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Exotic options

• Path-dependent options - payoff depends not only on the
value of the underlying asset at the expiration time, but
also on its evolution (path) before the expiration time

• Lowers the risk coming from sudden changes in prices
• Extra credit 2013, the price rose during the last day before

the expiration of the options:

http://finance.google.com/
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Asian options

• Payoff depends on historical average of stock prices
• Classification of Asian options:

◦ based on averaging - arithmetic or geometric average
◦ based on position of the average in the payoff - can

take the role of the stock price or the exercise price
• Average:

◦ arithmetic:
discrete case At =

1
n

∑n
i=1 Sti

continuous case At =
1
t

∫ t

0 Sτdτ

◦ geometric:
discrete case lnAt =

1
n

∑n
i=1 lnSti

continuous case lnAt =
1
t

∫ t

0 lnSτdτ
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Asian options

Stock price and its average (dashed line):
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Asian options

• Position of the average in the payoff
◦ the average price A enters the payoff taking the role of

the stock price - the option is called average rate call,
resp. put :

V (S,A, T ) = max(A−E, 0) for a call
V (S,A, T ) = max(E −A, 0) for a put

◦ the average price A enters the payoff taking the role of
the exercise price - the option is called average strike
call, resp. put :

V (S,A, T ) = max(S − A, 0) for a call
V (S,A, T ) = max(A− S, 0) for a put

• So we have, for example:
◦ Asian arithmetically averaged average rate call option,
◦ Asian geometrically averaged average strike put option
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Differential of the averaged price

• We will use continuous time
• Arithmetic average:

dA

dt
= −

1

t2

∫ t

0
Sτdτ +

1

t
St =

St − At

t

• Geometric average:

dA

dt
= At

[

−
1

t2

∫ t

0
lnSτdτ +

1

t
lnSt

]

= At
lnSt − lnAt

t

• In both cases:

dA = A f

(

S

A
, t

)

dt,

where f(x, t) = (x− 1)/t, resp. f(x, t) = (lnx)/t
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PDE for the Asian option price

• Geometric Brownian motion for the stock price
dS = µSdt+ σSdw, stock pays continuous dividends with
rate D

• Option price V = V (S,A, t):

dV =
∂V

∂S
dS +

(

∂V

∂t
+

σ2

2
S2

∂2V

∂S2
+

∂V

∂A
Af

(

S

A
, t

))

dt

• As in the case of the Black-Scholeso model:
◦ portfolio: option + stocks
◦ elimination the random part of the SDE for the portfolio

value
◦ yield of a riskless portfolio has to be equal to r (riskless

instantaneous interest rate)
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PDE for the Asian option price

• Resulting PDE for the Asian option price V (S,A, t):

∂V

∂t
+

σ2

2
S2

∂2V

∂S2
+ (r −D)S

∂V

∂S
+Af

(

S

A
, t

)

∂V

∂A
− rV = 0

for S ∈ (0,∞), A ∈ (0,∞), t ∈ (0, T )
• Terminal condition depends on the option, e.g.,

V (S,A, T ) = max(S − A, 0)

for S ∈ (0,∞), A ∈ (0,∞)
• Three variables, but only one derivative of the second order

→ the PDE is not in a suitable form for finding a numerical
scheme → for average strike option we perform a
transformation
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Transformation for average strike options

• Transformation:

V (S,A, t) = AW (x, t), x =
S

A

• PDE for the function W (x, t):

∂W

∂t
+
σ2

2
x2

∂2W

∂x2
+(r−D)x

∂W

∂x
+f(x, t)

(

W − x
∂W

∂x

)

−rW = 0

for x ∈ (0,∞), t ∈ (0, T )
• Terminal condition for x ∈ (0,∞):

W call(x, T ) = max(x− 1, 0), W put(x, T ) = max(1− x, 0)
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Average strike option - example

• Auxiliary function W (x, t):
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Average strike option - example

• Option price V (S,A, t) for selected t:
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Barrier options

• Similar to classical call and put options
• The difference: if at some time of the life of the options the

stock price hits the given barrier, then:
◦ the option is no longer valid
◦ the option holder receives rebate from the writer

• Example: stock price (blue), barrier (brown)
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Barrier options - barrier and rebate

• Classification of barriers:
◦ down-and-out: if the stock price hits the barrier from

above
◦ up-and-out: if the stock price hits the barrier from below

• A typical example of a barrier:

B(t) = bEe−α(T−t),

where 0 < b ≤ 1, α ≥ 0 are constants
• Example of a rebate:

R(t) = E
(

1− e−β(T−t)
)

,

where β ≥ 0 is a constant - satisfies R(T ) = 0
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PDE for a down-and-out option

• Option is valid in the domain S > B(t) - here, the
Black-Scholes PDE holds:

∂V

∂t
+
1

2
σ2S2

∂2V

∂S2
+ (r −D)S

∂V

∂S
− rV = 0

for S ∈ (B(t),∞), t ∈ (0, T ).
• On the boudary, i.e., for S = B(t) - the option is cancelled

and its value equals the rebate:

