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Interest rate

* Assumptions in several models: the interest rate is
constant , for example when pricing a riskless portfolio in
the derivation of the Black-Scholes model (dP = rPdt)

* Reasonable in some cases, but not - for example - if the
derivative directly depends on the interest rate (bond,

swap, ...)
* What we need to model:
° the interest rate is not constant
° there are interest rates with different maturities
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Interest rates

* Example: Euribor (European Inter-Bank Offered Rate):
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Short rate models

e Short rate - it Is the instantaneous interest rate - interest
rate for an infinitesimally small time interval

* Theoretical variable, in practice we use a proxy (1 month, 3
months)

* Short rate models:
o Short rate r Is modelled by a stochastic differential
equation
dr = p(r,t)dt + o(r,t)dw

Terminology: wu(r,t) - drift, o(r, t) - volatility
© Other interest rates and derivatives - solving a partial
differential equation
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Mean-reversion models

* Mean-reversion - reverting to some long-term equilibrium
level

* This property in short rate models: the drift is taken to be
p(r,t) = k(6 — r)dt,

where «, 0 > 0 are constants
* ODE for the expected value E|r| (for a given r):

dE|r] = k(0 — Elr])dt + Elo(r,t)dw| = k(0 — E[r])dt,

its solution is: E[r;] = rge " + (1 — e )0

®* Therefore E[r] -0 ast —
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Mean-reversion models

* Sample solutions for selected r:

Expected value of the process
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What is 6? What parameter is different in these two cases?
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Mean-reversion models

* Example: dr = k(0 — r)dt 4+ odw Ornstein-Uhlenbeck
process, in finance known as Vasicek model

o Qldrich Alfons VasSicek
(born 1942) - a Czech
mathematician

° Emigrated to the USA In
1968

© 1969: employed in the
management science
department of Wells
Fargo Bank.

Photo: http://www.risk.net/risk-magazine/feature/1506410/presenting-risk-awards-2002
About Vasicek: http://www.risk.net/risk-magazine/feature/1506624/2002-winner-lifetime-
achievement-award-oldrich-alfons-vasicek
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Examples of one-tactor models

* Already mentioned Vasicek model
o Short rate: dr = k(60 — r)dt + odw

* Cox-Ingersoll-Ross:

© J.C. Cox., J. E. Ingersoll Jr, S. A. Ross, A theory of the term structure of
Interest rates, Econometrica (1985) 385-407.

o Shortrate: dr = k(0 — r)dt + o+/rdw
° Does not allow negative interest rates (historically a

motivation); intuitively: for » = 0, the volatility is zero
and the drift is positive

° It can be shown that if 2« > o2, then r = 0 has a zero
probability (intuition: SDE for y = In(r) and analysis of
the drift)

o Volatility depends on interest rate level
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Examples of one-tactor models

* Chan-Karolyi-Longstaff-Sanders:

© C. K. Chan, G. A. Karolyi, F A. Longstaff, A. B. Sanders, An empirical
comparison of alternative models of the short-term interest rate, The
Journal of Finance 47 (1992) 1209-1227.

o Short rate: dr = k(6 — r)dt + or”

a4

© VaSiCek a CIR are special cases (v = 0,7 = 1/2)

° They estimated a general model (optimal v turned out
to be 1.5) and tested v = 0,y = 1/2 as restrictions on
parameters — they were rejected

© Later many other studies of this kind (different data
sets, different statistical methods)
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Fokker-Planck PDE

* Fokker-Planck PDE - partial differential equation for the
density of probabillity distribution of the value of a
stochastic process

® OQut of curiosity:

©  Max Karl Ernst Ludwig Planck (1858-1947) was singing, playing the piano,
organ and cello, composed songs and opera, ... but he decided to study

physics
©  Adriaan Daniél Fokker (1887-1972) was interested in microtonal music,

proposed a 31-tonal organ which was exhibited in Teylers Museum v
Haarleme (the oldest museum in the Netherlands, Fokker was a curator of

the physical cabinet)
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Fokker-Planck PDE

A. D. Fokker and his organ:

This and other photos: http://www.huygens-fokker.org/instruments/fokkerorgan.htmi
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Fokker-Planck PDE

* Consider the following process
dr = p(x,t)dt + o(x,t)dw

and define g(x,t) as a conditional density of the value of
the process at time ¢ if the value z¢ at time ¢t = 0 is given

* THEOREM:

Then the function g(x, t) is a solution to the Fokker-Planck
PDE

89_182 2
5—5@(0 9)—%(,&9)

with initial condition g(x,0) = d(x — xo).

