XV. Pricing exotic derivatives

Beáta Stehlíková
Financial derivatives

Faculty of Mathematics, Physics and Informatics
Comenius University, Bratislava

Exotic options

- Path-dependent options - payoff depends not only on the value of the underlying asset at the expiration time, but also on its evolution (path) before the expiration time
- Lowers the risk coming from sudden changes in prices
- Extra credit 2013, the price rose during the last day before the expiration of the options:

Asian options

- Payoff depends on historical average of stock prices
- Classification of Asian options:
- based on averaging - arithmetic or geometric average
- based on position of the average in the payoff - can take the role of the stock price or the exercise price
- Average:
- arithmetic: discrete case $A_{t}=\frac{1}{n} \sum_{i=1}^{n} S_{t_{i}}$ continuous case $A_{t}=\frac{1}{t} \int_{0}^{t} S_{\tau} d \tau$
- geometric: discrete case $\ln A_{t}=\frac{1}{n} \sum_{i=1}^{n} \ln S_{t_{i}}$
continuous case $\ln A_{t}=\frac{1}{t} \int_{0}^{t} \ln S_{\tau} d \tau$

Asian options

Stock price and its average (dashed line):

Asian options

- Position of the average in the payoff
- the average price A enters the payoff taking the role of the stock price - the option is called average rate call, resp. put :

$$
\begin{aligned}
& V(S, A, T)=\max (A-E, 0) \text { for a call } \\
& V(S, A, T)=\max (E-A, 0) \text { for a put }
\end{aligned}
$$

- the average price A enters the payoff taking the role of the exercise price - the option is called average strike call, resp. put :

$$
\begin{aligned}
& V(S, A, T)=\max (S-A, 0) \text { for a call } \\
& V(S, A, T)=\max (A-S, 0) \text { for a put }
\end{aligned}
$$

- So we have, for example:
- Asian arithmetically averaged average rate call option,
- Asian geometrically averaged average strike put option

Differential of the averaged price

- We will use continuous time
- Arithmetic average:

$$
\frac{d A}{d t}=-\frac{1}{t^{2}} \int_{0}^{t} S_{\tau} d \tau+\frac{1}{t} S_{t}=\frac{S_{t}-A_{t}}{t}
$$

- Geometric average:

$$
\frac{d A}{d t}=A_{t}\left[-\frac{1}{t^{2}} \int_{0}^{t} \ln S_{\tau} d \tau+\frac{1}{t} \ln S_{t}\right]=A_{t} \frac{\ln S_{t}-\ln A_{t}}{t}
$$

- In both cases:

$$
d A=A f\left(\frac{S}{A}, t\right) d t
$$

where $f(x, t)=(x-1) / t$, resp. $f(x, t)=(\ln x) / t$

PDE for the Asian option price

- Geometric Brownian motion for the stock price $d S=\mu S d t+\sigma S d w$, stock pays continuous dividends with rate D
- Option price $V=V(S, A, t)$:

$$
d V=\frac{\partial V}{\partial S} d S+\left(\frac{\partial V}{\partial t}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+\frac{\partial V}{\partial A} A f\left(\frac{S}{A}, t\right)\right) d t
$$

- As in the case of the Black-Scholeso model:
- portfolio: option + stocks
- elimination the random part of the SDE for the portfolio value
- yield of a riskless portfolio has to be equal to r (riskless instantaneous interest rate)

PDE for the Asian option price

- Resulting PDE for the Asian option price $V(S, A, t)$:

$$
\begin{aligned}
& \frac{\partial V}{\partial t}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+(r-D) S \frac{\partial V}{\partial S}+A f\left(\frac{S}{A}, t\right) \frac{\partial V}{\partial A}-r V=0 \\
& \text { for } S \in(0, \infty), A \in(0, \infty), t \in(0, T)
\end{aligned}
$$

- Terminal condition depends on the option, e.g.,

$$
V(S, A, T)=\max (S-A, 0)
$$

$$
\text { for } S \in(0, \infty), A \in(0, \infty)
$$

- Three variables, but only one derivative of the second order \rightarrow the PDE is not in a suitable form for finding a numerical scheme \rightarrow for average strike option we perform a transformation

Transformation for average strike options

- Transformation:

$$
V(S, A, t)=A W(x, t), \quad x=\frac{S}{A}
$$

- PDE for the function $W(x, t)$:

$$
\begin{aligned}
& \frac{\partial W}{\partial t}+\frac{\sigma^{2}}{2} x^{2} \frac{\partial^{2} W}{\partial x^{2}}+(r-D) x \frac{\partial W}{\partial x}+f(x, t)\left(W-x \frac{\partial W}{\partial x}\right)-r W=0 \\
& \text { for } x \in(0, \infty), t \in(0, T)
\end{aligned}
$$

