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Content

• Black-Scholes model:
◦ Suppose that stock price S follows a geometric

Brownian motion

dS = µSdt+ σSdw

+ other assumptions (in a moment)
◦ We derive a partial differential equation for the price of

a derivative
• Two ways of derivations:

◦ due to Black and Scholes
◦ due to Merton

• Explicit solution for European call and put options
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Assumptions

• Further assumptions (besides GBP):
◦ constant riskless interest rate r
◦ no transaction costs
◦ it is possible to buy/sell any (also fractional) number of

stocks; similarly with the cash
◦ no restrictions on short selling
◦ option is of European type

• Firstly, let us consider the case of a non-dividend paying
stock
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Derivation I. - due to Black and Scholes

• Notation:
S = stock price, t =time
V = V (S, t) = option price

• Portfolio: 1 option, δ stocks
P = value of the portfolio: P = V + δS

• Change in the portfolio value: dP = dV + δdS

• From the assumptions: dS = µSdt+ σSdw, From the Itō

lemma: dV =
(
∂V
∂t
+ µS ∂V

∂S
+ 12σ

2S2 ∂
2V

∂S2

)

dt+ σS ∂V
∂S

dw

• Therefore:

dP =

(
∂V

∂t
+ µS

∂V

∂S
+
1

2
σ2S2

∂2V

∂S2
+ δµS

)

dt

+

(

σS
∂V

∂S
+ δσS

)

dw
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Derivation I. - due to Black and Scholes

• We eliminate the randomness: δ = −∂V
∂S

• Non-stochastic portfolio ⇒ its value has to be the same as
if being on a bank account with interest rate r: dP = rPdt

• Equality between the two expressions for dP and
substituting P = V + δS:

∂V

∂t
+
1

2
σ2S2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0
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Dividends in the Black-Scholes’ derivation

• We consider continuous divident rate q - holding a stock
with value S during the time differential dt brings
dividends qSdt

• In this case the change in the portfolio value equals
dP = dV + δdS + δqSdt

• We proceed in the same way as before and obtain

∂V

∂t
+
1

2
σ2S2

∂2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0
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Derivation due to Merton - motivation

• Problem in the previous derivation:
◦ we have a portfolio consisting of one option and δ

stocks
◦ we compute its value and change of its value:

P = V + δS,

dP = dV + δ dS,

i.e., treating δ as a constant
◦ however, we obtain δ = −∂V

∂S
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Derivation II. - due to Merton

• Portfolio consisting of options, stocks and cash with the
properties:
◦ in each time, the portfolio has zero value
◦ it is self-financing

• Notation:
QS = number of stocks, each of them has value S
QV = number of options, each of them has value V
B = cash on the account, which is continuously
compounded using the risk-free rate r

dQS = change in the number of stocks
dQV = change in the number of options
δB = change in the cash, caused by buying/selling stocks
and options
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Derivation II. - due to Merton

• Mathematical formulation of the required properties:
◦ zero value S QS + V QV +B = 0 (1)
◦ self-financing: S dQS + V dQV + δB = 0 (2)

• Change in the cash: dB = rB dt+ δB

• Differentiating (1):

0 = d (SQS + V QV +B) = d (SQS + V QV ) +

rB dt+δB
︷ ︸︸ ︷

dB

0 =

=0
︷ ︸︸ ︷

SdQS + V dQV + δB+QSdS +QV dV + rB dt

0 = QSdS + QV dV

rB
︷ ︸︸ ︷

− r(SQS + V QV ) dt.
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Derivation II. - due to Merton

• We divide by QV and denote ∆ = −QS

QV
:

dV − rV dt−∆(dS − rS dt) = 0

• We have dS from the assumption of GBM and dV from
the Itō lemma

• We choose ∆ (i.e., the ratio between the number of stocks
and options) so that it eliminates the randomness (the
coefficient at dw will be zero)

• We obtain the same PDE as before:

∂V

∂t
+
1

2
σ2S2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0
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Dividends in the Merton’s derivation

• Assume continuous dividend rate q.
• Dividents cause an increase in the cash ⇒ change in the

cash is dB = rB dt+ δB + qSQSdt

• In the same way we obtain the PDE

∂V

∂t
+
1

2
σ2S2

∂2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0
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Black-Scholes PDE: summary