XIII. Short rate models: Evolution of the short rate — p. 12/30



Fokker-Planck PDE

Remark on function 6 from the initial condition - it is so called
Dirac function:

* Not a function is the classical sense

* [ntuition:
° function satisfying

5(z—10) = { 0 forx # xg | / §(w—0)dz = 1.

+o0  forx = xg N
° "density" of a random variable which takes the value zq
with probability 1
* We have: [7°_ d(z — x0) f(z)dzx = f(zo)

* |t can be defined in a mathematically precise way (we will
not do this)
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Fokker-Planck PDE

Intuitively - functions "converging" to a Dirac function:
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Fokker-Planck PDE: proot

°* LetV =V (x,t) be an arbitrary function with compact
support, i.e., Ve C§°(R x (0,7T))

* From lto lemma:

2 52
de(aV o 07V 8V) 2)%

E_F 5 —0$2 —|—,LL% dt + o—dW.,

ox

* Let E; Is the expected value with respect to the distribution
given by the density g(z, t)

* Then

oV 020°V oV
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Fokker-Planck PDE: proot

* We have V(z,0) =V (x,T) =0and V(z,t) =0for |[x| > R
where R > 0 is sufficiently large

* Integration per partes:
T d av 0c?9*V OV
0 = / —Et(V)dt—A Et ( a1 2 92 —|—,LL%) dt
0 292V oV
— / /( 5 2 +'LL8:13) g(z,t)dx dt

_ S .
= // a:t( +28x2 (c°g) (,%(,ug) dzx dt.

* Since V € C§°(R x (0,7")) was arbitrary, for the density
g = g(x,t) we obtain the Fokker-Planck equation
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Fokker-Planck PDE for the Vasicek model

Let x; be an Ornestein-Uhlenbeck/Vasicek process
* Constant at dw — we can expect normal distribution
* We have already computed the expected values
* We derive an equation for the variance:
%11) mi(t):=x0*exp(-kappa*t)+theta*(1-exp(-kappa*t)) %

%12) g(x,t):=exp(-(x-mi(t))"2/(2*¥s2(t)))/sqrt(2*%pi*s2(t));

[-(x-mimf]
exp

2s2(t)

N2 ns2(t)

%13) -diff(g(x,t),t)+
(sigma™2/2)*diff(g(x,1),x,2)+
kappa*g(x,t) -
kappa* (theta-x)*diff(agl(x,t),x) %

%02) glx, t):=

(Computations in the wx Maxi ma software: http://wxmaxima.sourceforge.net)
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Fokker-Planck PDE for the Vasicek model

* Factoring the expression:

factor(%) ;

(%04) - (x02-2% T x x0+2% T 0 x0-208x0+%e” T x2.2%e? T gx

d
s s2(t)+2 Kk s2(t)- o2

+2% T Bx+%e? T B2 2%e T 6%+0%- %2 T s2(t))
30 28402 %o % Tyxo %e XTHxo %e 2%T8xe x? % FTOx Bx e KTg2 me-2KTg2 -
- } - } - - } } - - -2K
oe 2s2(t) s2(t) sz2it) s2(t) 2s2(ty  s2(ty  s2{t)  sz2(t) 2s2(ty  2s2(t) )/

{23;‘2,\{? SE(t)E‘;z)

EE

* More clearly:

factor(%);

(%04) l

+2%eX T o x+%e?K T 62- 2%eX T 62+ 62- %2 T s2(t))

2 M T e %M T rxe %e KToxe e ?FTOxe x2 e FTOx Bx e ML ge - SHTgd <

Sl (x0%-2%e" T x x0+2%e" TOX0-26x0+%e7" T xZ- 2% T o x

(A

%e_ 2s2(t) s2(t)  s2(8)  s2(t)  2s2(t) s2(t)  s2At) s2(t)  2s2(t) _252(1'}_2

* This has to equal to zero
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Fokker-Planck PDE for the Vasicek model

* This expression has to be equal to zero = this holds if
s2'(t) + 2k s2(t) —0° =0

* Variance at time ¢t = 0 is zero = initial condition s2(0) = 0

e Solution:
2

s2(t) = ;—l{ (1 — 6_2’“)

® CONCLUSION:
Distribution of an Ornstein-Uhlenbeck process is a normal

distribution with expected value rge™"* + (1 — e **)f and
variance s2(t) = 2 (1 — e=2%t)
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Vasicek model: estimating parameters

* We have a time serie of interest rate (proxy for the short
rate) — we want to estimate the parameters of the Vasicek
model

* Knowledge of the conditional distribution allows us to
construct the likelihood function for the given values of the
Interest rate rq,rs, ..., r, observed in the market:

n—1
L= 1] frivalrs)
i=1

* Maximizing L (equivalently, its logarithm) yields estimates
of the parameters

* Vasicek model: functions f are normal distribution
densities; it is possible to find closed form expressions for
the estimates; we will use then on exercises session ,
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CKLS model: estimating parameters

* Recall that dr = k(0 — r)dt + or?

* Conditional distribution known only for v = 1/2; even that
guite complicated — approximation of the likelihood:

° The volatility or” on time interval [t,t + At) between
two observations is approximated by its value in time ¢

° In this approximation, volatility on [t,t + At) is constant
— normal distribution

o Known as Nowman’s Gaussian estimates (since based
on Gaussian approximation

* Maximum likelihood estimates — testing hyptheses using
likelihood ratio test
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CKLS model: estimating parameters - example

Athanasios Episcopos: Further evidence on alternative continuous time models of
the shortterm interest rate, Journal of International FinancialMarkets, Institutions

andMoney Volume 10, Issue 2, June 2000, pp. 199-212

* Estimates for 10 countries (general CKLS model and
several restrictions given by existing models)

* Next page: example for the USA ((data: 1/1986 - 4/1998,
148 observations)
* We go through the procedure of testing Vasicek and CIR

model as restrictions of the CKLS model (computation of
the test statistics and corresponding p-value)
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CKLS model: estimating parameters - example

Results for the USA:

Model® % p a? » Avg. Log L 1>-test® df
Unrestricted 0.0013 —0.0234 0.0001 0.4239 5.1768
(1.4696) (—1.5710) (1.0309) (2.5099)
Vasicek 0.0013 —0.0235 0.0000 0 5.1569 5.8655 1
(4.3499) (—5.6112)  (16.1077) (0.0154)
CIR SR 0.0013 —0.0241 0.0002 0.5 5.1761 0.201 1
(4.6916) (—5.8893)  (13.0558) (0.6539)
BR-SC 0.0014 —0.0255 0.0038 1 5.1365 11.8748 1
(6.1214) (—61221)  (14.973%) (0.0006)
CIR VR 0 0 0.0794 1.5 5.0220 45.529 3
(21.0933) (0.0000)
CEV 0 —0.003 0.0001 0.4063 5.1705 1.8477 1
(—0.6401)  (24.7981) (31.0657) (0.1740)
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Fokker-Planck PDE: limiting distribution

* EXAMPLE: Ornestein-Uhlenbeck process - densities for a
given xy and a couple of times ¢:
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Fokker-Planck PDE: limiting distribution

* Densities converge to a certain limiting distribution

* Ast — oo, we have:
E:?“t

D :’I“t
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Fokker-Planck PDE: limiting distribution

* EXAMPLE: Ornestein-Uhlenbeck process - densities for a
given xy and a couple of times ¢ (from the previous plot)
and the limiting density (black line):
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Fokker-Planck PDE: limiting distribution

* We do not need the conditional distributions to compute
the limining distribution (this is often complicated)
* Direct computation from the Fokker-Planck PDE:

° we know that the density g(x,t) for time ¢ satisfies the
PDE

dg 1 0% | 0
5—5@(0 9)—%(,“9)
o consider limit f(z) := lim;_,~ g(x,1)
o this limit then satisfies the stationary Fokker-Planck
equation:
1 d* , d
0—5@(0 f)—@(ﬂf)

with a normalization condition (it is a density function)

ffooo flx)dx =1
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Fokker-Planck PDE: limiting distribution

ExAMPLE: CIR model for interest rates

* Recall the stochastic differential equation for the short rate
dr = k(0 — x)dt + o+/xdw