- Terminal condition for $x \in(0, \infty)$:

$$
W^{\text {call }}(x, T)=\max (x-1,0), \quad W^{\text {put }}(x, T)=\max (1-x, 0)
$$

Average strike option - example

- Auxiliary function $W(x, t)$:

Average strike option - example

- Option price $V(S, A, t)$ for selected t :

Barrier options

- Similar to classical call and put options
- The difference: if at some time of the life of the options the stock price hits the given barrier, then:
- the option is no longer valid
- the option holder receives rebate from the writer
- Example: stock price (blue), barrier (brown)

Barrier options - barrier and rebate

- Classification of barriers:
- down-and-out: if the stock price hits the barrier from above
- up-and-out: if the stock price hits the barrier from below
- A typical example of a barrier:

$$
B(t)=b E e^{-\alpha(T-t)}
$$

where $0<b \leq 1, \alpha \geq 0$ are constants

- Example of a rebate:

$$
R(t)=E\left(1-e^{-\beta(T-t)}\right),
$$

where $\beta \geq 0$ is a constant - satisfies $R(T)=0$

PDE for a down-and-out option

- Option is valid in the domain $S>B(t)$ - here, the Black-Scholes PDE holds:

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+(r-D) S \frac{\partial V}{\partial S}-r V=0
$$

for $S \in(B(t), \infty), t \in(0, T)$.

- On the boudary, i.e., for $S=B(t)$ - the option is cancelled and its value equals the rebate:

$$
V(B(t), t)=R(t)
$$

for $t \in(0, T)$.

- Terminal condition for $S \in(B(t), \infty), t=T$ depends on the option type:

$$
V^{\text {call }}(S, T)=\max (0, S-E), \quad V^{\text {put }}(S, T)=\max (0, E-S)
$$

PDE for a down-and-out option

- Transformation to a fixed domain $x \in(0, \infty)$:

$$
V(S, t)=W(x, t), \quad x=\ln \left(\frac{S}{B(t)}\right)
$$

- PDE for the function W :

$$
\frac{\partial W}{\partial t}+\frac{1}{2} \sigma^{2} \frac{\partial^{2} W}{\partial x^{2}}+\left(r-D-\frac{\sigma^{2}}{2}-\alpha\right) \frac{\partial W}{\partial x}-r W=0
$$

for $x \in(0, \infty), t \in(0, T)$.

- Boundary condition: $W(0, t)=R(t)$ pre $t \in(0, T)$.
- Terminal condition:

$$
\begin{aligned}
& V^{\text {call }}(x, T)=E \max \left(0, b e^{x}-1\right) \\
& V^{\text {put }}(x, T)=E \max \left(0,1-b e^{x}\right)
\end{aligned}
$$

for $x \in(0, \infty)$.

Up-and-out option: homework

- Write the mathematical formulation of pricing an up-and-out option: PDE (and its domain), boundary condition, terminal condition
- Transform it to a PDE on a fixed domain

Barrier options: example

- Price of a barrier option:

Barrier options: interactive

- Web page:
http://demonstrations.wolfram.com/BarrierOptionPricingWithinTheBlackScholesModel/
- Requires the player, available at:
http://demonstrations.wolfram.com/download-cdf-player.html

Basket options, options on indices, etc.

- Payoff of the option depends on the value of several assets or on the value of an index
- EXAMPLE 1: spread options - payoff depends on a difference between values of two assets at the expiration time, e.g.,

$$
V\left(S_{1}, S_{2}, T\right)=\max \left(\left(S_{1}-S_{2}\right)-E, 0\right)
$$

- useful for example for commodities (prices of an input and an output)
- Example 2: options on indices - for example S\&P 500, NYSE, ...
If each stock follows a GBM, we obtain n-dimensional Black-Scholes equation ($n=$ number of stock in the index)

Basket options, options on indices, etc.

