we need to model:
 - the interest rate is not constant
 - there are interest rates with different maturities

Interest rates

Example: Euribor (European Inter-Bank Offered Rate):



http://www.euribor-ebf.eu/

Short rate models

- Short rate it is the instantaneous interest rate interest rate for an infinitesimally small time interval
- Theoretical variable, in practice we use a proxy (1 month, 3 months)
- Short rate models:
 - Short rate r is modelled by a stochastic differential equation

$$dr = \mu(r, t)dt + \sigma(r, t)dw$$

Terminology: $\mu(r,t)$ - drift, $\sigma(r,t)$ - volatility

 Other interest rates and derivatives - solving a partial differential equation

Mean-reversion models

- Mean-reversion reverting to some long-term equilibrium level
- This property in short rate models: the drift is taken to be

$$\mu(r,t) = \kappa(\theta - r)dt,$$

where $\kappa, \theta > 0$ are constants

• ODE for the expected value $\mathbb{E}[r]$ (for a given r_0):

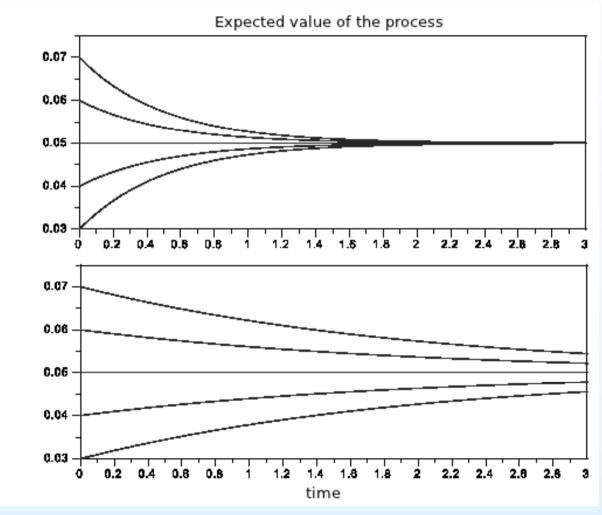
$$d\mathbb{E}[r] = \kappa(\theta - \mathbb{E}[r])dt + \mathbb{E}[\sigma(r, t)dw] = \kappa(\theta - \mathbb{E}[r])dt,$$

its solution is:
$$\mathbb{E}[r_t] = r_0 e^{-\kappa t} + (1 - e^{-\kappa t})\theta$$

• Therefore $\mathbb{E}[r] o heta$ as $t o \infty$

Mean-reversion models

• Sample solutions for selected r_0 :



What is θ ? What parameter is different in these two cases?

Mean-reversion models

• Example: $dr = \kappa(\theta - r)dt + \sigma dw$ Ornstein-Uhlenbeck process, in finance known as Vasicek model

- Oldřich Alfons Vašíček (born 1942) - a Czech mathematician
- Emigrated to the USA in 1968
- 1969: employed in the management science department of Wells Fargo Bank.

Photo: http://www.risk.net/risk-magazine/feature/1506410/presenting-risk-awards-2002 About Vasicek: http://www.risk.net/risk-magazine/feature/1506624/2002-winner-lifetime-achievement-award-oldrich-alfons-vasicek

Examples of one-factor models

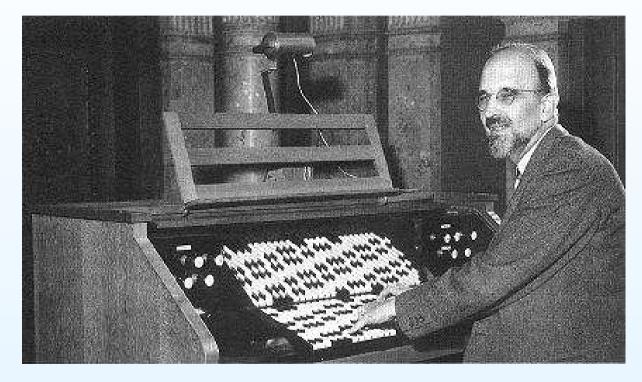
- Already mentioned Vasicek model
 - Short rate: $dr = \kappa(\theta r)dt + \sigma dw$
 - Drawback: allows negative interest rates (intuitively for now: also for r very close to zero, the volatility is always the same
- Cox-Ingersoll-Ross:
 - J. C. Cox., J. E. Ingersoll Jr, S. A. Ross, A theory of the term structure of interest rates, Econometrica (1985) 385-407.
 - Short rate: $dr = \kappa(\theta r)dt + \sigma\sqrt{r}dw$
 - $^{\circ}$ Solves the previous problem: does not allow negative interest rates (intuitively: for r=0, the volatility is zero and the drift is positive
 - It can be shown that if $2\kappa > \sigma^2$, then r=0 has a zero probability (intuition: SDE for $y=\ln(r)$ and analysis of the drift)