° Let 2k > o2 (then the zero value cannot be achieved)
* Density g(x,t) at time ¢ satisfies the PDE

dg 1 0? 0
ot 20x2 (U g) oz (16 = z)g)

with initial condition

g(x,0) = 6(x — o)

* There is an explicit expression for g(x, t),but it is quite
complicated (noncentral chi-squared distribution, modified

Bessel function)
|
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Fokker-Planck PDE: limiting distribution

EXAMPLE - CONTINUED:
* Explicit solution (without a proof):

(V)

g(z,t) =ce " (—)W 1,(2v/uv),

u

(for x > 0, otherwise g(x,t) = 0), where I, is a modified
Bessel function of the first kind of order ¢ and

2K
c = 3 l
o?(1 — e rt)
u = cxge ™
v = cx

* Complicated, but limiting distribution can be found also
without a knowlenge of this conditional distribution
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Fokker-Planck PDE: limiting distribution

EXAMPLE - CONTINUED:

* Limiting density f(z) := lim;_~ g(x, t) satisfies stationary
Fokker-Planck equation: (for x > 0, otherwise it is zero
since the process never has negative values)

1 d? d
0= 35— (o°2f) = — (k(0 — 2))

x dzx
* HOMEWORK: Integrating gives

flx) = K por—lg—3a

* Constant K is computed from the condition [~ f(z)dz =1

* Note that this is a density of a gamma distribution
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Interest rates

e Sa far we modelled the instantaneous interest rate

e Now: interest rates with different maturities
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Bonds

* Bond

© a security that in the predetermined time (called
maturity of the bond) pays a predetermined amount of
money - WLOG we take 1 USD

° P(t,T) = bond price at time ¢ , if its maturity is at time
T
° R(t,T) = interest rate with maturity 7' at time ¢

°o Relation between them:

log P(t,T)

P, T) = e BEDT=) o Rt T) = — o

* In short rate models: bond price P is a solution to a PDE,
P = P(r,t,T)
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PDE for the bond price: derivation

e SDE for the short rate:

dr = u(t,r)dt + o(t,r)dw

* Consider a bond with maturity 7", then from Ito:

oP oP o” 82 oOP
~ — N——
KB (t,’l“) o5 (t,?“)

e Portfolio: 1 bond with maturity 73 and A bonds with
maturity 75; its value:

II = P(T,t,Tl) + AP(T,t,Tg)
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PDE for the bond price: derivation

* Change in the portfolio value:

dll = dP(r,t,Th) + AdP(r,t,T5)
— (/“LB('rataTl) T AMB(T7t7T2)) dt
+(op(r,t,T1) + Aop(r,t,T3)) dw

* We eliminate the randomness - by taking

UB(ta r, Tl)

A= —
UB(t,T,T2)7

then

t,r, T
dH = (ILLB(t,T,Tl) — UB( Ak 1)

t.r. 1T dt
op(t,r, T2)MB( " 2)>
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PDE for the bond price: derivation

* Yield of a riskless portfolio has to be » (instantaneous
Interest rate), I.e. dII = rlldt:

OB (ta r, Tl)
OB (ta r, T2)

,LLB(ta,ra Tl) — /LB(t7T7 TQ) = rll

® Substituting:

O'B(t,T, Tl)
t.r.17) — t.r.I:
:uB( , T 1) UB(t,T,TQ)MB( 5 T 2)
pit.r 1) — BT T by gy
=r r — r
s Iy L] O'B(t,T, T2) s Iy L2
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PDE for the bond price: derivation

* Maturities 77,75 were arbitrary, hence there must be
A = A(r,t) such that for all ¢:

up(r,t,T) —rP(r,t,T)
O-B(Tat7T)

Ar,t) =

* Function A = X(r, t) does not depend on the maturity T’ it
IS called market price of risk

* CoNcLuUsIoN: PDE for the bond price P = P(r,t) is

0P OP  o%(r,t) 0*P
5 + (u(r,t) — Xr, t)o(r, t))a + 5 92 rP =0.

for r € (0,00),t € (0,7) with terminal condition
P(r,T) =1 forr € (0, 00)
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Closed form solutions

* Closed form solutions for the bond price
° Vasicek model with market price of risk A(r,t) = A

° CIR model with market price of risk \(r,t) = A\y/r
* We are looking for a solution in the form

P(r,7) = A(r)e BT

where r =T —t

* Substituting into the PDE = we obtain a system of ordinary
differential equations for the functions A(7), B(7) = this
system can be solved explicitly

