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What are financial derivatives

• Term DERIVATIVE in a dictionary:

http://oxforddictionaries.com/definition/derivative
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Derivatives

• Aristotle writes about Thales of Miletus (Politics, Book I,
Chapter XI):

... while it was yet winter, having got a little money, he gave
earnest for all the oil works that were in Miletus and Chios,

which he hired at a low price, there being no one to bid
against him; but when the season came for making oil,

many persons wanting them, he all at once let them upon
what terms he pleased; and raising a large sum of money

English translation: http://www.gutenberg.org

• Right to use the oil presses - its value depends on the crop
in the given year

• Some presses may stay unused; Thales has a right, but
not an obligation to use the presses
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Derivatives

• A right but also an obligation to realize an arranged trade -
some historical examples:
◦ England, France, 12th century - arrangement of a

future trade based on a sample, „lettre de faire“
◦ Japan, 17th century - standardized rice trades
◦ Chicago, 19th century - wheat, establishment of

Chicago Board of Trade (1848)
◦ 1898 - Chicago Mercantile Trading, butter and eggs,

later also other agricultural commodities
◦ 1978 - International Monetary Market as a part of

Chicago Mercantile Trading, foreign exchange, later
also (e.g.) S&P 500 derivatives
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Akcie

• Mostly we will deal with derivatives in stock market
• Example: evolution of DIS (The Walt Disney Company )

stock price

http://finance.yahoo.com
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Stocks

• Evolution of a stock price consists of a trend and random
fluctuations

• Example of a trend: NFLX (Netflix, Inc.):

http://finance.google.com
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Stocks

• Example of fluctuations: NFLX (Netflix, Inc.)

http://finance.google.com

• Next lecture: mathematical modelling of this observation
trend + fluctuations

I. Derivatives, call and put options, bounds on option prices, combined strategies – p.7/37



Stock options

• European call option is a right - but not an obligation - to
buy the asset for the predetermined price E) (strike price,
exercise price) in the predetermined time T ) (expiration
time)

• European put option is a right - but not an obligation - to
sell the asset for the predetermined price E) (strike price,
exercise price) in the predetermined time T ) (expiration
time)

• Americal call/put options - a right to buy/sell the stock not
ony at the expiration time T ), but at any time prior to the
expiration time
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Stock options

• Example of real data: put options on Disney stock

http://finance.yahoo.com
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Option price

• Option price consists of two parts:
◦ intrinsic value - value of the option if exercised now
◦ time value - remaining part of the price:

◦ holder of the option pays this value, expecting that
the option brings him profit in the future

◦ risk premium for the writer of the option
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Intrinsic and time value: example

• Put prices from page 9 - we will use the last realized price
• Stock price: 87.40 USD

• Let us consider the put option with exercise price 70 USD
which costs 0.17 USD:
◦ intrinsic value: 0
◦ time value: 0.17
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Intrinsic and time value: example

• Questions:
◦ Why do all the options (page 9) zero intrinsic value?
◦ Which puts would have a positive intrinsic value?
◦ How about call options? Use data below:

I. Derivatives, call and put options, bounds on option prices, combined strategies – p.12/37



Example

• We sell the DIS stock for the current bid price (the price a
buyer is willing to pay): 87.33 USD.

http://finance.yahoo.com
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Example

• Then, we sell a put option with exercise price 60 USD and
expiration in October for - we find the bid price - 0.04 USD

http://finance.yahoo.com
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Example

• How much are you willing to pay for a call option with the
same exercise price and the same expiration time?

• Recall the evolution of DIS stock price; the options are from
August:

http://finance.yahoo.com
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Example

• Russel Sage, New York, 19th century:
◦ bought a stock and a put option, sold a call with the

same exercise price and the same expiration time
◦ avoided bounds on interest rates given by usury laws

• EXAMPLE - CONTINUED:
◦ We show that this strategy is - in fact - a loan (so called

synthetised loan)
◦ What interest rate did you agreed on by your accepted

price of the call option?
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Call-put parity

• Consider a portfolio:
◦ write 1 call option with exercise price E

◦ sell 1 put option with the same exercise price and the
same expiration time

◦ buy 1 stock
• What will be the portfolio value at the time of expiration?

portfolio = - 1 call + 1 put + 1 stock
⇒

payoff = - [payoff of call] + [payoff of put] + [stock price]

I. Derivatives, call and put options, bounds on option prices, combined strategies – p.17/37



Call-put parity

• Hence, depending on the stock price S at the time of
expiration:
◦ if S ≤ E:

payoff = −[0] + [E − S] + [S] = E

◦ if S ≥ E:

payoff = −[S −E] + [0] + [S] = E

So, without any risk we end up with E

• Therefore, the value of the portfolio today has to be

−c(S,E, τ) + p(S,E, τ) + S = Ee−rτ

- we have obtained a relation between call and put prices,
known as call-put parity
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Payoff diagram

• Payoff diagram of an option - value of the option at the time
of expiration, as a function of the stock price at this time

• Call option: max(0, S − E) , put option: max(E − S, 0)
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Profit diagram

• Profit diagram of an option - payoff of the option minus the
value of our initial investment:
◦ If r = 0, then

profit = payoff - costs

◦ In general:

profit = payoff - costs ×erτ

(to pay costs today is the same as to pay costs×erτ at
the expiration time)
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Profit diagram - example 1

• Consider a call option with exercise price 105 USD which
costs 15 USD

• Profit diagram (for r = 0):
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Profit diagram - example 2

• Analyze the following profit diagram of a put option (for
r = 0):
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Profit diagram - example 2

• SIMPLE QUESTIONS:
◦ What is the exercise price of the option? How much did

it cost?
◦ Is the possible profit bounded? If it is bounded, when it

is maximal? If it is not bounded, when it rises without
bounds?

