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European and American types of derivatives

• Consider a put option with exercise price of 150 USD, i.e.,
a right to sell the underlying stock for 150 USD. Suppose
that the option expires in one month.
◦ if it is a European option: this right can be exercised at

the time of expiry
◦ if it is an American options: this right can be exercised

at any time prior to the expiry
• If the option costs 20 USD and the stock price today is 110

USD:
◦ if it is a European option:: our profit depends on future

evolution of the stock price
◦ if it is an American option: we buy the option and

exercise it immediately → instantaneous riskless profit
• EXERCISE: Create a similar example for a call option.
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European and American types of derivatives

• Bound on possible option price which has to hold to rule
out possibilities of riskless profit (i.e., arbitrage):

price of an American derivative cannot lie
under its payoff

• European derivatives: call on a stock which pays dividends,
put on an arbitrary stock

⇒ price of American-type derivative is not equal to its
Euopean counterpart

XI. Pricing American options – p. 3/17



European and American types of derivatives

• European derivatives - continued: call on a stock that does
not pay dividends

the price is always above the payoff ⇒ agrees with our
knowledge from the financial mathematics lectures: price
of an American call equals to its European counterpart
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European and American types of derivatives

• This holds in general - we show that:
◦ If the underlying stock does not pay dividends, the call

option price always lies above the payoff.
◦ If the underlying stock pays dividends, the call option

price always intersects the payoff.
◦ The call option price always intersects the payoff.

Basic idea: we compute the limit of V (S, t)/(S −E), as
S → ∞ (call), resp. S → 0+ (put)

• Therefore:
◦ The price of an American call on a stock that does not

pay dividends equals to the price of a European option
with the same parameters.

◦ The prices of American calls on a stock that pays
dividends and of all puts needs to computed in another
way.
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American derivatives

• We cannot take: price = max (European option, payoff) -
the price has to be a smooth function

• Why smooth - matematical derivation:
Ševčovič, Stehlíková, Mikula: Analytical and numerical methods for pricing

financial derivatives , pp. 132-133

• Sketch of the solution (smooth pasting at Sf (t)):
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American derivatives

• Solution (for a call):
◦ if S < Sf (t): price satisfies the Black-Scholes PDE, we

keep the option (do not exercise it)
◦ if S > Sf (t): price equals payoff, we exercise the option
◦ if S = Sf (t): price has the same value (continuity

condition) and the same derivative (smoothness
condition) as the payoff

• Sf (t) - early exercise boundary, from a mathematical point
of view it is a free boundary
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Mathematical formulation of the problem

• For a call option:
◦ fuction V (S, t) is a solution to the Black-Scholes PDE

∂V

∂t
+

σ2

2
S2

∂2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0

on a time-dependent domain 0 < t < T, 0 < S < Sf (t).

◦ Terminal condition:

V (S, T ) = max(S − E, 0).

◦ Boundary conditions on the boundary S = 0 and
S = Sf (t) for 0 < t < T :

V (0, t) = 0, V (Sf (t), t) = Sf (t)− E,
∂V

∂S
(Sf (t), t) = 1
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Mathematical formulation of the problem

• Changes in case of a put option:
◦ time-dependent domain is 0 < t < T , S > Sf (t)

◦ terminal condition is V (S, T ) = max(E − S, 0)
◦ boundary condition are

V (+∞, t) = 0,

V (Sf (t), t) = E − Sf (t),
∂V

∂S
(Sf (t), t) = −1
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Output

• We obtain
◦ the option price V (S, t) as function of the underlying

stock price and time
◦ early exercise boundary - i.e., an information whether

for the given time and stock price we exercise the
option or not
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Analysis of the free boundary Sf(t)

• A research topic in financial mathematics
• We show one inequality for Sf (t) in the case of a call

option
• We will need it to derive numerical scheme for pricing

American options
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Inequality for Sf(t)

• Consider the Black-Scholes PDE for S < Sf :

∂V

∂t
+
1

2
σ2S2

∂2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0

• We take the limit as S → Sf and use:

◦ a lemma, which we prove first: ∂V
∂t
(Sf (t), t) = 0

◦ convexity of V with respect to S
◦ boundary condition

We obtain:

(r − q)Sf (t)− r(Sf (t)− E) ≤ 0⇒ Sf (t) ≥
r

q
E

• Hence:
Sf (t) ≥ Emax(1, r/q)
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Research in financial mathematics - examples

• J. N. Dewyne, S. D. Howison, J. Rupf, P. Wilmott (1993): Some mathematical

results in the pricing of American options. Euro. Journal on Applied

Mathematics 4, 381-398

Asymptotics for a call option, if r ≤ q and t → T :

Sf (t) ≈ E(1 + 0.638σ
√
T − t)
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Research in financial mathematics - examples

• D. Ševčovič (2001): Analysis of the free boundary for the pricing of an

American Call option. Euro. Journal on Applied Mathematics 12, 25-37.

Nonlinear integral equation for Sf (t) and its numerical
solution

• S. P. Zhu (2006): A new analytical approximation formula for the optimal

exercise boundary of American put options. International Journal of

Theoretical and Applied Finance 9, 1141-1177.

Closed-form (but complicated) expression for Sf (t)
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Linear complementarity problem

• Denote by V (S, t) the price of an American option and by
V̄ (S) its payoff

• We know that V (S, t) ≥ V̄ (S) must hold
• We show (for a call) that

∂V

∂t
+
1

2
σ2S2

∂2V

∂S2
+ (r − q)S

∂V

∂S
− rV ≤ 0

◦ if S < Sf : we have equality
◦ if S ≥ Sf : then V (S, t) = S − E (because Sf ≥ E ); we

substitute it into the left-hand side and use that
Sf ≥ Er/q

• We see that we cannot have both inequalities satisfied as
strict inequalities
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Linear complementarity problem

• Hence we have a linear complementarity problem:

∂V

∂t
+
1

2
σ2S2

∂2V

∂S2
+ (r − q)S

∂V

∂S
− rV ≤ 0

V (S, t) ≥ V̄ (S)
(

∂V

∂t
+
1

2
σ2S2

∂2V

∂S2
+ (r − q)S

∂V

∂S
− rV

)

(

V (S, t)− V̄ (S)
)

= 0

for S ∈ (0,∞), 0 < τ < T .
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Linear complementarity problem

• The sequence of transformations from the earlier lectures:
V (S, t)→ Z(x, τ)→ u(x, τ)

• Resulting problem for u(x, τ) in the case of a call:

(

∂u

∂τ
−

σ2

2

∂2u

∂x2

)

(u(x, τ)− g(x, τ)) = 0,

∂u

∂τ
−

σ2

2

∂2u

∂x2
≥ 0, u(x, τ)− g(x, τ) ≥ 0

for x ∈ R, 0 < τ < T , where
◦ g(x, τ) = Eeαx+βτ max(0, ex − 1) is transformed payoff

(α, β in the earlier lectures)
◦ g(x, 0) is the initial condition u(x, 0)

• For a put we have instead: g(x, τ) = Eeαx+βτ max(0, 1− ex)
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