- Trading S\&P 500 options:

http://www.cboe.com/

Lookback options

- Lookback options - payoff depends on the maximal price of the underlying asset during the given period

$$
M=M_{T_{0}}^{T}=\max \left(S_{t}, t \in\left[T_{0}, T\right]\right),
$$

where $T \geq 0$

- For example: maximum M instead of the stock price on the payoff:

$$
\begin{aligned}
& V^{\text {call }}(S, M, T)=\max (0, M-E) \\
& V^{p u t}(S, M, T)=\max (0, E-M)
\end{aligned}
$$

Spread options: Margrabe formula

- Recall: spread options

$$
V\left(S_{1}, S_{2}, T\right)=\max \left(\left(S_{1}-S_{2}\right)-E, 0\right)
$$

- Suppose that the stocks do not pay dividends and that

$$
\begin{aligned}
& d S_{1}=\mu_{1} S_{1} d t+\sigma_{1} S_{1} d w_{1} \\
& d S_{2}=\mu_{2} S_{2} d t+\sigma_{2} S_{2} d w_{2}
\end{aligned}
$$

where $\mathbb{E}\left[d w_{1} d w_{2}\right]=\rho d t$

- For the case of $E=0$ there is an explicit formula for the option price - co called Margrabe formula
- We derive the PDE for the option price and find its solution

Spread options: Margrabe formula

- Similarly as in the derivation of the Black-Scholes model
- Portfolio:
- one option V
- $-\Delta_{1}$ stocks S_{1}
- $-\Delta_{2}$ stocks S_{2}

Portfolio value: $P=V-\Delta_{1} S_{1}-\Delta_{2} S_{2}$

- Change in the pofolio value $P=d V-\Delta_{1} d S_{1}-\Delta_{2} d S_{2}$, where
- $d S_{1}, d S_{2}$ are in the assumptions
- $d V$ is given by the multidimensional Itō lemma (since $\left.V=V\left(S_{1}, S_{2}, t\right)\right)$
- We eliminate randomness (terms $d w_{1}, d w_{2}$) - by setting $\Delta_{1}=\frac{\partial V}{\partial S_{1}}, \Delta_{2}=\frac{\partial V}{\partial S_{2}}$
- Yield of a riskless portfolio has to be r

Spread options: Margrabe formula

- The resulting PDE:

$$
\begin{gathered}
\frac{\partial V}{\partial t}+r S_{1} \frac{\partial V}{\partial S_{1}}+r S_{2} \frac{\partial V}{\partial S_{2}}+\frac{1}{2} \sigma_{1}^{2} S_{1}^{2} \frac{\partial^{2} V}{\partial S_{1}^{2}}+\frac{1}{2} \sigma_{2}^{2} S_{2}^{2} \frac{\partial^{2} V}{\partial S_{2}^{2}} \\
+\rho \sigma_{1} \sigma_{2} S_{1} S_{2} \frac{\partial^{2} V}{\partial S_{1} S_{2}}-r V=0
\end{gathered}
$$

with terminal condition

$$
V\left(S_{1}, S_{2}, T\right)=\max \left(S_{1}-S_{2}, 0\right)
$$

- Transformation:

$$
V\left(S_{1}, S_{2}, t\right)=S_{2} f(x, t), \quad x=\frac{S_{1}}{S_{2}}
$$

Spread options: Margrabe formula

- PDE for the function $f(x, t)$:

$$
\frac{\partial f}{\partial t}+\frac{1}{2} \tilde{\sigma}^{2} x^{2} \frac{\partial^{2} f}{\partial x^{2}}=0,
$$

kde $\tilde{\sigma}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}$

- Terminal condition $f(x, T)=\max (x-1,0)$
- This is the Black-Scholes PDE for a call, where
- the variable x corresponds to the stock price S
- exercise price $E=1$
- interest rate is zero
- Hence, the solution is: $f(x, t)=x N\left(d_{1}\right)-N\left(d_{2}\right)$, where

$$
d_{1}=\frac{\log x+\frac{\tilde{\sigma}_{2}^{2}}{2} \tau}{\tilde{\sigma} \sqrt{\tau}}, d_{2}=d_{1}-\tilde{\sigma} \sqrt{\tau}
$$

Spread options: Margrabe formula

- Solution in the original variables (i.e., the spread option price):

$$
V\left(S_{1}, S_{2}, t\right)=S_{1} N\left(d_{1}\right)-S_{2} N\left(d_{2}\right),
$$

where

$$
d_{1}=\frac{\log \frac{S_{1}}{S_{2}}+\frac{\tilde{\sigma}^{2}}{2} \tau}{\tilde{\sigma} \sqrt{\tau}}, d_{2}=d_{1}-\tilde{\sigma} \sqrt{\tau}
$$

- this is known as Margrabe formula
- Homework: Derive the spread option price, if the stocks pay continuous dividends with rates q_{1}, q_{2}.

