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Interest rate

* Assumptions in several models: the interest rate is
constant , for example when pricing a riskless portfolio in
the derivation of the Black-Scholes model (dP = rPdt , cf.
partial differential equations lectures )

* Reasonable in some cases, but not - for example - if the

derivative directly depends on the interest rate (bond,
swap, ...)

* \What we need to model:
o the interest rate is not constant
o there are Interest rates with different maturities
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Interest rates

* Example: Euribor (European Inter-Bank Offered Rate):
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http://www.euribor-ebf.eu/
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Short rate models

e Short rate - it Is the instantaneous interest rate - interest
rate for an infinitesimally small time interval

* Theoretical variable, in practice we use a proxy (1 month, 3
months)

* Short rate models:
o Short rate r Is modelled by a stochastic differential
equation
dr = p(r,t)dt + o(r,t)dw

Terminology: wu(r,t) - drift, o(r, t) - volatility
© Other interest rates and derivatives - solving a partial
differential equation
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Mean-reversion models

* Mean-reversion - reverting to some long-term equilibrium
level

* This property in short rate models: the drift is taken to be
p(r,t) = k(6 — r)dt,

where «, 0 > 0 are constants
* ODE for the expected value E|r| (for a given r):

dE|r] = k(0 — Elr])dt + Elo(r,t)dw| = k(0 — E[r])dt,

its solution is: E[r;] = rge " + (1 — e )0

®* Therefore E[r] -0 ast —
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Mean-reversion models

* Sample solutions for selected r:

Expected value of the process
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What is 6? What parameter is different in these two cases?
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Mean-reversion models

* Example: dr = k(0 — r)dt 4+ odw Ornstein-Uhlenbeck
process, in finance known as Vasicek model

o Qldrich Alfons VasSicek
(born 1942) - a Czech
mathematician

° Emigrated to the USA In
1968

© 1969: employed in the
management science
department of Wells
Fargo Bank.

Photo: http://www.risk.net/risk-magazine/feature/1506410/presenting-risk-awards-2002
About Vasicek: http://www.risk.net/risk-magazine/feature/1506624/2002-winner-lifetime-
achievement-award-oldrich-alfons-vasicek
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Examples of one-tactor models

* Already mentioned Vasicek model
o Short rate: dr = k(60 — r)dt + odw

o Drawback: allows negative interest rates (intuitively for
now: also for r very close to zero, the volatility is
always the same

* Cox-Ingersoll-Ross:

© J.C. Cox., J. E. Ingersoll Jr, S. A. Ross, A theory of the term structure of
Interest rates, Econometrica (1985) 385-407.

o Short rate: dr = k(0 — r)dt + o+/rdw

° Solves the previous problem: does not allow negative
Interest rates (intuitively: for » = 0, the volatility is zero
and the drift is positive

° |t can be shown that if 2x > o2, then r = 0 has a zero
probability (intuition: SDE for y = In(r) and analysis of
the drift)
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Examples of one-tactor models

* Chan-Karolyi-Longstaff-Sanders:

© C. K. Chan, G. A. Karolyi, F A. Longstaff, A. B. Sanders, An empirical
comparison of alternative models of the short-term interest rate, The
Journal of Finance 47 (1992) 1209-1227.

o Short rate: dr = k(6 — r)dt + or”

a4

© VaSiCek a CIR are special cases (v = 0,7 = 1/2)

° They estimated a general model (optimal v turned out
to be 1.5) and tested v = 0,y = 1/2 as restrictions on
parameters — they were rejected

© Later many other studies of this kind (different data
sets, different statistical methods)
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Fokker-Planck PDE

* Fokker-Planck PDE - partial differential equation for the
density of probabillity distribution of the value of a
stochastic process

® OQut of curiosity:

©  Max Karl Ernst Ludwig Planck (1858-1947) was singing, playing the piano,
organ and cello, composed songs and opera, ... but he decided to study

physics
©  Adriaan Daniél Fokker (1887-1972) was interested in microtonal music,

proposed a 31-tonal organ which was exhibited in Teylers Museum v
Haarleme (the oldest museum in the Netherlands, Fokker was a curator of

the physical cabinet)
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Fokker-Planck PDE

A. D. Fokker and his organ:

This and other photos: http://www.huygens-fokker.org/instruments/fokkerorgan.htmi
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Fokker-Planck PDE

* Consider the following process
dr = p(x,t)dt + o(x,t)dw

and define g(x,t) as a conditional density of the value of
the process at time ¢ if the value z¢ at time ¢t = 0 is given

* THEOREM:

Then the function g(x, t) is a solution to the Fokker-Planck
PDE

89_182 2
5—5@(0 9)—%(,&9)

with initial condition g(x,0) = d(x — xo).
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Fokker-Planck PDE

Remark on function 6 from the initial condition - it is so called
Dirac function:

* Not a function is the classical sense

* [ntuition:
° function satisfying

5(z—10) = { 0 forx # xg | / §(w—0)dz = 1.

