V. **Black-Scholes model: Derivation and solution**

Beáta Stehlíková

Financial derivatives, winter term 2014/2015

Faculty of Mathematics, Physics and Informatics

Comenius University, Bratislava
• Black-Scholes model:
 ◦ Suppose that stock price S follows a geometric Brownian motion

$$dS = \mu S dt + \sigma S dw$$

+ other assumptions (in a moment)
 ◦ We derive a partial differential equation for the price of a derivative

• Two ways of derivations:
 ◦ due to Black and Scholes
 ◦ due to Merton

• Explicit solution for European call and put options
Assumptions

• Further assumptions (besides GBP):
 ◦ constant riskless interest rate r
 ◦ no transaction costs
 ◦ it is possible to buy/sell any (also fractional) number of stocks; similarly with the cash
 ◦ no restrictions on short selling
 ◦ option is of European type

• Firstly, let us consider the case of a non-dividend paying stock
Derivation I. - due to Black and Scholes

- Notation:
 \(S \) = stock price, \(t \) = time
 \(V = V(S, t) \) = option price

- Portfolio: 1 option, \(\delta \) stocks
 \(P = \) value of the portfolio: \(P = V + \delta S \)

- Change in the portfolio value:
 \(dP = dV + \delta dS \)

- From the assumptions:
 \(dS = \mu S dt + \sigma S dw \), From the Itô lemma:
 \[dV = \left(\frac{\partial V}{\partial t} + \mu S \frac{\partial V}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} \right) dt + \sigma S \frac{\partial V}{\partial S} dw \]

- Therefore:
 \[dP = \left(\frac{\partial V}{\partial t} + \mu S \frac{\partial V}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + \delta \mu S \right) dt + \left(\sigma S \frac{\partial V}{\partial S} + \delta \sigma S \right) dw \]
Derivation I. - due to Black and Scholes

- We eliminate the randomness: \(\delta = -\frac{\partial V}{\partial S} \)

- Non-stochastic portfolio \(\Rightarrow \) its value has to be the same as if being on a bank account with interest rate \(r \): \(dP = rP dt \)

- Equality between the two expressions for \(dP \) and substituting \(P = V + \delta S \):

\[
\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0
\]
Dividends in the Black-Scholes’ derivation

- We consider continuous dividend rate q - holding a stock with value S during the time differential dt brings dividends $qSdt$.

- In this case the change in the portfolio value equals $dP = dV + \delta dS + \delta qSdt$.

- We proceed in the same way as before and obtain

$$\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + (r - q) S \frac{\partial V}{\partial S} - rV = 0$$
Derivation due to Merton - motivation

- Problem in the previous derivation:
 - we have a portfolio consisting of one option and \(\delta \) stocks
 - we compute its value and change of its value:

\[
P = V + \delta S, \\
dP = dV + \delta dS,
\]

i.e., treating \(\delta \) as a constant

- however, we obtain \(\delta = -\frac{\partial V}{\partial S} \)
Derivation II. - due to Merton

- Portfolio consisting of options, stocks and cash with the properties:
 - in each time, the portfolio has zero value
 - it is self-financing

- Notation:
 \[Q_S = \text{number of stocks, each of them has value } S \]
 \[Q_V = \text{number of options, each of them has value } V \]
 \[B = \text{cash on the account, which is continuously compounded using the risk-free rate } r \]

\[dQ_S = \text{change in the number of stocks} \]
\[dQ_V = \text{change in the number of options} \]
\[\delta B = \text{change in the cash, caused by buying/selling stocks and options} \]
Derivation II. - due to Merton

- Mathematical formulation of the required properties:
 - zero value: \(S Q_S + V Q_V + B = 0 \) \((1) \)
 - self-financing: \(S dQ_S + V dQ_V + \delta B = 0 \) \((2) \)
- Change in the cash: \(dB = rB \; dt + \delta B \)
- Differentiating (1):

\[
0 = d(SQ_S + VQ_V + B) = d(SQ_S + VQ_V) + dB \\
= 0 \\
0 = SdQ_S + VdQ_V + \delta B + Q_SdS + Q_VdV + rB \; dt \\
0 = Q_SdS + Q_VdV - r(SQ_S + VQ_V) \; dt.
\]
Derivation II. - due to Merton

