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Leland model

• Taking transaction costs into account
• Original paper:

Hayne E. Leland: Option Pricing and Replication with Transactions Costs,

1985

VI. Leland model: Derivation of the PDE for the price of a derivative – p. 2/13



Assumptions of the model

• Transaction costs are characterized by a constant
c = Sask−Sbid

S , where S is the average of bid and ask price
of the stock

• S follows a geometric Brownian motion dS = µSdt+σSdw
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Computation of the constant c

EXAMPLE 1:
• Stock:

• From the data: Sbid = 39.85, Sask = 39.86

• Average of bid and ask: S = 39.855

• c = 0.01
39.855 = 2.5028× 10−4
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Computation of the constant c

EXAMPLE 2:
• Stock:

• From the data: Sbid = 38.06, Sask = 38.07

• Average of bid and ask: S = 38.065

• c = 0.01
38.065 = 2.6271× 10−4
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Computation of the constant c

EXAMPLE 3:
• Stock:

• From the data: Sbid = 372.81, Sask = 372.94

• Average of bid and ask: S = 372.875

• c = 0.13
372.875 = 3.4864× 10−4
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Derivation of the PDE

• Portfolio:
◦ one option and δ stocks, while the number of stocks is

determined by delta hedging, i.e., δ = −∂V/∂S
◦ value of the portfolio: P = V + δS
◦ because of the transaction costs, the portfolio cannot

be hedged continuously in time → we hedge it discrete
times which are ∆t [years] apart

• Change of the portfolio value
◦ number of transactions with stocks is ∆δ
◦ costs for one transaction are cS/2⇒ total costs are

equal to cS
2
|∆δ|

◦ therefore, change of the portfolio value is:

∆P = ∆V + δ∆S − cS
2
|∆δ|
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Derivation of the PDE

• Hence we have ∆P = ∆V + δ∆S − cS
2
|∆δ| and

◦ ∆S = µS∆t+ σS∆w from the assumptions (GBM)

◦ ∆V =
(

∂V
∂t + µS ∂V

∂S +
σ2

2
S2 ∂

2V
∂S2

)

∆t+ σS ∂V
∂S∆w from

Itō lemma
◦ what remains, is to derive ∆δ

• We have δ = −∂V
∂S , hence ∂δ

∂S = −∂2V
∂S2 , from which:

∆δ ≈ ∂δ

∂S
∆S = −∂2V

∂S2
∆S

• Here we substitute ∆S from the GBM
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Derivation of the PDE

• So far we have:

∆δ ≈ −∂2V
∂S2 µS∆t− ∂2V

∂S2 σS∆w (1)
• Leland has shown:

◦ in formula (1), it suffices to consider the terms of the
lowest order (i.e. we take only ∆w ≈ (∆t)1/2, and ∆t
is neglected)

◦ when computing the absolute value |∆w|, it can be

replaced by its expected value E[|∆w|] =
√

2

π∆t

• Therefore:

∆δ ≈ −∂2V

∂S2
σS∆w

|∆δ| ≈
∣

∣

∣

∣

∂2V

∂S2

∣

∣

∣

∣

σS|∆w| ≈
∣

∣

∣

∣

∂2V

∂S2

∣

∣

∣

∣

σS

√

2

π

√
∆t
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Derivation of the PDE

• We substitute everything into the formula for the change of
the portfolio value ∆P = ∆V + δ∆S − cS

2
|∆δ|:

∆P =
(

∂V
∂t +

σ2

2
S2 ∂

2V
∂S2 − c

2
S
∣

∣

∣

∂2V
∂S2

∣

∣

∣
σS

√

2

π∆t

)

∆t (2)
• Portfolio is riskless ⇒ necessarily (to rule out arbitrage

possibilities) ∆P = rP∆t

• Portfolio consists of one option and δ = −∂V/∂S stocks ⇒
P = V + δS = V − ∂V

∂S , and so

∆P = r(V − ∂V
∂S S)∆t (3)

• Comparing (2) and (3):

∂V

∂t
+

σ2

2
S2

∂2V

∂S2
− c

2
S

∣

∣

∣

∣

∂2V

∂S2

∣

∣

∣

∣

σS

√

2

π∆t
= r(V − ∂V

∂S
S)
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Derivation of the PDE

• We write the PDE into its final form:

∂V

∂t
+

σ2

2
S2

∂2V

∂S2

[

1− c

σ
√
∆t

√

2

π
sign

(

∂2V

∂S2

)

]

+
∂V

∂S
S − rV = 0

• The PDE holds for S > 0, t ∈ [0, T ], we add the terminal
condition V (S, T ) depending on the type of the derivative,
e.g., V (S, T ) = max(0, S − E) for S > 0 when pricing a call
option

• Nonliner PDE because of the term containing the signum
function

• However, we will solve it in a closed form for call and put
options
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Remark on combined strategies

