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Interest rate

• Assumptions in several models: the interest rate is
constant , for example when pricing a riskless portfolio in
the derivation of the Black-Scholes model (dP = rPdt , cf.
partial differential equations lectures )

• Reasonable in some cases, but not - for example - if the
derivative directly depends on the interest rate (bond,
swap, ...)

• What we need to model:
◦ the interest rate is not constant
◦ there are interest rates with different maturities
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Interest rates

• Example: Euribor (European Inter-Bank Offered Rate):

http://www.euribor-ebf.eu/
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Short rate models

• Short rate - it is the instantaneous interest rate - interest
rate for an infinitesimally small time interval

• Theoretical variable, in practice we use a proxy (1 month, 3
months)

• Short rate models:
◦ Short rate r is modelled by a stochastic differential

equation

dr = µ(r, t)dt+ σ(r, t)dw

Terminology: µ(r, t) - drift, σ(r, t) - volatility
◦ Other interest rates and derivatives - solving a partial

differential equation
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Mean-reversion models

• Mean-reversion - reverting to some long-term equilibrium
level

• This property in short rate models: the drift is taken to be

µ(r, t) = κ(θ − r)dt,

where κ, θ > 0 are constants
• ODE for the expected value E[r] (for a given r0):

dE[r] = κ(θ − E[r])dt+ E[σ(r, t)dw] = κ(θ − E[r])dt,

its solution is: E[rt] = r0e
−κt + (1− e−κt)θ

• Therefore E[r]→ θ as t → ∞
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Mean-reversion models

• Sample solutions for selected r0:

What is θ? What parameter is different in these two cases?
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Mean-reversion models

• Example: dr = κ(θ − r)dt+ σdw Ornstein-Uhlenbeck
process, in finance known as Vasicek model

◦ Oldřich Alfons Vašíček
(born 1942) - a Czech
mathematician

◦ Emigrated to the USA in
1968

◦ 1969: employed in the
management science
department of Wells
Fargo Bank.

Photo: http://www.risk.net/risk-magazine/feature/1506410/presenting-risk-awards-2002

About Vasicek: http://www.risk.net/risk-magazine/feature/1506624/2002-winner-lifetime-

achievement-award-oldrich-alfons-vasicek
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Examples of one-factor models

• Already mentioned Vasicek model
◦ Short rate: dr = κ(θ − r)dt+ σdw
◦ Drawback: allows negative interest rates (intuitively for

now: also for r very close to zero, the volatility is
always the same

• Cox-Ingersoll-Ross:
◦ J. C. Cox., J. E. Ingersoll Jr, S. A. Ross, A theory of the term structure of

interest rates, Econometrica (1985) 385-407.

◦ Short rate: dr = κ(θ − r)dt+ σ
√
rdw

◦ Solves the previous problem: does not allow negative
interest rates (intuitively: for r = 0, the volatility is zero
and the drift is positive

◦ It can be shown that if 2κ > σ2, then r = 0 has a zero
probability (intuition: SDE for y = ln(r) and analysis of
the drift)
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Examples of one-factor models

• Chan-Karolyi-Longstaff-Sanders:
◦ C. K. Chan, G. A. Karolyi, F. A. Longstaff, A. B. Sanders, An empirical

comparison of alternative models of the short-term interest rate, The

Journal of Finance 47 (1992) 1209-1227.

◦ Short rate: dr = κ(θ − r)dt+ σrγ

◦ Vašíček a CIR are special cases (γ = 0, γ = 1/2)
◦ They estimated a general model (optimal γ turned out

to be 1.5) and tested γ = 0, γ = 1/2 as restrictions on
parameters → they were rejected

◦ Later many other studies of this kind (different data
sets, different statistical methods)
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Fokker-Planck PDE

• Fokker-Planck PDE - partial differential equation for the
density of probability distribution of the value of a
stochastic process

• Out of curiosity:

◦ Max Karl Ernst Ludwig Planck (1858-1947) was singing, playing the piano,
organ and cello, composed songs and opera, ... but he decided to study
physics

◦ Adriaan Daniël Fokker (1887-1972) was interested in microtonal music,
proposed a 31-tonal organ which was exhibited in Teylers Museum v
Haarleme (the oldest museum in the Netherlands, Fokker was a curator of
the physical cabinet)
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Fokker-Planck PDE