- We divide by Q_V and denote $\Delta = -\frac{Q_S}{Q_V}$:
 $$dV - rV \, dt - \Delta(dS - rS \, dt) = 0$$

- We have dS from the assumption of GBM and dV from the Itô lemma

- We choose Δ (i.e., the ratio between the number of stocks and options) so that it eliminates the randomness (the coefficient at dw will be zero)

- We obtain the same PDE as before:
 $$\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$
Dividends in the Merton’s derivation

- Assume continuous dividend rate q.
- Dividends cause an increase in the cash \Rightarrow change in the cash is $dB = rBdt + \delta B + qSQSdt$
- In the same way we obtain the PDE

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2S^2\frac{\partial^2V}{\partial S^2} + (r-q)S\frac{\partial V}{\partial S} - rV = 0$$
Black-Scholes PDE: summary

• Mathematical formulation of the model:
 Find solution $V(S, t)$ to the partial differential equation (so called Black-Scholes PDE)

$$\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$

which holds for $S > 0, t \in [0, T)$.

• So far we have not used the fact that we consider an option
 \Rightarrow PDE holds for any derivative that pays a payoff at time T
depending on the stock price at this time

• Type of the derivative determines the terminal condition at
time T

• In general: $V(S, T) = \text{payoff of the derivative}$
Black-Scholes PDE: simple solutions

Some simple "derivatives":

- How to price the derivatives with the following payoffs:
 - $V(S, T) = S \rightarrow$ it is in fact a stock $\rightarrow V(S, t) = S$
 - $V(S, T) = E \rightarrow$ with a certainty we obtain the cash E
 $\rightarrow V(S, t) = E e^{-r(T-t)}$

 - by substitution into the PDE we see that they are indeed solutions

Exercises:

- Find the price of a derivative with payoff $V(S, T) = S^n$, where $n \in \mathbb{N}$.
 Hint: Look for the solution in the form $V(S, t) = A(t) S^n$

- Find all solutions to the Black-Scholes PDE, which are independent of time, i.e., for which $V(S, t) = V(S)$
Black-Scholes PDE: binary option

- Let us consider a binary option, which pays 1 USD if the stock price is higher than E at expiration time, otherwise its payoff is zero.

- In this case

$$V(S, T) = \begin{cases}
1 & \text{if } S > E \\
0 & \text{otherwise}
\end{cases}$$

- The main idea is to transform the Black-Scholes PDE to a heat equation.

- Transformations are independent of the derivative type; it affects only the initial condition of the heat equation.
Black-Scholes PDE: transformations

FORMULATION OF THE PROBLEM

- **Partial differential equation**

\[
\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0
\]

which holds for \(S > 0, t \in [0, T) \).

- **Terminal condition** \(V(S, T) = \text{payoff of the derivative} \) for \(S > 0 \)
Black-Scholes PDE: transformations

Step 1:

- **Transformation** \(x = \ln(S/E) \in \mathbb{R}, \tau = T - t \in [0, T] \) and a new function \(Z(x, \tau) = V(Ee^x, T - \tau) \)
- **PDE for** \(Z(x, \tau), x \in \mathbb{R}, \tau \in [0, T] \):
 \[
 \frac{\partial Z}{\partial \tau} - \frac{1}{2} \sigma^2 \frac{\partial^2 Z}{\partial x^2} + \left(\frac{\sigma^2}{2} - r \right) \frac{\partial Z}{\partial x} + r Z = 0,
 \]
 \[
 Z(x, 0) = V(Ee^x, T)
 \]

Step 2:

- **Transformation to heat equation**
- **New function** \(u(x, \tau) = e^{\alpha x + \beta \tau} Z(x, \tau), \) where the constants \(\alpha, \beta \in \mathbb{R} \) are chosen so that the PDE for \(u \) is the heat equation
Black-Scholes PDE: transformations

• PDE for u:

$$
\frac{\partial u}{\partial \tau} - \sigma^2 \frac{\partial^2 u}{2 \partial x^2} + A \frac{\partial u}{\partial x} + Bu = 0,
$$

$$
\begin{align*}
\alpha & = \frac{r}{\sigma^2} - \frac{1}{2}, \\
\beta & = \frac{r}{2} + \frac{\sigma^2}{8} + \frac{r^2}{2\sigma^2}.
\end{align*}
$$

