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Transformation to a heat equation

• Transformation

V (S, t) = e−αx−βτu(x, τ),

α =
r − q

σ2
−
1

2
, β =

r + q

2
+
σ2

8
+
(r − q)2

2σ2
, τ = T−t, x = ln(S/E),

transforms the Black-Scholes equation to the following
heat equation:

∂u

∂τ
−
σ2

2

∂2u

∂x2
= 0

for x ∈ R, τ ∈ [0, T ]

• Initial condition: u(x, 0) = g(x)
◦ call option: g(x) = Eeαx+βτ max(ex − 1, 0)
◦ put option: g(x) = Eeαx+βτ max(1− ex, 0)
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Boundary conditions

• For a numerical scheme we also need boundary condition
- we need to think of the option value for very small and
very large stock prices

• Call option:
◦ V (0, t) = 0

◦ for S → ∞ we have: V (S, t) ∼ Se−q(T−t), more
precisely: V (S, t) ∼ Se−q(T−t)

− Ee−r(T−t)

• Put option:
◦ V (0, t) = Ee−r(T−t)

◦ V (S, t)→ 0 for S → ∞
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Approximation of the solution

• Numerical solution on a bounded space interval
x ∈ [−L,L]

• Grid points - in time and space:

xi = ih, i = −n, ...,−2,−1, 0, 1, 2, ...n,

τj = jk, j = 0, 1, ...,m.

where h = L/n, k = T/m

• Approximation of the solution u in the point (xi, τj) will be
denoted by

uji ≈ u(xi, τj), gji ≈ g(xi, τj)
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Approximation of the solution

• Boundary conditions:
◦ call option:

φj := uj
−N = 0

ψj := ujN = Ee
(α+1)Nh+(β−q)jk

◦ put option:

φj := uj
−N = Ee

−αNh+(β−r)jk

ψj := ujN = 0
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Implicit scheme

• Recall from the numerical methods course: explicit and
implicit scheme for a heat equation

• Implicit scheme - can be written as:
−γuji−1 + (1 + 2γ)u

j
i − γuji+1 = u

j−1
i , where γ = σ2k

2h2 ,

• In a matrix form: Auj = uj−1 + bj−1 for j = 1, 2, . . . ,m
where

A =



















1 + 2γ −γ 0 · · · 0

−γ 1 + 2γ −γ
...

0 · · · 0
... −γ 1 + 2γ −γ

0 · · · 0 −γ 1 + 2γ



















,

bj = (γφj+1, 0, . . . , 0, γψj+1)T
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Solving the linear system

• The system Ax = b with the matrix

A =



















1 + 2γ −γ 0 · · · 0

−γ 1 + 2γ −γ
...

0 · · · 0
... −γ 1 + 2γ −γ

0 · · · 0 −γ 1 + 2γ



















• Firstly - we solve it using Gauss-Seidel method
• Afterwards - its generalization, SOR method (its

modification will be used in a scheme for American options)
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Gauss-Seidel method: example

• Consider the system

(

8 5

5 7

) (

x1

x2

)

=

(

13

12

)

,

which has the exact solution (x1, x2)′ = (1, 1)′

• We will use Gauss-Seidel method and start from (0, 0)′
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Gauss-Seidel method: example

OBSERVATION: It converges, but slowly, because it make too
short steps, although in the right direction ⇒ motivation for a
modification of the method
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Gauss-Seidel method: example

• Gauss-Seidel method - by coordinates:

x
(k)
i =

1

aii



bi −
∑

j<i

aijx
(k)
j −

∑

j>i

aijx
(k−1)
j





• When computing x
(k)
i , we have

◦ current approximation of the solution:

(

x
(k)
1 , . . . , x

(k)
i−1, x

(k−1)
i , . . . , x(k−1)n

)

◦ residual, i.e., the difference b−Axap:

r
(k)
i =

(

r
(k)
1i , . . . , r

(k)
ni

)
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Modification of the Gauss-Seidel method

• Gauss-Seidel computation of x(k)i can be written as:

x
(k)
i =

1

aii



bi −
∑

j<i

aijx
(k)
j −

∑

j>i

aijx
(k−1)
j





= x
(k−1)
i +

1

aii
r
(k)
ii

• Modification of the Gauss-Seidel method according to our
earlier observation, so called successive over-relaxation
(SOR) method:

x
(k)
i = x

(k−1)
i + ω

1

aii
r
(k)
ii

for ω > 1 (for 0 < ω < 1 it is, in fact, under-relaxation; for
ω = 1 we have the original Gauss-Seidel method)
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SOR method: example

Example for the beginning of the lecture; this time we use SOR
with ω = 1.3:
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SOR method: example

Even better convergence for ω = 1.2:
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SOR method: example

Comparison of Gauss-Seidel (left) and SOR method for ω = 1.2
(right):

QUESTION:
How to choose ω?
What are the factors influencing the speed of convergence?
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Iteration schemes: speed of convergenec

• Consider a general iteration scheme x(k+1) = Tx(k) + g
with exact solution x∗, to which the scheme converges

• We have:

‖x(k) − x∗‖ = ‖(Tx(k−1) + g)− (Tx∗ + g)‖
= ‖T [x(k−1) − x∗]‖
= ‖T [(Tx(k−1) + g)− (Tx∗ + g)]‖
= ‖T2 [x(k−2) − x∗]‖

. . .

= ‖Tk [x(0) − x∗]‖ ≤ ‖Tk‖ ‖x(0) − x∗‖

• We need to estimate the norm ‖Tk‖
• We use spectral radius of a matrix and its properties
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Spectral radius and matrix norms

• LetM be a square matrix
• Spectral radius of this matrix:

ρ(M) = max |λi| ,
where λi are eigenvalues ofM

• Relation of the spectral radius and matrix norms:
◦ the followig holds:

lim
n→∞

‖Mn‖1/n = ρ(M)

◦ therefore for large n we can use an approximation

‖Mn‖1/n ∼ ρ(M)⇒ ‖Mn‖ ∼ ρ(M)n
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Iteration schemes: speed of convergence

• Therefore we have:

‖x(k) − x∗‖ ≤ ‖Tk‖ ‖x(0) − x∗‖ ∼ ρ(T)k‖x(0) − x∗‖

• Hence the spectral radius of the matrix T
◦ has to be less than 1 - so that the error converges to

zero and the method converges
◦ should be as small as possible - to have the speed of

convergence as high as possible
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Iter. schemes: speed of convergence - example

• We had the system:

(

8 5

5 7

) (

x1

x2

)

=

(

13

12

)

,

• SOR method in matrix form A = L+D+U:

x(k+1) = (D+ ωL)−1[(1− ω)D− ωU]x(k) + ω(D+ ωL)−1b

• Hence, in our case the iteration matrix is

T =

(

8 0

5ω 7

)−1(

8(1− ω) −5ω
0 7(1− ω)

)

and we need the dependence of the maximal absolute
value of an eigenvalue on ω
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Iter. schemes: speed of convergence - example

Result:

We have used: ω = 1 (Gauss-Seidel), ω = 1.3, ω = 1.2
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Iteration schemes: speed of convergence

Some useful theorems (without proofs):

1. [Kahan] Let aii 6= 0. Then ρ(Tω) ≥ |ω − 1|.
2. [Ostrowski-Reich] Let A be positive definite and let
0 < ω < 2. Then the SOR converges for any initial point.

3. Let A be a positive definite tridiagonal matrix. Then
ρ(Tgs) = ρ(Tj)

2 and the optimal choice of parameter ω for
the SOR method is

ω =
2

1 +
√

1− [ρ(Tj)]2
.

For this choice, we have: ρ(Tω) = ω − 1.
Notation:
Tj ,Tgs,Tω - iteration matrices of Jacobi, Gauss-Seidel and SOR methods.

With the decompositionA = L+D+U we express Tj as −D−1(L+U)
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SOR method: speed of convergence

Corollaries:
• From Theorem 1: for ω /∈ (0, 2) we have ρ(Tω) ≥ 1.

Condition ω ∈ (0, 2) is therefore a necessary condition for
convergence.

• Theorem 2 gives a class of matrices, for which the
condition ω ∈ (0, 2) is also a sufficient condition for
convergence.
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Theorem 3 and our example

The matrix of our system is positive definite and tridiagonal:

(

8 5

5 7

) (

x1

x2

)

=

(

13

12

)

JACOBI METHOD:
• iteration matrix:

Tj = −D−1(L+U) = −
(

8 0

0 7

)−1(

0 5

5 0

)

=

(

0 −58
−58 0

)

• eigenvalues of Tj : λ1 = 5
2
√
14

, λ1 = − 5
2
√
14

• spectral radius: ρ(Tj) =
5
2
√
14
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Theorem 3 and our example

GAUSS-SEIDEL METHOD:
• iteration matrix:

Tgs = −(D+ L)−1U = −
(

8 0

5 7

)−1(

0 5

0 0

)

=

(

0 −58
0 25

56

)

• eigenvalues of Tgs: λ1 = 0, λ1 = 25
56

• spectral radius: ρ(Tgs) =
25
56

INDEED WE HAVE:

ρ(Tgs) = ρ(Tj)
2

25

56
=

(

5

2
√
14

)2
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Theorem 3 and our example

SOR METHOD:
• Optimal value of parameter ω according to Theorem 3:

ω =
2

1 +
√

1− [ρ(Tj)]2
=

2

1 +
√

1− 25
56

=
2
√
56√

56 +
√
31

≈ 1.147

• Corresponding value of spectral radius of the iteration
matrix according to Theorem 3:

ρ(Tω) = ω − 1 =
√
56−

√
31√

56 +
√
31

≈ 0.147
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Theorem 3 and our example

• We compute the spectral radius for the given ω directly:

Hence we obtain: ρ(Tω) =
25

4
√
14

√
31+87
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Theorem 3 and our example

• This agrees with the result given in Theorem 3:

(firstly numerically, then equality of two exact numbers)