• The price of combined strategies (unlike in the
Black-Scholes setting) cannot be found be pricing every
option and then adding the prices

MATHEMATICAL POINT OF VIEW:
• PDE in the Leland model is not linear ⇒ for example a

sum, difference or some other linear combination is no
more a solution
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Remark on combined strategies

FINANCIAL POINT OF VIEW:
• If we price every option separately, we count transaction

costs coming from hedging the portfolio for each of the
options separately

• If the transaction costs are zero, it does not matter that e.g.
we have two portfolios, for one of them we buy stock and
for the other one we sell stocks (it does not cause any
transaction costs)

• In a presence of transaction costs this is no more true. In
such a case we need to consider one portfolio, to avoid
unnecessary transactions (which would increase
transaction costs)
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Leland PDE

• Recall the Leland PDE for the price of a derivative:

∂V

∂t
+

σ2

2
S2

∂2V

∂S2

[

1−
c

σ
√
∆t

√

2

π
sign

(

∂2V

∂S2

)

]

+
∂V

∂S
S − rV = 0

• The PDE holds for S > 0, t ∈ [0, T ], we add the terminal
condition V (S, T ) depending on the derivative, e.g.,
V (S, T ) = max(0, S −E) for S > 0 in the case of a call
option

• Nonlinear PDE because of the term containing signum
• Recall the for the Black-Scholes prices of call and put

options we have ∂2V
∂S2

> 0 (positive gamma) ⇒

sign
(

∂2V
∂S2

)

= 1
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Leland PDE - call and put

• What happens if inserting Black-Scholes price of a call/put
with adjusted volatility V (S, t; σ̃):

σ̃2 = σ2

[

1−
c

σ
√
∆t

√

2

π

]

into the Leland PDE:

∂V

∂t
+

σ2

2
S2

∂2V

∂S2

[

1−
c

σ
√
∆t

√

2

π
sign

(

∂2V

∂S2

)

]

+
∂V

∂S
S − rV =

∂V

∂t
+

σ2

2
S2

∂2V

∂S2

[

1−
c

σ
√
∆t

√

2

π

]

+
∂V

∂S
S − rV

∂V

∂t
+

σ̃2

2
S2

∂2V

∂S2
+

∂V

∂S
S − rV = 0
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Leland PDE - call and put

• It means that Black-Scholes price of a call/put with
adjusted volatility V (S, t; σ̃):

σ̃2 = σ2

[

1−
c

σ
√
∆t

√

2

π

]

= σ2 [1− Le]

is a solution to the Leland PDE for a European call/put.
• Le is called Leland number
• Term σ̃2 has to be positive ⇒ this gives a bound on

feasible times ∆t - i.e. possible times between two
changes of the portfolio (parameters σ, c are given):

∆t >
2

π

c2

σ2
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Feasible values of ∆t

GRAPHICALLY: dependence of Le on ∆t for c = 5× 10−4, σ = 0.2
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Feasible values of ∆t

NUMERICALLY: what is the borderline of feasible ∆t:
Assume 252 trading days in a year and the market opened 7
hours a day ⇒ ∆t has to be more than approximately 0.42 min.
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Computation of the option price I.

• Let us take ∆t = 5 minutes, i.e., ∆t = 5/(60 ∗ 7 ∗ 252)
• Leland number is then feasible (less than 1):

• Adjusted volatility, to be used in the Black-Scholes formula:
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Computation of the option price I.

• We compute the price of a call option with exercise price
E = 110 which expires in τ = 1 year, if the interest rate
equals r = 1% and the underlying stock price is S = 100

• For a comparison - price in the absence of transaction
costs
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Computation of the option price I.

• The same option if ∆t = 1/252, i.e., 1 day:
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Bid a ask prices of options in Leland model

• When deriving the Leland PDE, we considered the
portfolio: 1 option, δ stocks ⇒ the resulting price is bid
price

• Let us consider the portfolio minus 1 option, δ stocks ⇒ the
resulting price will be ask price

• In the same way we obtain that the ask price satisfies

∂V

∂t
+

σ2

2
S2

∂2V

∂S2

[

1 +
c

σ
√
∆t

√

2

π
sign

(

∂2V

∂S2

)

]

+
∂V

∂S
S − rV = 0

• Call a put options: Black-Scholes price with adjusted
volatility σ2TC = (1 + Le)σ2
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Implied parameters

• If we have bid and ask prices of the stock and the option,
we can compute:
◦ implied volatility
◦ implied time between two changes of the portfolio

(i.e., the values, for which the theoretical and market bid
and ask option prices will coincide)

INPUTS:
• Stock - bid and ask prices Sbid, Sask

• Option - bid and ask prices Vbid, Vask, exercise price E, time
τ remaining to expiration of the option

• Other market parameters: interest rate r
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Implied parameters

PROCEDURE:
• Using bid and ask prices of the stock we compute

S = (Sask + Sbid)/2 and c = (Sask − Sbid)/S

• Using S,E, r, τ and
◦ Vbid we compute the Black-Scholes implied volatility,

then
√

(1− Le)σ2 := σbid
◦ Vask we compute the Black-Scholes implied volatility,

then
√

(1 + Le)σ2 := σask

• By solving the system of equations (1− Le)σ2 = σ2bid,
(1 + Le)σ2 = σ2ask we compute the implied volatility σ and
Leland number Le

• From the definition of the Leland number we compute the
implied time ∆t between two changes of the hedging
portfolio
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Implied parameters - example

EXAMPLE:
• Data from 8.3.2014 morning
• Stock:
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Implied parameters - example

• Call option:
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Implied parameters - example

• Interest rates:
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Implied parameters - example

• Hence we have:
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Implied parameters - example

• We compute the implied volatilities

• Remarks:
◦ S is common (not Sbid, Sask)
◦ implied volatilities are from Black-Scholes model
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Implied parameters - example

• From the system of equations

(1− Le)σ2 = σ2bid, (1 + Le)σ2 = σ2ask

we compute Leland number Le and implied volatility σ :
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Implied parameters - example

• From the definition of the Leland number we compute the
implied time ∆t:

SUMMARY:
• implied volatility σimpl = 0.217

• implied time between two changes of the portfolio ∆timpl is
approximately 1/4 days
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Models

• Selected models:
◦ RAPM (risk adjusted pricing methodology) - transaction

costs and risk from the volatile (unprotected) portfolio)
◦ presence of a dominant investor
◦ modelling investor’s preferences

• Aim of this lecture - to show a selection of:
◦ financial situations which can be modelled
◦ mathematical methods which are used in their analysis
◦ basic ideas, to obtain an insight about the models,

without detailed derivations
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RAPM model

M. Jandačka, D. Ševčovič: On the risk adjusted pricing methodology based

valuation of vanilla options and explanation of the volatility smile, Journal of

Applied Mathematics, 3, 2005, 235-258

• Transaction costs as in the Leland model - then we have
the portfolio P = V + δS and the change of its value is
∆P = ∆V + δ∆S − rTCS∆t, where

rTC =
cSσ√
2π

∣

∣

∣

∣

∂2V

∂S2

∣

∣

∣

∣

1

∆t

• Risk from the volatile portfolio (risk is measured by
variance here):

rV P = R
V ar[∆P/S]

∆t
,

where R the marginal value of investor’s exposure to a risk
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RAPM model

• It can be shown (Itō lemma, computation of variance of a
random variable):

rV P =
1

2
Rσ4S2

(

∂2V

∂S2

)2

∆t

• Risk neutral investor ⇒ wants - by his choice of ∆t - to
minimize

rR = rTC + rV P =
cSσ√
2π

∣

∣

∣

∣

∂2V

∂S2

∣

∣

∣

∣

1

∆t
+
1

2
Rσ4S2

(

∂2V

∂S2

)2

∆t

⇒ we obtain the optimal length of the time interval ∆t
between two adjustments of the portfolio
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RAPM model

• Finding the optimal ∆topt:

Dt

rTC+rVP

rTC

rVP

Dt

• For this value of ∆topt we have:

rR(∆topt) =
3

2

(

c2R

2π

)1/3

σ2
∣

∣

∣

∣

S
∂2V

∂S2

∣

∣

∣

∣

4/3
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RAPM model

• For this value of ∆topt we obtain the partial differential
equation for the price of a derivative :

∂V

∂t
+

σ2

2
S2

[

1 + µ

(

S
∂2V

∂S2

)1/3
]

∂2V

∂S2
+

∂V

∂S
S − rV = 0,

where:

µ = 3
(

c2R
2π

)1/3
is a constant;

Γp for Γ = S ∂2V
∂S2 and p = 1/3 is computed as Γp = |Γ|p−1Γ
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RAPM model

• Solving the PDE for the derivative price:
◦ the PDE is a complicated nonlinear PDE
◦ firstly standard transformations: x = ln(S/E), τ = T − t

◦ then - since the PDE contains the term Γ = S ∂2V
∂S2 - we

define a new function

H(x, τ) = S
∂2V

∂S2

◦ equation for H(x, τ) is already much simpler
quasilinear PDE and an effective numerical method
can be derived to solve it numerically

◦ computing the derivative price V (S, t) from the
auxiliary function H(x, τ) is not difficlut; it leads to a
numerical computation of one integral
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RAPM model

• Similarly as in the Leland model - also the RAPM model
allows a computation of bid and ask option prices

• Example:

22 24 26 28 30
S

1

2

3

4

5

6

V

Vbid

Vask

22 24 26 28 30
S

1

2

3

4

5

V

Vbid

Vask

(for a comparison: Black-Scholes option price given by
dotted lines)
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RAPM model

• Computation of implied parameters from the real data -
implied volatility σ and implied risk parameter R:

Left: input data, right: implied parameters
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RAPM model

• The PDE

∂V

∂t
+

σ2

2
S2

[

1 + µ

(

S
∂2V

∂S2

)1/3
]

∂2V

∂S2
+

∂V

∂S
S − rV = 0,

can be seen as an equation with nonconstant volatility
σ̃ = σ̃(S, t):

∂V

∂t
+

σ̃2(S, t)

2
S2

∂2V

∂S2
+

∂V

∂S
S − rV = 0,

where

σ̃(S, t) = σ

[

1 + µ

(

S
∂2V

∂S2

)1/3
]
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RAPM model

• What is the behaviour of the function σ̃(S, t):

E
S

Σ

Σ
�
HS,ΤL

ES
T

0

t

Σ
�
HS,ΤL

XS

⇒ this model can explain the volatility smile
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Presence of a dominant investor

R. Frey: Market illiquidity as a source of the model risk in dynamic hedging, RISK

publications, R. Gibson Ed., London, 2000.

• Black-Scholes model: we can buy and sell any amount of
assets, but it does not have any effect on their price

• In a case of a dominant investor this is not necessarily true
- by his strategy he may influence the asset price

• Consider a dominant investor whose strategy for hedging a
derivative is characterized by the following variables:
◦ αt = number of stocks at time t
◦ βt = number of riskless bonds at time t (i.e. cash)

and suppose that his trading the assets influences their
market price:

dS = µSdt+ σSdw + ρSdα
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Presence of a dominant investor

• Investor’s strategy depends on the time t and on the stock
price S:

α = Φ(S, t)

• Using Itō lemma we compute dα and insert it into the
formula for dS → we obtain

dS = b(S, t)Sdt+ ν(S, t)Sdw,

where

ν(S, t) =
σ

1− ρS ∂Φ
∂S

,

b(S, t) =
1

1− ρS ∂Φ
∂S

(

µ+ ρ

(

∂Φ

∂t
+

ν2

2
S2

∂2Φ

∂S2

))

.
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Presence of a dominant investor

• PDE is derived in the same way as in the case of
Black-Scholes model, the only change is, that instead of
the constant σ there will be the function ν(S, t):

∂V

∂t
+
1

2
ν2(S, t)S2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

• Strategy of the dominant investor:
◦ analysis of delta hedging based on Black-Scholes

pricce (it is not suitable, it does not replicate the
derivative but always leads to higher transaction costs)

◦ computation of the correct strategy
◦ its qualitative and quantitative analysis
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Presence of a dominant investor

• Numerical solution of the PDE - the same idea as in the
RAPM model:
◦ transformation H(x, τ) = S ∂2V

∂S2

◦ numerical solution of the resulting quasilinear PDE
◦ the option price is obtained by integration
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Modelling investor’s preferences

S. D. Hodges, A. Neuberger: Optimal replication of contingent claims under
transaction costs, Advances o Futures and Options Research(1994), 21-35.

G. Barles, H.M. Soner: Option Pricing with transaction costs and a nonlinear Black-

Scholes equation, Finance Stochast. 2 (1998) 369-397.

• Again transaction costs:

Sask = (1 + µ)S, Sbid = (1− µ)S,

kde S = (Sbid + Sask)/2

• Consider the portfolio:
Xt = value of bonds [in dollars]
Yt = number of stocks

• Investor has a utility function U with a constant risk
aversion γ
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Modelling investor’s preferences

• If it was not possible to trade options::
◦ value of the portfolio at time T is XT + YTST

◦ we need to solve a stochastic programming problem

vf (x, y, s, t) = supE[U(XT + YTST )]

with initial values Xt = x, Yt = y, St = s

• If we write N call options:
◦ value of the portfolio at the time of options expiration T

is XT + YTST −N(ST −E)+

◦ we need to solve a stochastic programming problem

v(x, y, s, t) = supE[U(XT + YTST −N(ST − E)+)]

with initial values Xt = x, Yt = y, St = s
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Modelling investor’s preferences

• [Hodges, Neuberger]:
◦ relationship between these optimization problems

• [Barles, Soner]:
◦ construction of the optimal strantegies, PDE of the

option price
◦ matematical tools: dynamic programming, introducing

a small parameter and asymptotic analysis,
transformation of the PDE and its numerical solution

◦ resulting PDE for the option price has a similar form as
in the previous models: instead of a constant volatility
(as in the Black-Scholes model) we have a function
which depends also on ∂2V

∂S2 ⇒ a similar approach to its
solving
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