$u(x, 0) = e^{\alpha x} Z(x, 0) = e^{\alpha x} V(Ee^x, T),$

where

$$
A = \alpha \sigma^2 + \frac{\sigma^2}{2} - r, \quad B = (1 + \alpha)r - \beta - \frac{\alpha^2 \sigma^2 + \alpha \sigma^2}{2}.
$$

• In order to have $A = B = 0$, we set
Black-Scholes PDE: transformations

Step 3:

- Solution \(u(x, \tau) \) of the PDE \(\frac{\partial u}{\partial \tau} - \frac{\sigma^2}{2} \frac{\partial^2 u}{\partial x^2} = 0 \) is given by the Green formula

\[
u(x, \tau) = \frac{1}{\sqrt{2\sigma^2 \pi \tau}} \int_{-\infty}^{\infty} e^{-\frac{(x-s)^2}{2\sigma^2 \tau}} u(s, 0) \, ds.
\]

- We evaluate the integral and perform backward substitutions \(u(x, \tau) \to Z(x, \tau) \to V(S, t) \).
Black-Scholes PDE: binary option (continued)

• Transformations from the previous slides

• We obtain the heat equation \(\frac{\partial u}{\partial \tau} - \frac{\sigma^2}{2} \frac{\partial^2 u}{\partial x^2} = 0 \) with initial condition

\[
 u(x, 0) = e^{\alpha x} V(Ee^x, T) = \begin{cases}
 e^{\alpha x} & \text{if } Ee^x > E \\
 0 & \text{otherwise}
 \end{cases}
\]

• Solution \(u(x, \tau) \):

\[
 u(x, \tau) = \frac{1}{\sqrt{2\pi \sigma^2 \tau}} \int_0^\infty e^{-\frac{(x-s)^2}{2\sigma^2 \tau}} e^{\alpha s} ds = \ldots = e^{\alpha x + \frac{1}{2} \sigma^2 \tau \alpha^2} N\left(\frac{x + \sigma^2 \tau \alpha}{\sigma \sqrt{\tau}}\right)
\]

where \(N(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^y e^{-\frac{\xi^2}{2}} d\xi \) is the cumulative distribution function of a normalized normal distribution.
Black-Scholes PDE: binary option (continued)

- Option price $V(S, t)$:

$$V(S, t) = e^{-r(T-t)}N(d_2),$$

where $d_2 = \frac{\log\left(\frac{S}{E}\right) + \left(r - \frac{\sigma^2}{2}\right)(T-t)}{\sigma \sqrt{T-t}}$.
Black-Scholes PDE: call option

• In this case

\[V(S, T) = \max(0, S - E) = \begin{cases} S - E & \text{if } S > E \\ 0 & \text{otherwise} \end{cases} \]

• The same sequence of transformations; initial condition for the heat equation:

\[u(x, 0) = \begin{cases} e^{\alpha x} (S - E) & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases} \]

and similar evaluation of the integral

• Option price:

\[V(S, t) = SN(d_1) - Ee^{-r(T-t)}N(d_2), \]

where \(N \) is the distribution function of a normalized normal distribution and \(d_1 = \frac{\ln \frac{S}{E} + (r + \frac{\sigma^2}{2})(T-t)}{\sigma \sqrt{T-t}} \), \(d_2 = d_1 - \sigma \sqrt{T-t} \)
Black-Scholes PDE: call option

HOMEWORK:
Solve the Black-Scholes PDE for a call option on a stock which pays continuous dividends and write it in the form

\[V(S, t) = Se^{-q(T-t)}N(d_1) - Ee^{-r(T-t)}N(d_2), \]

where \(N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{\xi^2}{2}} d\xi \) is the distribution function of a normalized normal distribution \(N(0, 1) \) and

\[
d_1 = \frac{\ln \frac{S}{E} + (r - q + \frac{\sigma^2}{2})(T-t)}{\sigma \sqrt{T-t}}, \quad d_2 = d_1 - \sigma \sqrt{T-t}
\]

NOTE: The PDE is different, so the transformations have to be adjusted (do the same steps for the new equation)
Black-Scholes PDE: call option

Payoff (i.e., terminal condition at time $t = T = 1$) and solution $V(S, t)$ for selected times t:
Black-Scholes PDE: put option

FORMULATION OF THE PROBLEM

- Partial differential equation

\[\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0 \]

which holds for \(S > 0, t \in [0, T] \).