Remarks on wxMaxima commands:
$ at the end: the result of the computation is not printed
float: numerical value
ratsimp: simplifies the expression

eigenvalues: returns eigenvalues and their muliplicity, e.g., [[1/3,1/2],[1,2]]

means eigenvalue 1/3 with multiplicity 1 and eigenvalue with multiplicity 2
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Theorem 3 and our example

• Comparison of the optimal value ω ≈ 1.147 which we
obtained and the corresponding value of ρ(Tω) ≈ 0.147
with the application of the forumla from p. 17:
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Exercise

• Repeat for another tridiagonal positive definite matrix:
◦ computation of the iterations
◦ spectral radius, the optimal choice of the parameter ω
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SOR method and pricing derivatives

• EXERCISES SESSION:
SOR method for solving the system of linear equations
arising in the implicit scheme
◦ practical implementation of a given ω
◦ choice of ω - numerical computation of the Jacobi

matrix spectrum, formulation of the theorem about its
spectrum and spectral radius

◦ optimal ω for different mesh grids - observations
• HOMEWORK 1:

Show that this matrix is positive definite.
(Hence the convergence theorems, which we have just
seen, apply to our problem.)
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Direct methods for solving systems of lin. eq.

• Direct methods for systems of linear equations - Gaussian
elimination methos and its modifications, LU decomposition

• Tridiagonal, diagonally dominant matrix ⇒ a convenient
way of solving the system is the LU decomposition

• HOMEWORK 2 - LU decomposition method
◦ What is the LU decomposition? How it can be used to

solve a system of linear equations?
◦ Show that the uniqueness of the decomposition follow

from the matrix being diagonally dominant.
◦ Why is this convenient, when solving a system with a

tridiagonal matrix? (you do not need to memorize the
formulae, but you need to show the principle of the
computation on an example and explain why we do not
obtain zeros in denumertors of fractions.)

References for HW2: e.g., [Ševčovič, Stehlíková, Mikula]
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Numerical solution

• Recall:
(

∂u

∂τ
−
σ2

2

∂2u

∂x2

)

(u(x, τ)− g(x, τ)) = 0,

∂u

∂τ
−
σ2

2

∂2u

∂x2
≥ 0, u(x, τ)− g(x, τ) ≥ 0

• Discretization - in the same way as in the implicit scheme
for European options:

Auj+1 ≥ uj + bj , uj+1 ≥ gj+1 for j = 0, 1, ...,m − 1,

(Auj+1 − uj − bj)i(u
j+1 − gj+1)i = 0 ∀ i
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Numerical solution

• Matrix A and vector b remain the same:

A =



















1 + 2γ −γ 0 · · · 0

−γ 1 + 2γ −γ
...

0 · · · 0
... −γ 1 + 2γ −γ

0 · · · 0 −γ 1 + 2γ



















,

bj = (γφj+1, 0, . . . , 0, γψj+1)T

where γ = σ2k
2h2
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PSOR method

• On each time level we solve a problem of the form

Au ≥ b, u ≥ g,

(Au− b)i(ui − gi) = 0 ∀ i.

• Define the sequence

u0 = 0, up+1 = max (Tωu
p + cω, g) for p = 1, 2, ...,

where Tω, cω come from the classical SOR method and
maaximum is taken componentwise

• Projected SOR → known as PSOR method or PSOR
algorithm
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PSOR method

• Components of the approximate solution:

u
p+1
i = max

[

ω

Aii



bi −
∑

j<i

Aiju
p+1
j −

∑

j>i

Aiju
p
j





+(1− ω)upi , gi

]
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Convergence of the algorithm to the solution

• The sequence up converges to some limit u - proof uses
Banach fixed point theorem [Ševčovič, Stehlíková, Mikula: Analytical

and numerical methods for pricing financial derivatives , pp. 156-157]

• This limit is a solution:
◦ u

p+1
i ≥ gi ⇒ also the limit satisfies ui ≥ gi

◦ u
p+1
i ≥ ω

Aii

(

bi −
∑

j<iAiju
p+1
j −

∑

j>iAiju
p
j

)

+(1− ω)upi ⇒ also the limit satisfies

ui ≥
ω
Aii

(

bi −
∑

j<iAijuj −
∑

j>iAiju
p
j

)

+ (1− ω)ui

we use that Aii > 0, ω > 0 → we obtain (Au)i ≥ bi

◦ if ui > gi , then starting with some index p0 we have
u
p
i > gi; for these indices:
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Convergence of the algorithm to the solution

u
p+1
i = ω

Aii

(

bi −
∑

j<iAiju
p+1
j −

∑

j>iAiju
p
j

)

+ (1− ω)upi ,

taking limit as p→ ∞ we get (Au)i = bi ⇒ condition
(Au− b)i(ui − gi) = 0 is satisfied
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Numerical examples

• Pricing American call and put options (for a comparison:
price of a European option - dotted line)
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Numerical examples

• 3D graph for a call option, the free is depicted:
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Numerical examples

• Numerical computation of the free boundary and its
comparison with the "square root approximation formula"
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Numerical examples

• M. Lauko, D. Ševčovič: Comparison of numerical and analytical

approximations of the early exercise boundary of American p ut options ,

ANZIAM journal 51, 2010, 430-448.

Comparison of approximation formulae for put options:
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