VI. Black-Scholes model: Implied volatility

Beáta Stehlíková Financial derivatives, winter term 2014/2015

Faculty of Mathematics, Physics and Informatics Comenius University, Bratislava

Market data

- 21.2.2014, shorty after beginning of trading
- General Motors stock:

General Motors Company (GM) - NYSE * Follow 36.51 0.00(0.00%) 9:32AM EST - Nasdaq Real Time Price

Prev Close:	36.51	Day's Range:	36.51 - 36.68
Open:	N/A	52wk Range:	26.19 - 41.85
Bid:	36.60 × 500	Volume:	67,337
Ask:	36.65 × 200	Avg Vol (3m):	26,433,200
1y Target Est:	46.44	Market Cap:	58.04B
Beta:	1.76	P/E (ttm):	15.35
Earnings Date:	Apr 28 - May 2	EPS (ttm):	2.38
	(200)	Div & Yield:	1.20 (3.30%)

Market data

• Selected options written on this stock:

36.50	GM140314C00036500	0.92	1 0.27	
36.50	GM140328C00036500	0.99	1 0.01	
37.00	GM140307C00037000	0.51	↓ 0.03	
37.00	GM140314C00037000	0.67	1 0.17	
37.00	GM140322C00037000	0.73	1 0.15	
37.00	GM140328C00037000	0.77	1 0.09	

• How much are these options supposed to cost according to Black-Scholes model?

• Recall Black-Scholes formula for a call option:

$$V(S,t) = SN(d_1) - Ee^{-r(T-t)}N(d_2),$$

where $N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{\xi^2}{2}} d\xi$ is the distribution function of a normalized normal distribution N(0,1) and

$$d_1 = \frac{\ln \frac{S}{E} + (r + \frac{\sigma^2}{2})(T - t)}{\sigma\sqrt{T - t}}, \ d_2 = d_1 - \sigma\sqrt{T - t}$$

- Therefore, we need the following values:
 - \circ *S* = stock price
 - $\circ E = exercise price$
 - $\circ T t$ = time remaining to expiration
 - $\circ \sigma$ = volatility of the stock
 - \circ **r** = interest rate
- In this case: S = 36.51

- Consider the option GM140322C0037000
- Exercise price: E = 37
- Time remaining to expiration:

	February					March							
Su	Мо	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa
						1							1
2	3	4	5	6	7	8	2	3	4	.5	6	7	8
9	10	11	12	13	14	15	9	10	11	12	13	14	15
16	17	18	19	20	21	22	16	17	18	19	20	21	22
23	24	25	26	27	28		23	24	25	26	27	28	29
							30	31					

- option expire in 21 trading days
- $^{\circ}$ time has to expressed in years, we assume 252 working days in a year ightarrow T-t=21/252

Interest rate (bonds.yahoo.com):

US Treasury Bonds Rates						
Maturity	Yield	Yesterday	Last Week	Last Month		
3 Month	0.03	0.03	0.03	0.02		
6 Month	0.07	0.07	0.05	0.05		
2 Year	0.32	0.31	0.32	0.40		
3 Year	0.72	0.70	0.67	0.85		
5 Year	1.56	1.54	1.53	1.70		
10 Year	2.77	2.75	2.72	2.87		
30 Year	3.74	3.72	3.69	3.76		

- A common choice: 3-months treasury bills
- Interest rate has to be expressed as a decimal number ightarrow r=0.03/100

- What is the volatility?
 - Exercises session: computation of the Black-Scholes price using historical volatility
 - Different estimates of volatility, depending on time span of the data
 - Price does not equal the market price
- Question: What value of volatility produces the Black-Scholes price that is equal to the market price?
- This value of volatility is called implied volatility

Implied volatility

• Dependence of the Black-Scholes option price on volatility:

 Dependence of the Black-Scholes option price on volatility - for a wider range of volatility:

- In general we show that
 - The Black-Scholes price of a call option is an increasing function of volatility
 - Limits are equal to: $V_0 := \lim_{\sigma \to 0^+} V(S, t; \sigma)$, $V_{\infty} := \lim_{\sigma \to \infty} V(S, t; \sigma)$
- Then, from continuity of $V \Rightarrow$ for every price from the interval (V_0, V_∞) the implied volatility exists and is uniquely determined
- We do the derivation of a stock which does not pay dividends
- HOMEWORK: call and put option on a stock which pays constinuous dividends

- To prove that price is an increasing function of volatility:
 - We compute the derivative (using $d_2 = d_1 \sigma \sqrt{T t}$):

$$\frac{\partial V}{\partial \sigma} = SN'(d_1)\frac{\partial d_1}{\partial \sigma} - Ee^{-r(T-t)}N'(d_2)\frac{\partial d_2}{\partial \sigma}$$
$$= \left(SN'(d_1) - Ee^{-r(T-t)}N'(d_2)\right)\frac{\partial d_1}{\partial \sigma}$$
$$+ Ee^{-r(T-t)}N'(d_2)\sqrt{T-t}$$

• Derivative of a distribution function is a density function: $N'(x) = \frac{1}{2\pi}e^{-\frac{x^2}{2}}$

• Useful lemma: $SN'(d_1) - Ee^{-r(T-t)}N'(d_2) = 0$

• Hence:

$$\frac{\partial V}{\partial \sigma} = E e^{-r(T-t)} N'(d_2) \sqrt{T-t} > 0$$

• Limits:

• We use basic properties of a distribution function:

$$\lim_{x \to -\infty} N(x) = 0, \quad \lim_{x \to +\infty} N(x) = 1$$

• It follows:

$$\lim_{\sigma \to 0^+} V(S, t; \sigma) = \max(0, S - Ee^{-r(T-t)})$$
$$\lim_{\sigma \to \infty} V(S, t; \sigma) = S$$

Implied volatility - computation

• A possible implementation:

```
function [s] = ImplVolCall(S,E,r,tau,v)
//.implied.volatility.of.a.call.option.on.a.non-dividend.paying.stock
----//-auxiliary-function:-
----//-differencce-between-theoretical-and-market-price
....//.as.a.function.of.'sigma'
function [r]=difference(siqma)
-----r=Call(S,E,r,siqma,tau)-v;
endfunction
....//.we.are.looking.for.an.'s'
---//-for-which-this-difference-is-zero-
.../(i.e. theoretical price = market price)
s=fsolve(0.3, <u>diffe</u>rence);
endfunction
```

Implied volatility - computation

• Computation:

-->ImplVolCall(36.51,37,0.03/100,21/252,0.73)
ans =

VI. Black-Scholes model: Implied volatility -p.15/16

New finance.yahoo.com web

• Option chains include implied volatilities:

Calls			
Strike ∵ Filter	Contract Name	Last	Implied Volatility
39.00	YHOO141212C00039000	7,95	53.47%
40.00	YHOO141212C00040000	6.30	44.53%
40.50	YHOO141212C00040500	5.95	47.90%
43.50	YHOO141212C00043500	3.80	 35.65%
44.00	YHOO141212C00044000	3.90	36.67%
44.50	YHOO141212C00044500	3.16	34.96%
46.00	YHOO141212C00046000	2.27	32.84%
47.00	YHOO141212C00047000	2.05	31.42%
		100	