V (B(t), t) = R(t)

for t ∈ (0, T ).
• Terminal condition for S ∈ (B(t),∞), t = T depends on the

option type:

V call(S, T ) = max(0, S − E), V put(S, T ) = max(0, E − S)
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PDE for a down-and-out option

• Transformation to a fixed domain x ∈ (0,∞):

V (S, t) =W (x, t), x = ln

(

S

B(t)

)

,

• PDE for the function W :

∂W

∂t
+
1

2
σ2

∂2W

∂x2
+

(

r −D −
σ2

2
− α

)

∂W

∂x
− rW = 0

for x ∈ (0,∞), t ∈ (0, T ).
• Boundary condition: W (0, t) = R(t) pre t ∈ (0, T ).
• Terminal condition:

V call(x, T ) = Emax(0, bex − 1)
V put(x, T ) = Emax(0, 1− bex)

for x ∈ (0,∞).
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Up-and-out option: homework

• Write the mathematical formulation of pricing an
up-and-out option: PDE (and its domain), boundary
condition, terminal condition

• Transform it to a PDE on a fixed domain
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Barrier options: example

• Price of a barrier option:
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Barrier options: interactive

• Web page:
http://demonstrations.wolfram.com/BarrierOptionPricingWithinTheBlackScholesModel/

• Requires the player, available at:
http://demonstrations.wolfram.com/download-cdf-player.html
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Basket options, options on indices, etc.

• Payoff of the option depends on the value of several assets
or on the value of an index

• EXAMPLE 1: spread options - payoff depends on a
difference between values of two assets at the expiration
time, e.g.,

V (S1, S2, T ) = max((S1 − S2)− E, 0)

- useful for example for commodities (prices of an input
and an output)

• EXAMPLE 2: options on indices - for example S&P 500,
NYSE, ...
If each stock follows a GBM, we obtain n-dimensional
Black-Scholes equation (n = number of stock in the index)
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Basket options, options on indices, etc.

• Trading S&P 500 options:

http://www.cboe.com/
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Lookback options

• Lookback options - payoff depends on the maximal price of
the underlying asset during the given period

M =MT
T0
= max(St, t ∈ [T0, T ]),

where T ≥ 0
• For example: maximum M instead of the stock price on the

payoff:

V call(S,M, T ) = max(0,M − E)

V put(S,M, T ) = max(0, E −M)
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Spread options: Margrabe formula

• Recall: spread options

V (S1, S2, T ) = max((S1 − S2)− E, 0)

• Suppose that the stocks do not pay dividends and that

dS1 = µ1S1dt+ σ1S1dw1

dS2 = µ2S2dt+ σ2S2dw2

where E[dw1dw2] = ρdt

• For the case of E = 0 there is an explicit formula for the
option price - co called Margrabe formula

• We derive the PDE for the option price and find its solution
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Spread options: Margrabe formula

• Similarly as in the derivation of the Black-Scholes model
• Portfolio:

◦ one option V
◦ −∆1 stocks S1
◦ −∆2 stocks S2

Portfolio value: P = V −∆1S1 −∆2S2
• Change in the pofolio value P = dV −∆1dS1 −∆2dS2,

where
◦ dS1, dS2 are in the assumptions
◦ dV is given by the multidimensional Itō lemma (since

V = V (S1, S2, t))
• We eliminate randomness (terms dw1, dw2) - by setting
∆1 =

∂V
∂S1

, ∆2 = ∂V
∂S2

• Yield of a riskless portfolio has to be r
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Spread options: Margrabe formula

• The resulting PDE:

∂V

∂t
+ rS1

∂V

∂S1
+ rS2

∂V

∂S2
+
1

2
σ21S

2
1

∂2V

∂S21
+
1

2
σ22S

2
2

∂2V

∂S22

+ρσ1σ2S1S2
∂2V

∂S1S2
− rV = 0

with terminal condition

V (S1, S2, T ) = max(S1 − S2, 0)

• Transformation:

V (S1, S2, t) = S2f(x, t), x =
S1
S2
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Spread options: Margrabe formula

• PDE for the function f(x, t):

∂f

∂t
+
1

2
σ̃2x2

∂2f

∂x2
= 0,

kde σ̃2 = σ21 + σ22 − 2ρσ1σ2
• Terminal condition f(x, T ) = max(x− 1, 0)
• This is the Black-Scholes PDE for a call, where

◦ the variable x corresponds to the stock price S
◦ exercise price E = 1
◦ interest rate is zero

• Hence, the solution is: f(x, t) = xN(d1)−N(d2), where

d1 =
log x+ σ̃

2

2
τ

σ̃
√

τ
, d2 = d1 − σ̃

√
τ
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Spread options: Margrabe formula

• Solution in the original variables (i.e., the spread option
price):

V (S1, S2, t) = S1N(d1)− S2N(d2),

where

d1 =
log S1

S2
+ σ̃2

2 τ

σ̃
√
τ

, d2 = d1 − σ̃
√
τ

- this is known as Margrabe formula
• HOMEWORK: Derive the spread option price, if the stocks

pay continuous dividends with rates q1, q2.
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