+o0  forx = xg N
° "density" of a random variable which takes the value zq
with probability 1
* We have: [7°_ d(z — x0) f(z)dzx = f(zo)

* |t can be defined in a mathematically precise way (we will
not do this)
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Fokker-Planck PDE

Intuitively - functions "converging" to a Dirac function:
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Fokker-Planck PDE: proot

°* LetV =V (x,t) be an arbitrary function with compact
support, i.e., Ve C§°(R x (0,7T))

* From lto lemma:

2 52
de(aV o 07V 8V) 2)%

E_F 5 —0$2 —|—,LL% dt + o—dW.,

ox

* Let E; Is the expected value with respect to the distribution
given by the density g(z, t)

* Then

oV 020°V oV
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Fokker-Planck PDE: proot

* We have V(z,0) =V (x,T) =0and V(z,t) =0for |[x| > R
where R > 0 is sufficiently large

* Integration per partes:
T d av 0c?9*V OV
0 = / —Et(V)dt—A Et ( a1 2 92 —|—,LL%) dt
0 292V oV
— / /( 5 2 +'LL8:13) g(z,t)dx dt

_ S .
= // a:t( +28x2 (c°g) (,%(,ug) dzx dt.

* Since V € C§°(R x (0,7")) was arbitrary, for the density
g = g(x,t) we obtain the Fokker-Planck equation
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Fokker-Planck PDE for the Vasicek model

Let x; be an Ornestein-Uhlenbeck/Vasicek process
* Constant at dw — we can expect normal distribution
* We have already computed the expected values
* We derive an equation for the variance:
%11) mi(t):=x0*exp(-kappa*t)+theta*(1-exp(-kappa*t)) %

%12) g(x,t):=exp(-(x-mi(t))"2/(2*¥s2(t)))/sqrt(2*%pi*s2(t));

[-(x-mimf]
exp

2s2(t)

N2 ns2(t)

%13) -diff(g(x,t),t)+
(sigma™2/2)*diff(g(x,1),x,2)+
kappa*g(x,t) -
kappa* (theta-x)*diff(agl(x,t),x) %

%02) glx, t):=

(Computations in the wx Maxi ma software: http://wxmaxima.sourceforge.net)
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Fokker-Planck PDE for the Vasicek model

* Factoring the expression:

factor(%) ;

(%04) - (x02-2% T x x0+2% T 0 x0-208x0+%e” T x2.2%e? T gx

d
s s2(t)+2 Kk s2(t)- o2

+2% T Bx+%e? T B2 2%e T 6%+0%- %2 T s2(t))
30 28402 %o % Tyxo %e XTHxo %e 2%T8xe x? % FTOx Bx e KTg2 me-2KTg2 -
- } - } - - } } - - -2K
oe 2s2(t) s2(t) sz2it) s2(t) 2s2(ty  s2(ty  s2{t)  sz2(t) 2s2(ty  2s2(t) )/

{23;‘2,\{? SE(t)E‘;z)

EE

* More clearly:

factor(%);

(%04) l

+2%eX T o x+%e?K T 62- 2%eX T 62+ 62- %2 T s2(t))

2 M T e %M T rxe %e KToxe e ?FTOxe x2 e FTOx Bx e ML ge - SHTgd <

Sl (x0%-2%e" T x x0+2%e" TOX0-26x0+%e7" T xZ- 2% T o x

(A

%e_ 2s2(t) s2(t)  s2(8)  s2(t)  2s2(t) s2(t)  s2At) s2(t)  2s2(t) _252(1'}_2

* This has to equal to zero
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Fokker-Planck PDE for the Vasicek model

* This expression has to be equal to zero = this holds if
s2'(t) + 2k s2(t) —0° =0

* Variance at time ¢t = 0 is zero = initial condition s2(0) = 0

e Solution:
2

s2(t) = ;—l{ (1 — 6_2’“)

® CONCLUSION:
Distribution of an Ornstein-Uhlenbeck process is a normal

distribution with expected value rge™"* + (1 — e **)f and
variance s2(t) = 2 (1 — e=2%t)
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Vasicek model: estimating parameters

* We have a time serie of interest rate (proxy for the short
rate) — we want to estimate the parameters of the Vasicek
model

* Knowledge of the conditional distribution allows us to
construct the likelihood function for the given values of the
Interest rate rq,rs, ..., r, observed in the market:

n—1
L= 1] frivalrs)
i=1

* Maximizing L (equivalently, its logarithm) yields estimates
of the parameters

* Vasicek model: functions f are normal distribution
densities; it is possible to find closed form expressions for
the estimates; we will use then on exercises session ,
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CKLS model: estimating parameters

* Recall that dr = k(0 — r)dt + or?

* Conditional distribution known only for v = 1/2; even that
guite complicated — approximation of the likelihood:

° The volatility or” on time interval [t,t + At) between
two observations is approximated by its value in time ¢

° In this approximation, volatility on [t,t + At) is constant
— normal distribution

o Known as Nowman’s Gaussian estimates (since based
on Gaussian approximation

* Maximum likelihood estimates — testing hyptheses using
likelihood ratio test
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CKLS model: estimating parameters - example

Athanasios Episcopos: Further evidence on alternative continuous time models of
the shortterm interest rate, Journal of International FinancialMarkets, Institutions

andMoney Volume 10, Issue 2, June 2000, pp. 199-212

* Estimates for 10 countries (general CKLS model and
several restrictions given by existing models)

* Next page: example for the USA ((data: 1/1986 - 4/1998,
148 observations)
* We go through the procedure of testing Vasicek and CIR

model as restrictions of the CKLS model (computation of
the test statistics and corresponding p-value)
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CKLS model: estimating parameters - example

Results for the USA:

Model® % p a? » Avg. Log L 1>-test® df
Unrestricted 0.0013 —0.0234 0.0001 0.4239 5.1768
(1.4696) (—1.5710) (1.0309) (2.5099)
Vasicek 0.0013 —0.0235 0.0000 0 5.1569 5.8655 1
(4.3499) (—5.6112)  (16.1077) (0.0154)
CIR SR 0.0013 —0.0241 0.0002 0.5 5.1761 0.201 1
(4.6916) (—5.8893)  (13.0558) (0.6539)
BR-SC 0.0014 —0.0255 0.0038 1 5.1365 11.8748 1
(6.1214) (—61221)  (14.973%) (0.0006)
CIR VR 0 0 0.0794 1.5 5.0220 45.529 3
(21.0933) (0.0000)
CEV 0 —0.003 0.0001 0.4063 5.1705 1.8477 1
(—0.6401)  (24.7981) (31.0657) (0.1740)
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Fokker-Planck PDE: limiting distribution

* EXAMPLE: Ornestein-Uhlenbeck process - densities for a
given xy and a couple of times ¢:
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Fokker-Planck PDE: limiting distribution

* Densities converge to a certain limiting distribution

* Ast — oo, we have:
E:?“t

D :’I“t
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Fokker-Planck PDE: limiting distribution

* EXAMPLE: Ornestein-Uhlenbeck process - densities for a
given xy and a couple of times ¢ (from the previous plot)
and the limiting density (black line):
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Fokker-Planck PDE: limiting distribution

* We do not need the conditional distributions to compute
the limining distribution (this is often complicated)
* Direct computation from the Fokker-Planck PDE:

° we know that the density g(x,t) for time ¢ satisfies the
PDE

dg 1 0% | 0
5—5@(0 9)—%(,“9)
o consider limit f(z) := lim;_,~ g(x,1)
o this limit then satisfies the stationary Fokker-Planck
equation:
1 d* , d
0—5@(0 f)—@(ﬂf)

with a normalization condition (it is a density function)

ffooo flx)dx =1
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Fokker-Planck PDE: limiting distribution

ExAMPLE: CIR model for interest rates

* Recall the stochastic differential equation for the short rate
dr = k(0 — x)dt + o+/xdw

° Let 2k > o2 (then the zero value cannot be achieved)
* Density g(x,t) at time ¢ satisfies the PDE

dg 1 0? 0
ot 20x2 (U g) oz (16 = z)g)

with initial condition

g(x,0) = 6(x — o)

* There is an explicit expression for g(x, t),but it is quite
complicated (noncentral chi-squared distribution, modified

Bessel function)
|
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Fokker-Planck PDE: limiting distribution

EXAMPLE - CONTINUED:
* Explicit solution (without a proof):

(V)

g(z,t) =ce " (—)W 1,(2v/uv),

u

(for x > 0, otherwise g(x,t) = 0), where I, is a modified
Bessel function of the first kind of order ¢ and

2K
c = 3 l
o?(1 — e rt)
u = cxge ™
v = cx

* Complicated, but limiting distribution can be found also
without a knowlenge of this conditional distribution
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Fokker-Planck PDE: limiting distribution

EXAMPLE - CONTINUED:

* Limiting density f(z) := lim;_~ g(x, t) satisfies stationary
Fokker-Planck equation: (for x > 0, otherwise it is zero
since the process never has negative values)

1 d? d
0= 35— (o°2f) = — (k(0 — 2))

x dzx
* HOMEWORK: Integrating gives

flx) = K por—lg—3a

* Constant K is computed from the condition [~ f(z)dz =1

* Note that this is a density of a gamma distribution
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