XII. Numerical methods: Pricing European options

Beáta Stehlíková Financial derivatives, winter term 2014/2015

Faculty of Mathematics, Physics and Informatics Comenius University, Bratislava

Transformation to a heat equation

Transformation

$$V(S,t) = e^{-\alpha x - \beta \tau} u(x,\tau),$$

$$\alpha = \frac{r - q}{\sigma^2} - \frac{1}{2}, \beta = \frac{r + q}{2} + \frac{\sigma^2}{8} + \frac{(r - q)^2}{2\sigma^2}, \tau = T - t, x = \ln(S/E),$$

transforms the Black-Scholes equation to the following heat equation:

$$\frac{\partial u}{\partial \tau} - \frac{\sigma^2}{2} \frac{\partial^2 u}{\partial x^2} = 0$$

for $x \in \mathbb{R}, \tau \in [0, T]$

- Initial condition: u(x,0) = g(x)
 - o call option: $g(x) = Ee^{\alpha x + \beta \tau} \max(e^x 1, 0)$
 - o put option: $g(x) = Ee^{\alpha x + \beta \tau} \max(1 e^x, 0)$

Boundary conditions

- For a numerical scheme we also need boundary condition
 we need to think of the option value for very small and very large stock prices
- Call option:
 - V(0,t) = 0
 - o for $S \to \infty$ we have: $V(S,t) \sim Se^{-q(T-t)}$, more precisely: $V(S,t) \sim Se^{-q(T-t)} Ee^{-r(T-t)}$
- Put option:
 - $V(0,t) = Ee^{-r(T-t)}$
 - $\circ V(S,t) \to 0 \text{ for } S \to \infty$

Approximation of the solution

- Numerical solution on a bounded space interval $x \in [-L, L]$
- Grid points in time and space:

$$x_i=ih,\ \ i=-n,...,-2,-1,0,1,2,...n,$$

$$\tau_j=jk,\ j=0,1,...,m.$$
 where $h=L/n,k=T/m$

• Approximation of the solution u in the point (x_i, au_j) will be denoted by

$$u_i^j \approx u(x_i, \tau_j), \qquad g_i^j \approx g(x_i, \tau_j)$$

Approximation of the solution

- Boundary conditions:
 - o call option:

$$\phi^j := u^j_{-N} = 0$$

$$\psi^j := u^j_N = Ee^{(\alpha+1)Nh + (\beta-q)jk}$$

o put option:

$$\phi^j := u^j_{-N} = Ee^{-\alpha Nh + (\beta - r)jk}$$

$$\psi^j := u^j_N = 0$$

Implicit scheme

- Recall from the numerical methods course: explicit and implicit scheme for a heat equation
- Implicit scheme can be written as:

$$-\gamma u_{i-1}^j + (1+2\gamma)u_i^j - \gamma u_{i+1}^j = u_i^{j-1}$$
, where $\gamma = \frac{\sigma^2 k}{2h^2}$,

• In a matrix form: $\mathbf{A}u^j = u^{j-1} + b^{j-1}$ for $j = 1, 2, \dots, m$ where

$$\mathbf{A} = \begin{pmatrix} 1 + 2\gamma & -\gamma & 0 & \cdots & 0 \\ -\gamma & 1 + 2\gamma & -\gamma & & \vdots \\ 0 & \cdot & \cdot & \cdot & 0 \\ \vdots & & -\gamma & 1 + 2\gamma & -\gamma \\ 0 & \cdots & 0 & -\gamma & 1 + 2\gamma \end{pmatrix},$$

$$b^{j} = (\gamma \phi^{j+1}, 0, \dots, 0, \gamma \psi^{j+1})^{T}$$

Solving the linear system

• The system $\mathbf{A}x = b$ with the matrix

$$\mathbf{A} = \begin{pmatrix} 1+2\gamma & -\gamma & 0 & \cdots & 0 \\ -\gamma & 1+2\gamma & -\gamma & \vdots \\ 0 & \cdot & \cdot & \cdot & 0 \\ \vdots & & -\gamma & 1+2\gamma & -\gamma \\ 0 & \cdots & 0 & -\gamma & 1+2\gamma \end{pmatrix}$$

- Firstly we solve it using Gauss-Seidel method
- Then we show its generalization SOR method (its modification will be used in a scheme for American options)