Examples of one-factor models

- Chan-Karolyi-Longstaff-Sanders:
 - C. K. Chan, G. A. Karolyi, F. A. Longstaff, A. B. Sanders, An empirical comparison of alternative models of the short-term interest rate, The Journal of Finance 47 (1992) 1209-1227.
 - Short rate: $dr = \kappa(\theta r)dt + \sigma r^{\gamma}$
 - $^{\circ}$ Vašíček a CIR are special cases ($\gamma=0, \gamma=1/2$)
 - $^{\circ}$ They estimated a general model (optimal γ turned out to be 1.5) and tested $\gamma=0, \gamma=1/2$ as restrictions on parameters \rightarrow they were rejected
 - Later many other studies of this kind (different data sets, different statistical methods)

- Fokker-Planck PDE partial differential equation for the density of probability distribution of the value of a stochastic process
- Out of curiosity:
 - Max Karl Ernst Ludwig Planck (1858-1947) was singing, playing the piano, organ and cello, composed songs and opera, ... but he decided to study physics
 - Adriaan Daniël Fokker (1887-1972) was interested in microtonal music, proposed a 31-tonal organ which was exhibited in *Teylers Museum* v Haarleme (the oldest museum in the Netherlands, Fokker was a curator of the physical cabinet)

A. D. Fokker and his organ:



This and other photos: http://www.huygens-fokker.org/instruments/fokkerorgan.html

Consider the following process

$$dx = \mu(x,t)dt + \sigma(x,t)dw$$

and define g(x,t) as a conditional density of the value of the process at time t if the value x_0 at time t=0 is given

THEOREM:

Then the function g(x,t) is a solution to the Fokker-Planck PDE

$$\frac{\partial g}{\partial t} = \frac{1}{2} \frac{\partial^2}{\partial x^2} \left(\sigma^2 g \right) - \frac{\partial}{\partial x} \left(\mu g \right)$$

with initial condition $g(x,0) = \delta(x-x_0)$.

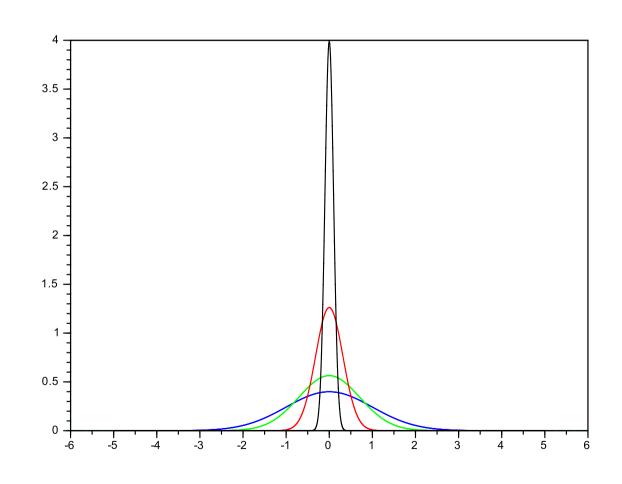
Remark on function δ from the initial condition - it is so called Dirac function:

- Not a function is the classical sense
- Intuition:
 - function satisfying

$$\delta(x-x_0) = \begin{cases} 0 & \text{for } x \neq x_0 \\ +\infty & \text{for } x = x_0 \end{cases}, \quad \int_{-\infty}^{\infty} \delta(x-x_0) dx = 1.$$