A. D. Fokker and his organ:

This and other photos: http://www.huygens-fokker.org/instruments/fokkerorgan.html
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Fokker-Planck PDE

• Consider the following process

dx = µ(x, t)dt+ σ(x, t)dw

and define g(x, t) as a conditional density of the value of
the process at time t if the value x0 at time t = 0 is given

• THEOREM:
Then the function g(x, t) is a solution to the Fokker-Planck
PDE

∂g

∂t
=
1

2

∂2

∂x2
(

σ2g
)

− ∂

∂x
(µg)

with initial condition g(x, 0) = δ(x− x0).
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Fokker-Planck PDE

Remark on function δ from the initial condition - it is so called
Dirac function:

• Not a function is the classical sense
• Intuition:

◦ function satisfying

δ(x−x0) =

{

0 for x 6= x0

+∞ for x = x0
,

∫

∞

−∞

δ(x−x0)dx = 1.

◦ "density" of a random variable which takes the value x0
with probability 1

• We have:
∫

∞

−∞
δ(x− x0)f(x)dx = f(x0)

• It can be defined in a mathematically precise way (we will
not do this)
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Fokker-Planck PDE

Intuitively - functions "converging" to a Dirac function:
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Fokker-Planck PDE: proof

• Let V = V (x, t) be an arbitrary function with compact
support, i.e., V ∈ C∞

0 (R× (0, T ))
• From Itō lemma:

dV =

(

∂V

∂t
+

σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)

dt+ σ
∂V

∂x
dW.

• Let Et is the expected value with respect to the distribution
given by the density g(x, t)

• Then

dEt(V ) = Et(dV ) = Et

[(

∂V

∂t
+

σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)

dt

]

.
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Fokker-Planck PDE: proof

• We have V (x, 0) = V (x, T ) = 0 and V (x, t) = 0 for |x| > R
where R > 0 is sufficiently large

• Integration per partes:

0 =

∫ T

0

d

dt
Et(V )dt =

∫ T

0

Et

(

∂V

∂t
+

σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)

dt

=

∫ T

0

∫

R

(

∂V

∂t
+

σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)

g(x, t) dx dt

=

∫ T

0

∫

R

V (x, t)

(

−∂g

∂t
+
1

2

∂2

∂x2
(

σ2g
)

− ∂

∂x
(µg)

)

dx dt.

• Since V ∈ C∞

0 (R× (0, T )) was arbitrary, for the density
g = g(x, t) we obtain the Fokker-Planck equation
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Fokker-Planck PDE for the Vasicek model

Let xt be an Ornestein-Uhlenbeck/Vasicek process
• Constant at dw → we can expect normal distribution
• We have already computed the expected values
• We derive an equation for the variance:

(Computations in the wxMaxima software: http://wxmaxima.sourceforge.net)
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Fokker-Planck PDE for the Vasicek model

• Factoring the expression:

• More clearly:

• This has to equal to zero
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Fokker-Planck PDE for the Vasicek model

• This expression has to be equal to zero ⇒ this holds if

s2′(t) + 2κ s2(t)− σ2 = 0

• Variance at time t = 0 is zero ⇒ initial condition s2(0) = 0

• Solution:

s2(t) =
σ2

2κ

(

1− e−2κt
)

• CONCLUSION:
Distribution of an Ornstein-Uhlenbeck process is a normal
distribution with expected value r0e

−κt + (1− e−κt)θ and
variance s2(t) = σ2

2κ

(

1− e−2κt
)
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Vasicek model: estimating parameters

• We have a time serie of interest rate (proxy for the short
rate) → we want to estimate the parameters of the Vasicek
model

• Knowledge of the conditional distribution allows us to
construct the likelihood function for the given values of the
interest rate r1, r2, . . . , rn observed in the market:

L =

n−1
∏

i=1

f(ri+1|ri)

• Maximizing L (equivalently, its logarithm) yields estimates
of the parameters

• Vasicek model: functions f are normal distribution
densities; it is possible to find closed form expressions for
the estimates; we will use then on exercises session
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CKLS model: estimating parameters