◦ Is the possible loss bounded? If it is bounded, when it
is maximal? If it is not bounded, when it rises without
bounds?
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Bounds on option prices

• We show some inequalities for prices, which have to hold -
otherwise there is an arbitrage on the market

• All the options considered have the same expiration time
• We denote the riskless interest rate by r.
• Notation:

◦ c(S,E, τ) is the market price of a call option with
exercise price E, if the stock price today is S and time
remaining to expiration is τ

◦ p(S,E, τ) is the market price of a put option with
exercise price E, if the stock price today is S and time
remaining to expiration is τ
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Bounds on option prices

• Outline:
◦ We consider two portfolios - such that at the time of

expiration we have:
(value of portfolio I.) ≤ (value of portfolio II.)

◦ To avoid a possibility of arbitrage, also today
necessarily

(value of portfolio I.) ≤ (value of portfolio II.);

the portfolios are constructed in such a way that this is
the inequality that we need to prove
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Bounds on option prices - examples

EXAMPLE 1: Clearly

c(S,E, τ) ≥ 0, p(S,E, τ) ≥ 0

EXAMPLE 2: Show that

E1 ≥ E2 ⇒ c(S,E1, τ) ≤ c(S,E2, τ)

SOLUTION Let E1 ≥ E2 Consider the following portfolios
portfolio I.: option with exercise price E1
portfolio II.: option with exercise price E2

We compare their value at the expiration time, depending on the
stock price S at this time
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Bounds on option prices - examples

0 ≤ S ≤ E2 E2 ≤ S ≤ E1 E1 ≤ S

portfolio I. 0 0 S −E1

portfolio II. 0 S − E2 S −E2

comparison 0 = 0 0 ≤ S − E2 S − E1 ≤ S − E2

At the expiration time:
(value of portfolio I.) ≤ (value of portfolio II.)

⇒ also today:
(value of portfolio I.) ≤ (value of portfolio II.),

i.e.,
c(S,E1, τ) ≤ c(S,E2, τ), QED
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Bounds on option prices - examples

EXAMPLE 3:
Assume zero interest rate and the following call option prices:

exercise price option price

10 30

15 26

20 27

25 23

30 19
Find an arbitrage.

SOLUTION: We plot the dependence of the call option price on
the exercise price - its decreasing character, proved in the
previous example, is not satisfied.
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Bounds on option prices - examples
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We should have c(S, 15, τ) ≥ c(S, 20, τ); however, here
c(S, 15, τ) < c(S, 20, τ). Therefore:

• we buy the option, which costs less than it is supposed to,
in this case the option with exercise price E = 15,

• we sell the option, which costs more than it is supposed to,
in this case the option with exercise price E = 20 .
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Bounds on option prices - examples

• Resulting profit diagram:
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⇒ this strategy is indeed an arbitrage
• EXERCISES THIS WEEK: More practice with proving bounds

for option prices and finding arbitrage opportunities
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Combined strategies

• In the previous (theoretical) example we combined the
options to construct an arbitrage

• This idea of buying and sellig several options can be used
also with real option prices - based on our expectations
about future behavious of the stock price
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Combined strategies

EXAMPLE:
• Consider the MCD (Mac Donald’s Corp.) stock prices

http://finance.yahoo.com

and suppose (for this exercise) that we expect the stock
price to be falling
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Combined strategies

• The stock price is 93.72 USD and some of the available
options are (data from August 11):

http://finance.yahoo.com

• We expect the stock to fall ⇒ we buy a put option, for
example one with exercise price 90 USD

• Howver, we don’t expect it to fall too low ⇒ we sell a put
option with a lower expiration price, for example 85 USD

• We expect that the latter will not be exercised, but by
writing it, we lower the initial investment
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Combined strategies

• Our strategy:
we buy a put with E = 16 and sell a put with E = 14

• Recall bid and ask prices:
◦ bid price (the lower one) - the price a buyer is willing to

pay → I can sell the option for bid
◦ ask price (the higher one) - the price a seller is willing

to accept → I can see the option for ask
• Therefore our initial investment is 0.49, since:

◦ we buy the put with E = 16 for 0.66
◦ we sell the put with E = 13 for 0.17
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Combined strategies

• Profit diagram:
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Combined strategies

• Comparison - with only buying the put with E = 90:
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+ put(90) − put(85)
 + put(90)
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Combined strategies

• EXTRA CREDIT 1:
Construction of a combined strategy using the real data,
aiming to achieve the highest profit

• Overview of combined strategies:
◦ Ševčovič, Stehlíková, Mikula: Analytické a numerické metódy

oceňovania finan čných derivátov . STU 2009. (In Slovak) - chapter 2.3.3.

◦ Ševčovič, Stehlíková, Mikula: Analytical and numerical methods for

pricing financial derivatives. Nova Science Publishers, Inc., Hauppauge,

2011. - chapter 2.3.2

◦ http://www.theoptionsguide.com/option-trading-strategies.aspx
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