- $^{\circ}$ "density" of a random variable which takes the value x_0 with probability 1
- We have: $\int_{-\infty}^{\infty} \delta(x-x_0) f(x) dx = f(x_0)$
- It can be defined in a mathematically precise way (we will not do this)

Intuitively - functions "converging" to a Dirac function:



Fokker-Planck PDE: proof

- Let V=V(x,t) be an arbitrary function with compact support, i.e., $V\in C_0^\infty(\mathbb{R}\times(0,T))$
- From Itō lemma:

$$dV = \left(\frac{\partial V}{\partial t} + \frac{\sigma^2}{2} \frac{\partial^2 V}{\partial x^2} + \mu \frac{\partial V}{\partial x}\right) dt + \sigma \frac{\partial V}{\partial x} dW.$$

- Let E_t is the expected value with respect to the distribution given by the density g(x,t)
- Then

$$dE_t(V) = E_t(dV) = E_t\left[\left(\frac{\partial V}{\partial t} + \frac{\sigma^2}{2}\frac{\partial^2 V}{\partial x^2} + \mu\frac{\partial V}{\partial x}\right)dt\right].$$

Fokker-Planck PDE: proof

- We have V(x,0) = V(x,T) = 0 and V(x,t) = 0 for |x| > R where R > 0 is sufficiently large
- Integration per partes:

$$0 = \int_{0}^{T} \frac{d}{dt} E_{t}(V) dt = \int_{0}^{T} E_{t} \left(\frac{\partial V}{\partial t} + \frac{\sigma^{2}}{2} \frac{\partial^{2} V}{\partial x^{2}} + \mu \frac{\partial V}{\partial x} \right) dt$$
$$= \int_{0}^{T} \int_{\mathbb{R}} \left(\frac{\partial V}{\partial t} + \frac{\sigma^{2}}{2} \frac{\partial^{2} V}{\partial x^{2}} + \mu \frac{\partial V}{\partial x} \right) g(x, t) dx dt$$
$$= \int_{0}^{T} \int_{\mathbb{R}} V(x, t) \left(-\frac{\partial g}{\partial t} + \frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} \left(\sigma^{2} g \right) - \frac{\partial}{\partial x} \left(\mu g \right) \right) dx dt.$$

• Since $V \in C_0^\infty(\mathbb{R} \times (0,T))$ was arbitrary, for the density g=g(x,t) we obtain the Fokker-Planck equation

Fokker-Planck PDE for the Vasicek model

Let x_t be an Ornestein-Uhlenbeck/Vasicek process

- Constant at dw o we can expect normal distribution
- We have already computed the expected values
- We derive an equation for the variance:

(Computations in the wxMaxima software: http://wxmaxima.sourceforge.net)

Fokker-Planck PDE for the Vasicek model

Factoring the expression:

factor(%);
$$(\$o4) - (\frac{d}{dt}s2(t) + 2\kappa s2(t) - \sigma^2)(x0^2 - 2\$e^{\kappa t}xx0 + 2\$e^{\kappa t}\theta x0 - 2\theta x0 + \$e^{2\kappa t}x^2 - 2\$e^{2\kappa t}\theta x + 2\$e^{\kappa t}\theta x + \$e^{2\kappa t}\theta^2 - 2\$e^{\kappa t}\theta^2 + \theta^2 - \$e^{2\kappa t}s2(t))$$

$$+ 2\$e^{\kappa t}\theta x + \$e^{2\kappa t}\theta^2 - 2\$e^{\kappa t}\theta^2 + \theta^2 - \$e^{2\kappa t}s2(t))$$

$$+ 2\$e^{-2\kappa t}x\theta^2 + \frac{\$e^{-\kappa t}xx\theta}{s2(t)} + \frac{\$e^{-\kappa t}\theta x\theta}{s2(t)} + \frac{\$e^{-2\kappa t}\theta x\theta}{s2(t)} - \frac{x^2}{2s2(t)} + \frac{\$e^{-\kappa t}\theta x}{s2(t)} + \frac{\$e^{-\kappa t}\theta^2}{s2(t)} - \frac{\$e^{-2\kappa t}\theta^2}{2s2(t)} - \frac{\theta^2}{2s2(t)} - 2\kappa t$$