• Matematical formulation of the model:
Find solution V (S, t) to the partial differential equation (so
called Black-Scholes PDE)

∂V

∂t
+
1

2
σ2S2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

which holds for S > 0, t ∈ [0, T ).
• So far we have not used the fact that we consider an option

⇒ PDE holds for any derivative that pays a payoff at time T
depending on the stock price at this time

• Type of the derivative determines the terminal condition at
time T

• In general: V (S, T ) = payoff of the derivative
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Black-Scholes PDE: simple solutions

SOME SIMPLE "DERIVATIVES":
• How to price the derivatives with the following payoffs:

◦ V (S, T ) = S → it is in fact a stock → V (S, t) = S

◦ V (S, T ) = E → with a certainity we obtain the cash E

→ V (S, t) = Ee−r(T−t)

- by substitution into the PDE we see that they are indeed
solutions

EXERCISES:
• Find the price of a derivative with payoff V (S, T ) = Sn,

where n ∈ N .
HINT: Look for the solution in the form V (S, t) = A(t)Sn

• Find all solutions to the Black-Scholes PDE, which are
independent of time, i.e., for which V (S, t) = V (S)
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Black-Scholes PDE: binary option

• Let us consider a binary option, which pays 1 USD if the
stock price is higher that E at expiration time, otherwise its
payoff is zero

• In this case

V (S, T ) =

{

1 if S > E

0 otherwise

• The main idea is to transform the Black-Scholes PDE to a
heat equation

• Transformations are independent of the derivative type; it
affects only the initial condition of the heat equation
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Black-Scholes PDE: transformations

FORMULATION OF THE PROBLEM

• Partial differential equation

∂V

∂t
+
1

2
σ2S2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

which holds for S > 0, t ∈ [0, T ).

• Terminal condition V (S, T ) = payoff of the derivative for
S > 0
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Black-Scholes PDE: transformations

STEP 1:
• Transformation x = ln(S/E) ∈ R, τ = T − t ∈ [0, T ] and a

new function Z(x, τ) = V (Eex, T − τ)

• PDE for Z(x, τ), x ∈ R, τ ∈ [0, T ]:

∂Z

∂τ
−
1

2
σ2

∂2Z

∂x2
+

(
σ2

2
− r

)
∂Z

∂x
+ rZ = 0,

Z(x, 0) = V (Eex, T )

STEP 2:
• Transformation to heat equation

• New function u(x, τ) = eαx+βτZ(x, τ), where the constants
α, β ∈ R are chosen so that the PDE for u is the heat
equation
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Black-Scholes PDE: transformations

• PDE for u:

∂u

∂τ
−

σ2

2

∂2u

∂x2
+A

∂u

∂x
+Bu = 0 ,

u(x, 0) = eαxZ(x, 0) = eαxV (Eex, T ),

where

A = ασ2 +
σ2

2
− r, B = (1 + α)r − β −

α2σ2 + ασ2

2
.

• In order to have A = B = 0, we set

α =
r

σ2
−
1

2
, β =

r

2
+

σ2

8
+

r2

2σ2
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Black-Scholes PDE: transformations

STEP 3:
• Solution u(x, τ) of the PDE ∂u

∂τ
− σ2

2
∂2u
∂x2
= 0 is given by

Green formula

u(x, τ) =
1

√
2σ2πτ

∫ ∞

−∞
e−

(x−s)2

2σ2τ u(s, 0) ds .

• We evaluate the integral and perform backward
substitutions u(x, τ)→ Z(x, τ)→ V (S, t)
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Black-Scholes PDE: binary option (continued)

• Transformations from the previous slides

• We obtain the heat equation ∂u
∂τ

− σ2

2
∂2u
∂x2
= 0 with initial

condition

u(x, 0) = eαxV (Eex, T ) =

{

eαx if Eex > E

0 otherwise
=

{

eαx if x > 0

0 otherwise

• Solution u(x, τ):

u(x, τ) =
1

√
2πσ2τ

∫ ∞

0
e−

(x−s)2

2σ2τ eαsds = . . . = eαx+
1

2
σ2τα2N

(
x+ σ2τα

σ
√
τ

)

where N(y) = 1√
2π

∫ y

−∞ e−
ξ2

2 dξ is the cumulative distribution

function of a normalized normal distribution
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Black-Scholes PDE: binary option (continued)