• Recall that dr = κ(θ − r)dt+ σrγ

• Conditional distribution known only for γ = 1/2; even that
quite complicated → approximation of the likelihood:
◦ The volatility σrγ on time interval [t, t+∆t) between

two observations is approximated by its value in time t
◦ In this approximation, volatility on [t, t+∆t) is constant

→ normal distribution
◦ Known as Nowman’s Gaussian estimates (since based

on Gaussian approximation
• Maximum likelihood estimates → testing hyptheses using

likelihood ratio test
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CKLS model: estimating parameters - example

Athanasios Episcopos: Further evidence on alternative continuous time models of

the shortterm interest rate, Journal of International FinancialMarkets, Institutions

andMoney Volume 10, Issue 2, June 2000, pp. 199-212

• Estimates for 10 countries (general CKLS model and
several restrictions given by existing models)

• Next page: example for the USA ((data: 1/1986 - 4/1998,
148 observations)

• We go through the procedure of testing Vasicek and CIR
model as restrictions of the CKLS model (computation of
the test statistics and corresponding p-value)
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CKLS model: estimating parameters - example

Results for the USA:
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Fokker-Planck PDE: limiting distribution

• EXAMPLE: Ornestein-Uhlenbeck process - densities for a
given x0 and a couple of times t:
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Fokker-Planck PDE: limiting distribution

• Densities converge to a certain limiting distribution
• As t → ∞, we have:

E[rt|r0] = r0e
−κt + (1− e−κt)θ → θ

D[rt|r0] =
σ2

2κ

(

1− e−2κt
)

→ σ2

2κ
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Fokker-Planck PDE: limiting distribution

• EXAMPLE: Ornestein-Uhlenbeck process - densities for a
given x0 and a couple of times t (from the previous plot)
and the limiting density (black line):
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Fokker-Planck PDE: limiting distribution

• We do not need the conditional distributions to compute
the limining distribution (this is often complicated)

• Direct computation from the Fokker-Planck PDE:
◦ we know that the density g(x, t) for time t satisfies the

PDE

∂g

∂t
=
1

2

∂2

∂x2
(

σ2g
)

− ∂

∂x
(µg)

◦ consider limit f(x) := limt→∞ g(x, t)
◦ this limit then satisfies the stationary Fokker-Planck

equation:

0 =
1

2

d2

dx2
(

σ2f
)

− d

dx
(µf)

with a normalization condition (it is a density function)
∫

∞

−∞
f(x)dx = 1
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Fokker-Planck PDE: limiting distribution

EXAMPLE: CIR model for interest rates
• Recall the stochastic differential equation for the short rate

dx = κ(θ − x)dt+ σ
√
xdw

• Let 2κ > σ2 (then the zero value cannot be achieved)
• Density g(x, t) at time t satisfies the PDE

∂g

∂t
=
1

2

∂2

∂x2
(

σ2g
)

− ∂

∂x
(κ(θ − x)g)

with initial condition

g(x, 0) = δ(x− x0)

• There is an explicit expression for g(x, t),but it is quite
complicated (noncentral chi-squared distribution, modified
Bessel function)
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Fokker-Planck PDE: limiting distribution

EXAMPLE - CONTINUED:
• Explicit solution (without a proof):

g(x, t) = c e−u−v
(v

u

)q/2
Iq(2

√
uv),

(for x > 0, otherwise g(x, t) = 0), where Iq is a modified
Bessel function of the first kind of order q and

c =
2κ

σ2(1− e−κt)

u = c x0 e
−κt

v = c x

• Complicated, but limiting distribution can be found also
without a knowlenge of this conditional distribution
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Fokker-Planck PDE: limiting distribution

EXAMPLE - CONTINUED:
• Limiting density f(x) := limt→∞ g(x, t) satisfies stationary

Fokker-Planck equation: (for x > 0, otherwise it is zero
since the process never has negative values)

0 =
1

2

d2

dx2
(

σ2xf
)

− d

dx
(κ(θ − x)f)

• HOMEWORK: Integrating gives

f(x) = K x
2κθ

σ2
−1 e−

2κ

σ2
x

• Constant K is computed from the condition
∫

∞

−∞
f(x)dx = 1

• Note that this is a density of a gamma distribution
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