$$+ 2\$e^{\kappa t}\theta x + \frac{\$e^{-\kappa t}xx\theta}{s2(t)} + \frac{\$e^{-\kappa t}xx\theta}{s2(t)} + \frac{\$e^{-\kappa t}\theta x}{s2(t)} + \frac{\$e^{-\kappa t}\theta^2}{s2(t)} - \frac{\theta^2}{2s2(t)} - 2\kappa t$$

$$+ 2\$e^{\kappa t}\theta x + \frac{\$e^{-\kappa t}xx\theta}{s2(t)} + \frac{\$e^{-\kappa t}xx\theta}{s2(t)} + \frac{\$e^{-\kappa t}\theta x}{s2(t)} + \frac{\$e^{-\kappa t}\theta^2}{s2(t)} - \frac{\theta^2}{2s2(t)} - 2\kappa t$$

$$+ 2\$e^{\kappa t}\theta x + \frac{\$e^{-\kappa t}xx\theta}{s2(t)} + \frac{\$e^{-\kappa t}xx\theta}{s2(t)} + \frac{\$e^{-\kappa t}\theta x\theta}{s2(t)} + \frac{\$$$

More clearly:

$$\begin{array}{l} & \text{factor(%);} \\ \text{(%o4)} & -(\frac{d}{d\tau} \text{s2(t)} + 2 \, \text{K} \, \text{s2(t)} - \sigma^2) & (x \theta^2 - 2 \, \text{se}^{\text{K}\,t} \, x \, x \theta + 2 \, \text{se}^{\text{K}\,t} \, \theta \, x \theta - 2 \, \theta \, x \theta + \text{se}^{2 \, \text{K}\,t} \, x^2 - 2 \, \text{se}^{2 \, \text{K}\,t} \, \theta \, x \\ + 2 \, \text{se}^{\text{K}\,t} \, \theta \, x + \text{se}^{2 \, \text{K}\,t} \, \theta^2 - 2 \, \text{se}^{\text{K}\,t} \, \theta^2 + \theta^2 - \text{se}^{2 \, \text{K}\,t} \, \text{s2(t)} \\ + \frac{\text{se}^{-2 \, \text{K}\,t} \, x \theta^2}{2 \, \text{s2(t)}} + \frac{\text{se}^{-\text{K}\,t} \, x \, x \theta}{\text{s2(t)}} - \frac{\text{se}^{-2 \, \text{K}\,t} \, \theta \, x \theta}{\text{s2(t)}} - \frac{x^2}{2 \, \text{s2(t)}} - \frac{\text{se}^{-\text{K}\,t} \, \theta \, x}{\text{s2(t)}} + \frac{\theta \, x}{\text{s2(t)}} + \frac{\text{se}^{-\text{K}\,t} \, \theta^2}{\text{s2(t)}} - \frac{\theta^2}{2 \, \text{s2(t)}} - 2 \, \text{K}\,t} \\ \text{(2}^{3/2} \sqrt{\pi} \, \text{s2(t)})^{5/2}) \end{array}$$

This has to equal to zero

Fokker-Planck PDE for the Vasicek model

This expression has to be equal to zero ⇒ this holds if

$$s2'(t) + 2\kappa \, s2(t) - \sigma^2 = 0$$

- Variance at time t=0 is zero \Rightarrow initial condition s2(0)=0
- Solution:

$$s2(t) = \frac{\sigma^2}{2\kappa} \left(1 - e^{-2\kappa t} \right)$$

• CONCLUSION: Distribution of an Ornstein-Uhlenbeck process is a normal distribution with expected value $r_0e^{-\kappa t}+(1-e^{-\kappa t})\theta$ and variance $s2(t)=\frac{\sigma^2}{2\kappa}\left(1-e^{-2\kappa t}\right)$