XIV. Short rate models: Pricing bonds in short rate models — p. 8/19



Vasicek model

* System of ODEs:
. 0'2
— A+ 7AB2 — (k) —Xo)AB = 0
B+kB—-1 = 0

with initial conditions A(0) =1, B(0) =0
* Functions A, B:

1 . e—FLT
B(+) —
M=
1 —KT 02 —KRT\2
log A(T) = E(l—e ) —T Roo—4—ﬁ;3(1—e ),

where R, = 0 — 22 — &

% 2K2
* We have: R, Is the limit of term structures as = — oo
|
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Shapes of the term structures

=< inverse

Yield

\
R

humped

=t

normal

Time to Matunty

M. Keller-Ressel, T. Steiner: Yield Curve Shapes and the Asymptotic Short Rate
Distribution in Affine One-Factor Models - shapes in a general 1-factor model
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Calibration: Euribor, 2011
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CIR model

* System of ODEs:
A+ kOAB = 0,

2
B—|—(/€—|—)\U)B—|—%B2—1

|
o

with initial conditions A(0) =1, B(0) =0
* Functions A, B:

2 (e?” — 1)

SRR T )

2pe(P+¥)T/2 o2
(¢ +)(e?” — 1) + 2¢) ’

where o = k + Ao, ¢ = \/¥? + 202 = \/(k + \o)2 + 202.

Ar) = (
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(General one-factor model

* |n general, a closed form solution does not exist

* Numerical solution of the PDE, analytical approximate
formulae, Monte Carlo simulations

* Examples (related to my research in this area):

© Y. Choi, T. Wirjanto, : An analytic approximation formula for pricing

zero- coupon bonds , Finance Research Letters 4 (2007), pp. 116-126.

B. Stehlikova, D. Sevéovi: Approximate formulae for pricing
zero-coupon bonds and their asymptotic analysis. International Journal
of Numerical Analysis and Modeling, 6(2) 2009, 274-283.

© T. Chernogorova, B. Stehlikova: A Comparison of Asymptotic Analytical
Formulae with Finite-Difference Approximations for Prici ng Zero
Coupon Bond . Numerical Algorithms 59 (4), 2012, pp. 571-588.

©  B. Stehlikova, L. Capriotti: An Effective Approximation for Zero Coupon
Bonds and Arrow-Debreu Prices in the Black-Karasinki Model :
International Journal of Theoretical and Applied Finance 17 (6), 2014.
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Multi-factor models

* Motivation:

© term structure is not uniguely determined by the short
rate

© a wider variety term structure shapes

°© modelling the short rate itself (interpretation of the
factors)
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Convergence models

* Domestic interest rate before entering a monetary union - it
IS Influenced by interest rates in the monetary union

* Example: Slovakia before adopting euro

110, 2008 - 31 12, 2008, Brit-or and Eonia

“DiktoR o deca janid
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Convergence models

* First model:
T. Corzo and E. S. Schwartz: Convergence within the European Union:
Evidence from interest rates . Econom. Notes 29, 2000, 243-268.

* From the research at our department:
Z. Zikova, B. Stehlikova: Convergence model of interest rates of CKLS type
Kybernetika 48, 2012, 567-586
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Short rate as a sum of two factors

* Short rate as a sum of two factors, each of them modelled
by a stochastic differential equation (e.g., of Vasicek or CIR

type)

* Application:
L. Sestak: Mathematical Analysis and Calibration of a Multifactor Pan el
Model for Credit Spreads and Risk-free Interest Rate , Dissertation thesis,
FMFI UK, 2012

r=r" 4o

where "/ is risk-free rate (common for all the countries)
and r<? Is credit spread (individual for each of the
countries)
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Short rate as a sum of two factors

HRigk-free rate and cre dit spreads
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Two-tactor models: pricing derivatives

* Basic principle:
° Model for the short rate: » = r(z, y), where z, y are the
factors satisfying the system of SDEs

dr = pgz(x,y,t)dt + o.(x,y,t)dw
dy = py(x,y,t)dt + oy(z,y,t)dw

correlation: E|dz dy] = p dt
° Bond price: P = P(z,y,t)
° PDE for P(x,y,t): again a portfolio containing bonds

with different maturities (now three), their amounts
chosen such that obtain a riskless portfolio
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