• Option price V (S, t):

V (S, t) = e−r(T−t)N(d2),

where d2 =
log( S

E
)+

(

r− σ2

2

)

(T−t)

σ
√
T−t
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Black-Scholes PDE: call option

• In this case

V (S, T ) = max(0, S −E) =

{

S − E if S > E

0 otherwise

• The same sequence of transformations; inital condition for
the heat equation:

u(x, 0) =

{

eαx(S − E) if x > 0

0 otherwise

and similar evaluation of the integral
• Option price:

V (S, t) = SN(d1)− Ee−r(T−t)N(d2),

where N is the distribution function of a normalized normal

distribution and d1 =
ln S

E
+(r+ σ2

2
)(T−t)

σ
√
T−t

, d2 = d1 − σ
√
T − t
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Black-Scholes PDE: call option

HOMEWORK:
Solve the Black-Scholes PDE for a call option on a stock which
pays continuous dividends and write it in the form

V (S, t) = Se−q(T−t)N(d1)− Ee−r(T−t)N(d2),

where N(x) = 1√
2π

∫ x

−∞ e−
ξ2

2 dξ is the distribution function of a

normalized normal distribution N(0, 1) and

d1 =
ln S

E
+ (r − q + σ2

2 )(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t

NOTE: The PDE is different, so the transformations have to be
adjusted (do the same steps for the new equation)
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Black-Scholes PDE: call option

Payoff (i.e., terminal condition at time t = T = 1) and solution
V (S, t) for selected times t:
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Black-Scholes PDE: put option

FORMULATION OF THE PROBLEM

• Partial differential equation

∂V

∂t
+
1

2
σ2S2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

which holds for S > 0, t ∈ [0, T ].
• Terminal condition:

V (S, T ) = max(0, E − S)

for S > 0
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Black-Scholes PDE: put option

APPROACH I.
• The same sequence of computations as in the case of a

call option

APPROACH II.
• We use the linearity of the Black- Scholes PDE and the

solution for a call which we have already found

We show the application of the latter approach.
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Black-Scholes PDE: putoption

• Recall that for the payoffs of a call and a put we have

−[call payoff ] + [put payoff ] + [stock price] = E

• Hence:

[put payoff ] = [call payoff ]− S + E

• Black-Scholes PDE is linear: a linear combination of
solutions is again a solution
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Black-Scholes PDE: put option

• Recall the solutions for V (S, T ) = S and V (S, T ) = E
(page 13):

terminal condition solution

max(0, S −E) V call(S, t)

S S

E Ee−r(T−t)

• From the linearity:

terminal condition solution

max(0, S −E)− S +E V call(S, t)− S + Ee−r(T−t)

• Since [put payoff ] = max(0, S − E)− S +E, we get

V put(S, t) = V call(S, t)− S + Ee−r(T−t)
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Solution for a put option

• The solution

V put(S, t) = V call(S, t)− S + Ee−r(T−t)

can be written in a similar form as the solution for a call
option:

V ep(S, t) = Ee−r(T−t)N(−d2)− SN(−d1),

where N, d1, d2 are the same as before
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Put option - example

Payoff (i.e. terminal condition at time t = T = 1) and solution
V (S, t) for selected times t:
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Put option - alternative computation

Comics about negative volatility on the webpage of Espen Haug:

http://www.espenhaug.com/collector/collector.html
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Put option - alternative computation

• A nightmare about negative volatility:

• Not only a dream... according to internet, it really exists
and is connected with professor Shiryaev from Moscow...
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Put option - alternative computation

QUESTION: Why does this computation work?
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Stocks paying dividends

• HOMEWORK:
Solve the Black-Scholes equation for a put option, if the
underlying stock pays continuous dividends.