- Terminal condition:

\[V(S, T) = \max(0, E - S) \]

for \(S > 0 \)
Black-Scholes PDE: put option

APPROACH I.
- The same sequence of computations as in the case of a call option

APPROACH II.
- We use the linearity of the Black-Scholes PDE and the solution for a call which we have already found

We show the application of the latter approach.
Black-Scholes PDE: putoption

- Recall that for the payoffs of a call and a put we have

 \[-[\text{call payoff}] + [\text{put payoff}] + [\text{stock price}] = E\]

- Hence:

 \[[\text{put payoff}] = [\text{call payoff}] - S + E\]

- Black-Scholes PDE is linear: a linear combination of solutions is again a solution
Black-Scholes PDE: put option

- Recall the solutions for $V(S,T) = S$ and $V(S,T) = E$ (page 13):

<table>
<thead>
<tr>
<th>terminal condition</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>max($0, S - E$)</td>
<td>$V^{\text{call}}(S,t)$</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>E</td>
<td>$Ee^{-r(T-t)}$</td>
</tr>
</tbody>
</table>

- From the linearity:

<table>
<thead>
<tr>
<th>terminal condition</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>max($0, S - E$) − $S + E$</td>
<td>$V^{\text{call}}(S,t) − S + Ee^{-r(T-t)}$</td>
</tr>
</tbody>
</table>

- Since [put payoff] = max($0, S - E$) − $S + E$, we get

$$V^{\text{put}}(S,t) = V^{\text{call}}(S,t) − S + Ee^{-r(T-t)}$$
Solution for a put option

- The solution

\[V_{\text{put}}(S, t) = V_{\text{call}}(S, t) - S + Ee^{-r(T-t)} \]

can be written in a similar form as the solution for a call option:

\[V_{\text{ep}}(S, t) = Ee^{-r(T-t)}N(-d_2) - SN(-d_1), \]

where \(N, d_1, d_2 \) are the same as before
Put option - example

Payoff (i.e. terminal condition at time $t = T = 1$) and solution $V(S, t)$ for selected times t:

![Graph showing the payoff and option price for different times t.]
Put option - alternative computation

Comics about negative volatility on the webpage of Espen Haug:

http://www.espenhaug.com/collector/collector.html
Put option - alternative computation

- A nightmare about negative volatility:

- Not only a dream... according to internet, it really exists and is connected with professor Shiryaev from Moscow...
Put option - alternative computation

QUESTION: Why does this computation work?
Stocks paying dividends

- **HOMEWORK:** Solve the Black-Scholes equation for a put option, if the underlying stock pays continuous dividends.

 HINT:
 - In this case, $V(S, t) = S$ is not a solution
 - What is the solution satisfying the terminal condition $V(S, T) = S$? Use financial interpretation and check your answer by substituting it into the PDE

- **HOMEWORK:** Denote $V(S, t; E, r, q)$ the price of an option with exercise price E, if the interest rate is r and the dividend rate is q. Show that

 $$V_{\text{put}}(S, t; E, r, q) = V_{\text{call}}(E, t; S, q, r)$$

 HINT: How do the terms $d_1 d_2$ change when replacing $S \leftrightarrow E$, $r \leftrightarrow q$?
Combined strategies

- From the linearity of the Black-Scholes PDE: if the strategy is a linear combination of call and put options, then its price is the same linear combination of the call and put options prices.
- It does not necessarily hold in other models:
 - consider a model with some transaction costs; it is not equivalent
 - whether we hedge the options independently
 - or we hedge the portfolio - in this case, we might be able to reduce transaction costs
Combined strategies

Example:

- we buy call options with exercise prices E_1, E_3 and sell two call options with exercise prices E_2, with exercise prices satisfying $E_1 < E_2 < E_3$ and $E_1 + E_3 = 2E_2$.

- Payoff of the strategy can be written as
 $$V(S,T) = \max(S - E_1, 0) - 2 \max(S - E_2, 0) + \max(S - E_3, 0)$$

- Hence its Black-Scholes price is:
 $$V(S,t) = V^{\text{call}}(S,t;E_1) - 2V^{\text{call}}(S,t;E_2) + V^{\text{call}}(S,t;E_3)$$
Combined strategies

- Numerical example - butterfly with $T = 1$: