IX. Leland model: European call and put options

Beáta Stehlíková Financial derivatives, winter term 2014/2015

Faculty of Mathematics, Physics and Informatics Comenius University, Bratislava

Leland PDE

• Recall the Leland PDE for the price of a derivative:

$$\frac{\partial V}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 V}{\partial S^2} \left[1 - \frac{c}{\sigma \sqrt{\Delta t}} \sqrt{\frac{2}{\pi}} sign\left(\frac{\partial^2 V}{\partial S^2}\right) \right] + \frac{\partial V}{\partial S} S - rV = 0$$

- The PDE holds for S > 0, t ∈ [0, T], we add the terminal condition V(S,T) depending on the derivative, e.g.,
 V(S,T) = max(0, S E) for S > 0 in the case of a call option
- Nonlinear PDE because of the term containing signum
- Recall the for the Black-Scholes prices of call and put options we have $\frac{\partial^2 V}{\partial S^2} > 0$ (positive gamma) \Rightarrow

$$sign\left(\frac{\partial^2 V}{\partial S^2}\right) = 1$$

Leland PDE - call and put

• What happens if inserting Black-Scholes price of a call/put with adjusted volatility $V(S, t; \tilde{\sigma})$:

$$\tilde{\sigma}^2 = \sigma^2 \left[1 - \frac{c}{\sigma\sqrt{\Delta t}} \sqrt{\frac{2}{\pi}} \right]$$

into the Leland PDE:

$$\begin{aligned} \frac{\partial V}{\partial t} &+ \frac{\sigma^2}{2} S^2 \frac{\partial^2 V}{\partial S^2} \left[1 - \frac{c}{\sigma \sqrt{\Delta t}} \sqrt{\frac{2}{\pi}} sign\left(\frac{\partial^2 V}{\partial S^2}\right) \right] + \frac{\partial V}{\partial S} S - rV &= \\ \frac{\partial V}{\partial t} &+ \frac{\sigma^2}{2} S^2 \frac{\partial^2 V}{\partial S^2} \left[1 - \frac{c}{\sigma \sqrt{\Delta t}} \sqrt{\frac{2}{\pi}} \right] + \frac{\partial V}{\partial S} S - rV \\ \frac{\partial V}{\partial t} &+ \frac{\tilde{\sigma}^2}{2} S^2 \frac{\partial^2 V}{\partial S^2} + \frac{\partial V}{\partial S} S - rV &= 0 \end{aligned}$$

IX. Leland model: European call and put options -p. 3/19

Leland PDE - call and put

• It means that Black-Scholes price of a call/put with adjusted volatility $V(S, t; \tilde{\sigma})$:

$$\tilde{\sigma}^2 = \sigma^2 \left[1 - \frac{c}{\sigma\sqrt{\Delta t}} \sqrt{\frac{2}{\pi}} \right] = \sigma^2 \left[1 - Le \right]$$

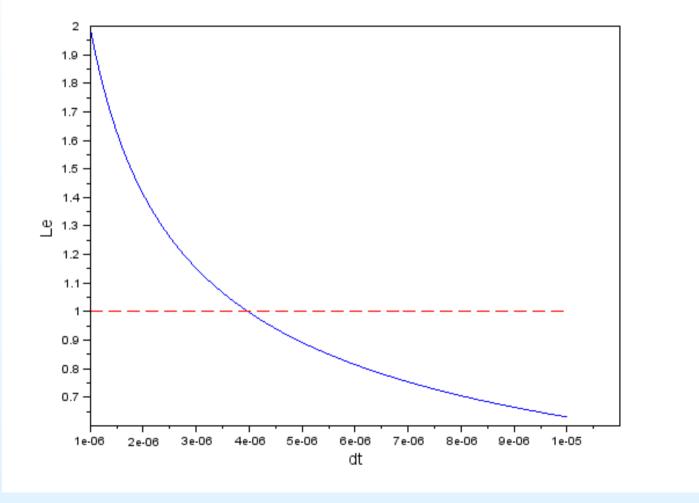
is a solution to the Leland PDE for a European call/put.

- *Le* is called Leland number
- Term $\tilde{\sigma}^2$ has to be positive \Rightarrow this gives a bound on feasible times Δt i.e. possible times between two changes of the portfolio (parameters σ, c are given):

$$\Delta t > \frac{2}{\pi} \frac{c^2}{\sigma^2}$$

Feasible values of Δt

GRAPHICALLY: dependence of Le on Δt for $c=5 imes 10^{-4}$, $\sigma=0.2$



IX. Leland model: European call and put options -p. 5/19

Feasible values of Δt

NUMERICALLY: what is the borderline of feasible Δt :

```
-->function [f]=f(dt)
--> c=5*10^(-4);
--> sigma=0.2;
--> le=sqrt(2/%pi)*c/(sigma*sqrt(dt));
--> f=le-1:
-->endfunction
--> t =fsolve(4*10^(-6), f);
-->mprintf('%e\n', t)
3.978874e-006
--> t*252*7*60
 ans
      =
    0.4211240
```

Assume 252 trading days in a year and the market opened 7 hours a day $\Rightarrow \Delta t$ has to be more than approximately 0.42 min.

Computation of the option price I.

- Let us take $\Delta t = 5$ minutes, i.e., $\Delta t = 5/(60 * 7 * 252)$
- Leland number is then feasible (less than 1) if:

```
-->dt=5/(60*7*252);
-->le(dt)
ans =
0.2902151
```

• Adjusted volatility, to be used in the Black-Scholes formula:

```
-->sigmaTC=sqrt((1-le(dt))*(sigma^2))
sigmaTC =
0.1684975
```

Computation of the option price I.

- We compute the price of a call option with exercise price E = 110 which expires in $\tau = 1$ year, if the interest rate equals r = 1% and the underlying stock price is S = 100
- For a comparison price in the absence of transaction costs

```
-->Call(100,110,0.01,sigmaTC,0.5)
ans =
1.6108991
-->Call(100,110,0.01,sigma,0.5)
ans =
2.3394205
```

Computation of the option price I.

```
• The same option if \Delta t = 1/252, i.e., 1 day:
          -->dt=1/(252);
          -->le(dt)
           ans
                =
              0.0316651
          -->sigmaTC=sqrt((1-le(dt))*(sigma^2))
           sigmaTC
                     =
              0.1968080
          -->Call(100,110,0.01,sigmaTC,0.5)
           ans
                =
              2.2630352
```

Bid a ask prices of options in Leland model

- When deriving the Leland PDE, we considered the portfolio: 1 option, δ stocks ⇒ the resulting price is *bid* price
- Let us consider the portfolio minus 1 option, δ stocks \Rightarrow the resulting price will be *ask* price
- In the same way we obtain that the ask price satisfies

$$\frac{\partial V}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 V}{\partial S^2} \left[1 + \frac{c}{\sigma \sqrt{\Delta t}} \sqrt{\frac{2}{\pi}} sign\left(\frac{\partial^2 V}{\partial S^2}\right) \right] + \frac{\partial V}{\partial S} S - rV = 0$$

• Call a put options: Black-Scholes price with adjusted volatility $\sigma_{TC}^2 = (1 + Le)\sigma^2$

Implied parameters

- If we have bid and ask prices of the stock and the option, we can compute:
 - implied volatility
 - implied time between two changes of the portfolio

(i.e., the values, for which the theoretical and market bid and ask option prices will coincide)

INPUTS:

- Stock bid and ask prices S_{bid}, S_{ask}
- Option bid and ask prices V_{bid} , V_{ask} , exercise price E, time τ remaining to expiration of the option
- Other market parameters: interest rate *r*

Implied parameters

PROCEDURE:

- Using bid and ask prices of the stock we compute $S = (S_{ask} + S_{bid})/2$ and $c = (S_{ask} S_{bid})/S$
- Using S, E, r, τ and
 - V_{bid} we compute the Black-Scholes implied volatility, then $\sqrt{(1-Le)\sigma^2} := \sigma_{bid}$
 - $^\circ~V_{ask}~$ we compute the Black-Scholes implied volatility, then $\sqrt{(1+Le)\sigma^2}:=\sigma_{ask}$
- By solving the system of equations $(1 Le)\sigma^2 = \sigma_{bid}^2$, $(1 + Le)\sigma^2 = \sigma_{ask}^2$ we compute the implied volatility σ and Leland number Le
- From the definition of the Leland number we compute the implied time Δt between two changes of the hedging portfolio

EXAMPLE:

- Data from 8.3.2014 morning
- Stock:

General Motors Company (GM) - NYSE ★ Follow

37.65 + 0.11(0.29%) 9:44AM EST - Nasdaq Real Time Price

Prev Close:	37.54	Day's Range:	37.54 - 38.01
Open:	N/A	52wk Range:	27.11 - 41.85
Bid:	37.90 x 1000	Volume:	594,013
Ask:	37.94 x 400	Avg Vol (3m):	26,332,800

• Call option:

GM Mar 2014 37.000 call (GM140322C00037000) - OPR **1.00** ↑ 0.10(11.11%) Mar 6

Prev Close:	0.90	Day's Range:	1.00 - 1.24
Open:	1.24	Contract Range:	N/A - N/A
Bid:	1.20	Volume:	434
Ask:	1.27	Open Interest:	64,168
Strike:	37.00		
Expire Date:	22-Mar-14		

• Interest rates:

US Treasury Bonds Rates						
Maturity	Yield	Yesterday	Last Week	Last Month		
3 Month	0.04	0.04	0.04	0.04		
6 Month	0.07	0.07	0.08	0.04		
2 Year	0.37	0.35	0.31	0.32		
3 Year	0.77	0.71	0.66	0.65		
5 Year	1.64	1.57	1.47	1.49		
10 Year	2.81	2.73	2.65	2.67		
30 Year	3.74	3.69	3.58	3.65		

• Hence we have:

```
Sbid=37.90; Sask=37.94;
Vbid=1.20; Vask=1.27;
E=37;
r=0.04/100;
tau=11/252;
S=(Sask+Sbid)/2;
c=(Sask-Sbid)/S;
```

• We compute the implied volatilities

- Remarks:
 - \circ *S* is common (not S_{bid}, S_{ask})
 - implied volatilities are from Black-Scholes model

• From the system of equations

$$(1 - Le)\sigma^2 = \sigma_{bid}^2, \ (1 + Le)\sigma^2 = \sigma_{ask}^2$$

- we compute Leland number Le and implied volatility σ :
- -->Le=(sigmaAsk^2-sigmaBid^2)/(sigmaAsk^2+sigmaBid^2);

```
->sigma=sigmaAsk/sqrt(1+Le)
```

sigma =

0.2172898

• From the definition of the Leland number we compute the implied time Δt :

```
->dt=(2/%pi)*(c/(sigma*Le))^2;
->dt*252
ans =
0.2651599 dt in days
```

SUMMARY:

- implied volatility $\sigma_{impl} = 0.217$
- implied time between two changes of the portfolio Δt_{impl} is approximately 1/4 days