HINT:
◦ In this case, V (S, t) = S is not a solution
◦ What is the solution satisfying the terminal condition V (S, T ) = S? Use

financial interpretation and check your answer by substituting it into the PDE

• HOMEWORK:
Denote V (S, t;E, r, q) the price of an option with exercise
price E, if the interest rate is r and the dividend rate is q.
Show that

V put(S, t;E, r, q) = V call(E, t;S, q, r)

HINT: How do the terms d1d2 change when replacing S ↔ E, r ↔ q?
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Combined strategies

• From the linearity of the Black-Scholes PDE: if the strategy
is a linear combination of call and put options, then its price
is the same linear combination of the call and put options
prices

• It does not necessarily hold in other models:
◦ consider a model with some transaction costs; it is not

equivalent
◦ whether we hedge the options independenty
◦ or we hedge the portfolio - in this case, we might be

able to reduce transaction costs
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Combined strategies

EXAMPLE:
• we buy call options with exerise prices E1, E3 and sell two

call options with exercise prices E2, with exercise prices
satisfying E1 < E2 < E3 and E1 + E3 = 2E2.

• Payoff of the strategy can be written as
V (S, T ) = max(S−E1, 0) − 2max(S−E2, 0)+max(S−E3, 0)

• Hence its Black-Scholes price is:
V (S, t) = V call(S, t;E1)− 2V call(S, t;E2) + V call(S, t;E3)
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Combined strategies

• Numerical example - butterfly with T = 1:
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Market data

• Stock:
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Market data

• Selected options:

• How much are these options supposed to cost according to
Black-Scholes model?
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Black-Scholes model and market data

• Recall Black-Scholes formula for a call option:

V (S, t) = SN(d1)− Ee−r(T−t)N(d2),

where N(x) = 1√
2π

∫

x

−∞ e−
ξ2

2 dξ is the distribution function

of a normalized normal distribution N(0, 1) and

d1 =
ln S

E
+ (r + σ2

2 )(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t
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Black-Scholes model and market data

• Therefore, we need the following values:
◦ S = stock price
◦ E = exercise price
◦ T − t = time remaining to expiration
◦ σ = volatility of the stock
◦ r = interest rate

• What is clear: S,E, T − t

• Interest rate (there are different rates on the market):
◦ A common choice: 3-months treasury bills
◦ Interest rate has to be expressed as a decimal number

→ 0.03 percent is r = 0.03/100
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Black-Scholes model and market data

• What is the volatility?
◦ Exercises session: computation of the Black-Scholes

price using historical volatility
◦ Different estimates of volatility, depending on time span

of the data
◦ Price does not equal the market price

• Question: What value of volatility produces the
Black-Scholes price that is equal to the market price?

• This value of volatility is called implied volatility
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Implied volatility

• Dependence of the Black-Scholes option price on volatility:
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Existence of implied volatility

• Dependence of the Black-Scholes option price on volatility
- for a wider range of volatility:
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Existence of implied volatility

• In general - we show that
◦ The Black-Scholes price of a call option is an

increasing function of volatility
◦ Limits are equal to: V0 := limσ→0+ V (S, t;σ),

V∞ := limσ→∞ V (S, t;σ)

• Then, from continuity of V ⇒ for every price from the
interval (V0, V∞) the implied volatility exists and is uniquely
determined

• We do the derivation of a stock which does not pay
dividends

• HOMEWORK: call and put option on a stock which pays
constinuous dividends
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Existence of implied volatility

• To prove that price is an increasing function of volatility:

◦ We compute the derivative (using d2 = d1 − σ
√
T − t):

∂V

∂σ
= SN ′(d1)

∂d1
∂σ

−Ee−r(T−t)N ′(d2)
∂d2
∂σ

=
(

SN ′(d1)− Ee−r(T−t)N ′(d2)
) ∂d1

∂σ

+Ee−r(T−t)N ′(d2)
√
T − t

◦ Derivative of a distribution function is a density

function: N ′(x) = 1
2πe

− x2

2

◦ Useful lemma: SN ′(d1)−Ee−r(T−t)N ′(d2) = 0
◦ Hence:

∂V

∂σ
= Ee−r(T−t)N ′(d2)

√
T − t > 0

IV. Black-Scholes model: Implied volatility – p.10/13



Existence of implied volatility

• Limits:

◦ We use basic properties of a distribution function:

lim
x→−∞

N(x) = 0, lim
x→+∞

N(x) = 1

◦ It follows:

lim
σ→0+

V (S, t;σ) = max(0, S −Ee−r(T−t))

lim
σ→∞

V (S, t;σ) = S
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Implied volatility - computation

• In our case:

• We get the implied volatility 0.22558
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Website finance.yahoo.com

• Option chains include implied volatilities:
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Greeks

• Greeks:
◦ derivatives of the option price with respect to

parameters
◦ they measure the sensitivity of the option price to these

parameters
• We have already computed

∂Vcall

∂σ
= Ee−r(T−t)N ′(d2)

√
T − t , it is denoted by Υ (vega)

• Others: ( Remark: P is a Greek letter rho )

∆ =
∂V

∂S
, Γ =

∂2V

∂S2
, P =

∂V

∂r
, Θ =

∂V

∂t

• Notation: V ec = price of a European call, V ep = price of a
European put; in the same way their American
counterparts V ac, V ap
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Delta

• Call option - from Black-Scholes formula, we use the same
lemma as in the case of volatility:

∆ec =
∂V ec

∂S
= N(d1) ∈ (0, 1)

• Put option - we do not need to compute the derivative, we
can use the put-call parity:

∆ep =
∂V ep

∂S
= −N(−d1) ∈ (−1, 0)

• Example: call( left), put (right)
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Delta - delta hedging

• Recall the derivation of the Black-Scholes model and
contruction of a riskless portfolio:

QS

QV

= −
∂V

∂S
= −∆

where QV , QS are the numbers of options and stock in the
portfolio

• Construction of such a portfolio is call delta hedging
(hedge = protection, transaction that reduces risk)
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Delta - example of delta hedging

• Real data example - call option on IBM stock, 21st May
2002, 5-minute ticks

• At time t:
◦ we have option price Vreal(t) and stock price Sreal(t)
◦ we compute the impled volatility, i.e., we solve the

equation

Vreal(t) = V ec(Sreal(t), t;σimpl(t)).

◦ implied volatility σimpl(t) is used in the call option price
formula:

∆ec(t) =
∂V ec

∂S
(Sreal(t), t;σimpl(t))
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Delta - example of delta hedging

• Delta during the day:

0 50 100 150 200 250 300 350
t

0.68

0.69

0.7

0.71

D

• We wrote one option - then, this is the number of stocks in
our portfolio
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Gamma

• Computation:

Γec =
∂∆ec

∂S
= N ′(d1)

∂d1

∂S
=

exp(−12d
2
1)

σ
√

2π(T − t)S
> 0

Γep = Γec

• Measures a sensitivity of delta to a change in stock price
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Price, delta, gamma
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Price, delta, gamma

• Simultaneously:
◦ the option price is "almost a straight line"
◦ delta does not change much with a small change in the

stock price
◦ gamma is almost zero

• Also:
◦ graph of the option price has a big curvature
◦ delta significantly changes with a small change in the

stock price
◦ gamma is significantly nonzero

V. Black-Scholes model: Greeks - sensitivity analysis – p. 9/15



Vega, rho, theta

• Vega
◦ we have already computed:
Υec = ∂V ec

∂σ
= Ee−r(T−t)N ′(d2)

√
T − t > 0

◦ from put-call parity: Υep = Υec

◦ higher volatility ⇒ higher probability of high profit, while
a possible loss is bounded ⇒ positive vega

• Rho
◦ call: P ec = ∂V ec

∂r
= E(T − t)e−r(T−t)N(d2) > 0

◦ put: P ep = ∂V ep

∂r
= −E(T − t)e−r(T−t)N(−d2) < 0

• Theta:
◦ call: from financial mathematics we know that if a stock

does not pay dividends, it is not optimal to exercise an
American option prior to its expiry ⇒ prices of
European and American options are equal ⇒ Θec < 0
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Vega, rho, theta

• Theta
◦ put: the sign may be different for different sets of

parameters
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Exercise: ”cash-or-nothing” option

• "Cash-or-nothing" opcia: pays 1 USD if the stock exceeds
the value E at the expiration time; otherwise 0.

• Option price:

• Using the interpretation of the greeks - sketch delta and
vega as function of the stock price
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Exercise: ”cash-or-nothing” delta
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Exercise: ”cash-or-nothing” vega
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Exercise: sensitivity of delta to volatility

• Espen Haug in the paper Know your weapon:

• Questions:
1. What is the dependence of delta on volatility which is

used in its computation?
2. Low volatility led to low delta - why?

• More → exercises session
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