XII. Numerical methods: Pricing European options

Beáta Stehlíková
Financial derivatives, winter term 2014/2015

Faculty of Mathematics, Physics and Informatics
Comenius University, Bratislava

Transformation to a heat equation

- Transformation

$$
\begin{gathered}
V(S, t)=e^{-\alpha x-\beta \tau} u(x, \tau) \\
\alpha=\frac{r-q}{\sigma^{2}}-\frac{1}{2}, \beta=\frac{r+q}{2}+\frac{\sigma^{2}}{8}+\frac{(r-q)^{2}}{2 \sigma^{2}}, \tau=T-t, x=\ln (S / E)
\end{gathered}
$$

transforms the Black-Scholes equation to the following heat equation:

$$
\frac{\partial u}{\partial \tau}-\frac{\sigma^{2}}{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

for $x \in \mathbb{R}, \tau \in[0, T]$

- Initial condition: $u(x, 0)=g(x)$
- call option: $g(x)=E e^{\alpha x+\beta \tau} \max \left(e^{x}-1,0\right)$
- put option: $g(x)=E e^{\alpha x+\beta \tau} \max \left(1-e^{x}, 0\right)$

Boundary conditions

- For a numerical scheme we also need boundary condition
- we need to think of the option value for very small and very large stock prices
- Call option:
- $V(0, t)=0$
- for $S \rightarrow \infty$ we have: $V(S, t) \sim S e^{-q(T-t)}$, more precisely: $V(S, t) \sim S e^{-q(T-t)}-E e^{-r(T-t)}$
- Put option:
- $V(0, t)=E e^{-r(T-t)}$
- $V(S, t) \rightarrow 0$ for $S \rightarrow \infty$

Approximation of the solution

- Numerical solution on a bounded space interval $x \in[-L, L]$
- Grid points - in time and space:

$$
\begin{aligned}
& \qquad x_{i}=i h, \quad i=-n, \ldots,-2,-1,0,1,2, \ldots n, \\
& \tau_{j}=j k, j=0,1, \ldots, m . \\
& \text { where } h=L / n, k=T / m
\end{aligned}
$$

- Approximation of the solution u in the point $\left(x_{i}, \tau_{j}\right)$ will be denoted by

$$
u_{i}^{j} \approx u\left(x_{i}, \tau_{j}\right), \quad g_{i}^{j} \approx g\left(x_{i}, \tau_{j}\right)
$$

Approximation of the solution

- Boundary conditions:
- call option:

$$
\begin{aligned}
\phi^{j} & :=u_{-N}^{j}=0 \\
\psi^{j} & :=u_{N}^{j}=E e^{(\alpha+1) N h+(\beta-q) j k}
\end{aligned}
$$

- put option:

$$
\begin{aligned}
\phi^{j} & :=u_{-N}^{j}=E e^{-\alpha N h+(\beta-r) j k} \\
\psi^{j} & :=u_{N}^{j}=0
\end{aligned}
$$

Implicit scheme

- Recall from the numerical methods course: explicit and implicit scheme for a heat equation
- Implicit scheme - can be written as:
$-\gamma u_{i-1}^{j}+(1+2 \gamma) u_{i}^{j}-\gamma u_{i+1}^{j}=u_{i}^{j-1}$, where $\gamma=\frac{\sigma^{2} k}{2 h^{2}}$,
- In a matrix form: $\mathbf{A} u^{j}=u^{j-1}+b^{j-1}$ for $j=1,2, \ldots, m$ where

$$
\begin{aligned}
\mathbf{A}=\left(\begin{array}{lllll}
1+2 \gamma & -\gamma & 0 & \cdots & 0 \\
-\gamma & 1+2 \gamma & -\gamma & & \vdots \\
0 & \cdot & \cdot & \cdot & 0 \\
\vdots & & -\gamma & 1+2 \gamma & -\gamma \\
0 & \ldots & 0 & -\gamma & 1+2 \gamma
\end{array}\right), \\
b^{j}=\left(\gamma \phi^{j+1}, 0, \ldots, 0, \gamma \psi^{j+1}\right)^{T}
\end{aligned}
$$

Solving the linear system

- The system $\mathbf{A} x=b$ with the matrix

$$
\mathbf{A}=\left(\begin{array}{lllll}
1+2 \gamma & -\gamma & 0 & \cdots & 0 \\
-\gamma & 1+2 \gamma & -\gamma & & \vdots \\
0 & \cdot & \cdot & . & 0 \\
\vdots & & -\gamma & 1+2 \gamma & -\gamma \\
0 & \cdots & 0 & -\gamma & 1+2 \gamma
\end{array}\right)
$$

- Firstly - we solve it using Gauss-Seidel method
- Then we show its generalization - SOR method (its modification will be used in a scheme for American options)