Vasicek model: estimating parameters

- We have a time serie of interest rate (proxy for the short rate) → we want to estimate the parameters of the Vasicek model
- Knowledge of the conditional distribution allows us to construct the likelihood function for the given values of the interest rate r_1, r_2, \ldots, r_n observed in the market:

$$L = \prod_{i=1}^{n-1} f(r_{i+1}|r_i)$$

- Maximizing L (equivalently, its logarithm) yields estimates of the parameters
- Vasicek model: functions f are normal distribution densities; it is possible to find closed form expressions for the estimates; we will use then on exercises session

CKLS model: estimating parameters

- Recall that $dr = \kappa(\theta r)dt + \sigma r^{\gamma}$
- Conditional distribution known only for $\gamma = 1/2$; even that quite complicated \rightarrow approximation of the likelihood:
 - The volatility σr^{γ} on time interval $[t, t + \Delta t)$ between two observations is approximated by its value in time t
 - In this approximation, volatility on $[t, t + \Delta t]$ is constant \rightarrow normal distribution
 - Known as Nowman's Gaussian estimates (since based on Gaussian approximation
- Maximum likelihood estimates → testing hyptheses using likelihood ratio test

CKLS model: estimating parameters - example

Athanasios Episcopos: **Further evidence on alternative continuous time models of the shortterm interest rate**, Journal of International FinancialMarkets, Institutions andMoney Volume 10, Issue 2, June 2000, pp. 199-212

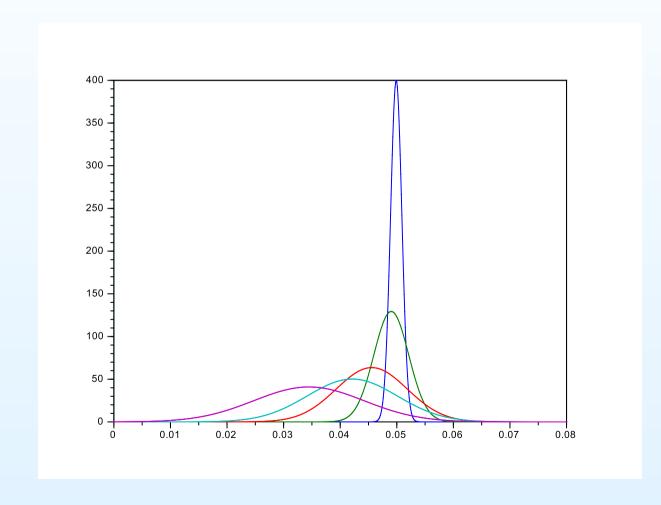
- Estimates for 10 countries (general CKLS model and several restrictions given by existing models)
- Next page: example for the USA ((data: 1/1986 4/1998, 148 observations)
- We go through the procedure of testing Vasicek and CIR model as restrictions of the CKLS model (computation of the test statistics and corresponding p-value)

CKLS model: estimating parameters - example

Results for the USA:

Model ^b	α	β	σ^2	γ	Avg. Log L	χ^2 -test ^c	df
Unrestricted	0.0013 (1.4696)	-0.0234 (-1.5710)	0.0001 (1.0309)	0.4239 (2.5099)	5.1768		
Vasicek	0.0013 (4.3499)	-0.0235 (-5.6112)	0.0000 (16.1077)	0	5.1569	5.8655 (0.0154)	1
CIR SR	0.0013 (4.6916)	-0.0241 (-5.8893)	0.0002 (13.0558)	0.5	5.1761	0.201 (0.6539)	1
BR-SC	0.0014 (6.1214)	-0.0255 (-6.1221)	0.0038 (14.9738)	1	5.1365	11.8748 (0.0006)	1
CIR VR	0	0	0.0794 (21.0933)	1.5	5.0220	45.529 (0.0000)	3
CEV	0	-0.003 (-0.6401)	0.0001 (24.7981)	0.4063 (31.0657)	5.1705	1.8477 (0.1740)	1

• EXAMPLE: Ornestein-Uhlenbeck process - densities for a given x_0 and a couple of times t:

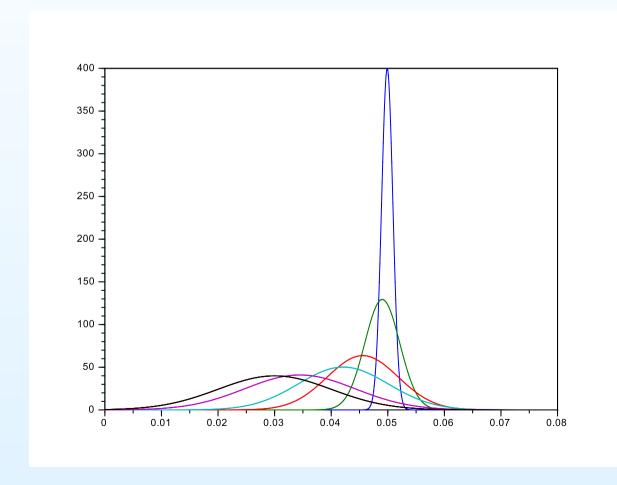


- Densities converge to a certain limiting distribution
- As $t \to \infty$, we have:

$$\mathbb{E}[r_t|r_0] = r_0 e^{-\kappa t} + (1 - e^{-\kappa t})\theta \to \theta$$

$$\mathbb{D}[r_t|r_0] = \frac{\sigma^2}{2\kappa} \left(1 - e^{-2\kappa t}\right) \to \frac{\sigma^2}{2\kappa}$$

• EXAMPLE: Ornestein-Uhlenbeck process - densities for a given x_0 and a couple of times t (from the previous plot) and the limiting density (black line):



- We do not need the conditional distributions to compute the limining distribution (this is often complicated)
- Direct computation from the Fokker-Planck PDE:
 - \circ we know that the density g(x,t) for time t satisfies the PDE

$$\frac{\partial g}{\partial t} = \frac{1}{2} \frac{\partial^2}{\partial x^2} \left(\sigma^2 g \right) - \frac{\partial}{\partial x} \left(\mu g \right)$$

- \circ consider limit $f(x) := \lim_{t \to \infty} g(x,t)$
- this limit then satisfies the stationary Fokker-Planck equation:

$$0 = \frac{1}{2} \frac{d^2}{dx^2} \left(\sigma^2 f \right) - \frac{d}{dx} \left(\mu f \right)$$

with a normalization condition (it is a density function)

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

EXAMPLE: CIR model for interest rates

- Recall the stochastic differential equation for the short rate $dx = \kappa(\theta x)dt + \sigma\sqrt{x}dw$
- Let $2\kappa > \sigma^2$ (then the zero value cannot be achieved)
- Density g(x,t) at time t satisfies the PDE

$$\frac{\partial g}{\partial t} = \frac{1}{2} \frac{\partial^2}{\partial x^2} \left(\sigma^2 g \right) - \frac{\partial}{\partial x} \left(\kappa (\theta - x) g \right)$$

with initial condition

$$g(x,0) = \delta(x - x_0)$$

• There is an explicit expression for g(x,t), but it is quite complicated (noncentral chi-squared distribution, modified Bessel function)

EXAMPLE - CONTINUED:

Explicit solution (without a proof):

$$g(x,t) = c e^{-u-v} \left(\frac{v}{u}\right)^{q/2} I_q(2\sqrt{uv}),$$

(for x > 0, otherwise g(x, t) = 0), where I_q is a modified Bessel function of the first kind of order q and

$$c = \frac{2\kappa}{\sigma^2(1 - e^{-\kappa t})}$$

$$u = c x_0 e^{-\kappa t}$$

$$v = c x$$

 Complicated, but limiting distribution can be found also without a knowlenge of this conditional distribution

EXAMPLE - CONTINUED:

• Limiting density $f(x) := \lim_{t \to \infty} g(x,t)$ satisfies stationary Fokker-Planck equation: (for x > 0, otherwise it is zero since the process never has negative values)

$$0 = \frac{1}{2} \frac{d^2}{dx^2} \left(\sigma^2 x f \right) - \frac{d}{dx} \left(\kappa (\theta - x) f \right)$$

HOMEWORK: Integrating gives

$$f(x) = K x^{\frac{2\kappa\theta}{\sigma^2} - 1} e^{-\frac{2\kappa}{\sigma^2}x}$$

- Constant K is computed from the condition $\int_{-\infty}^{\infty} f(x)dx = 1$
- Note that this is a density of a gamma distribution