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Abstract. We analyze analytic approximation formulae for pricing zero-

coupon bonds in the case when the short-term interest rate is driven by a

one-factor mean-reverting process with a volatility nonlinearly depending on

the interest rate itself. We derive the order of accuracy of the analytical ap-

proximation due to Choi and Wirjanto. We furthemore give an explicit formula

for a higher order approximation and we test both approximations numerically

for a class of one-factor interest rate models.
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1. Introduction

Term structure models give the dependence of time to maturity of a discount
bond and its present price. One-factor models are often formulated in terms of
a stochastic differential equation for the instantaneous interest rate (short rate).
In the theory of nonarbitrage term structure models the bond prices (yielding the
interest rates) are given by a solution to a parabolic partial differential equation.
The stochastic differential equation for the short rate is specified either under a
real (observed) probability measure or risk-neutral one. A risk-neutral measure is
an equivalent measure such that the derivative prices (bond prices in particular)
can be computed as expected values. If the short rate process is considered with a
real probability measure, a function λ describing the so-called market price of risk
has to be provided. The volatility part of the process is the same for both real and
risk-neutral specification of the process. The changes in the drift term depend on
the so called market price of risk function λ.

It is often assumed that the short rate evolves according to the following mean
reverting stochastic differential equation

(1) dr = (α + βr)dt + σrγdw

where σ > 0, γ ≥ 0, α > 0, β are given parameters. In particular, it includes the
well known Vasicek model (γ = 0) and Cox-Ingersoll-Ross model (γ = 1/2) (c.f.
Vasicek (7) and Cox, Ingersoll and Ross (3)). For those particular choices of γ
closed form solutions of the bond pricing PDE (2) are known. Assuming a suitable
form of the market price of risk it turns out that both the real and risk neutral
processes for the short rate have the form (1). More details concerning the term
structure modeling can be found in Kwok (4).
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Using US Treasury Bills data (June 1964 - December 1989), the real probability
model (1) and generalized method of moments Chan et al. (2) estimated the pa-
rameter γ at the value 1.499. This is considered to be an important contribution,
as it drew attention to a more realistic form of the short rate volatility (compared
to Vasicek or CIR models). Using the same US Treasury Bills data, Nowman in (5)
estimated γ = 1.361 by means of Gaussian methodology. It should be noted that
these estimations of γ are beyond values γ = 0 or γ = 1

2 for which the closed form
solution of the bond prices is known in an explicit form. In (6) a model with interest
rates from eight countries using generalized method of moments and quasi maxi-
mum likelihood method has been estimated. They tested the restrictions imposed
by Vasicek and CIR models using the J-statistics in the generalized method of mo-
ments and likelihood ratio statistics in the quasi maximum likelihood method. In
all tested cases except of one, the restrictions γ = 0 or γ = 1

2 were rejected. Hence,
the study of the bond prices for values of γ different from 0 and 1/2 can be justified
by empirical results. However, in these cases no closed form expression for bond
prices is known. An approximate analytical solution was suggested in (1) which
could make the models with general γ > 0 to be more widely used. In this paper,
we analyze the analytical approximation by Choi and Wirjanto (1) and derive its
accuracy order. Furthemore, by adding extra terms to it we derive an improved,
higher order approximation of the bond prices.

The paper is organized as follows. In the second section, we derive the order of
approximation of the analytical approximative solution from (1). We derive a new,
higher order accurate approximation. In the third section, we compare the two
approximations with a known closed form solution from the CIR model (γ = 1

2 ).
In Appendix we provide a proof of uniqueness of a solution of a partial differential
equation for bond pricing for the parameter range 1

2 ≤ γ < 3
2 .

2. Accuracy of the analytic approximation formula for the bond price in
the one-factor interest rate model

In (1) the authors proposed an approximate analytical formula for the bond
price in a one-factor interest rate model. They considered a model having a form
(1) under the risk-neutral measure. It corresponds to the real measure process:

dr = (α + βr + λ(t, r)σrγ) dt + σrγdw

where λ(t, r) is the so called market price of risk. For a general market price of risk
function λ(t, r), the price P of a zero-coupon bond can be obtained from a solution
to the following partial differential equation:

(2) −∂τP +
1
2
σ2r2γ∂2

rP + (α + βr)∂rP − rP = 0, r > 0, τ ∈ (0, T )

satisfying the initial condition P (0, r) = 1 for all r > 0 (see e.g. (4, Chapter 7)).

Definition 1. By a complete solution to (2) we mean a function P = P (τ, r) having
continuous partial derivatives ∂τP , ∂rP , ∂2

rP on QT = [0,∞) × (0, T ), satisfying
equation (2) on QT , the initial condition for r ∈ [0,∞) and fulfilling the following
growth conditions: |P (τ, r)| ≤ Me−mrδ

and |Pr(τ, r)| ≤ M for any r > 0, t ∈ (0, T ),
where M, m, δ > 0 are constants.

It is worth to note that comparison of approximate and exact solutions is mean-
ingful only if the uniqueness of the exact solution is guaranteed. The next theorem
gives us the uniqueness of a solution to (2) satisfying Definition 1. In order not to
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interrupt the discussion on approximate formulae for a solution to (2) a PDE based
proof of the uniqueness of the exact solution is postponed to Appendix.

Theorem 1. Assume 1
2 < γ < 3

2 or γ = 1
2 and 2α ≥ σ2. Then there exists a

unique complete solution to (2).

Now let us state the main result on approximation of a solution to (2) due to
Choi and Wirjanto (1). They proposed the following approximation P ap for the
exact solution P ex:

Theorem 2. (1, Theorem 2) The approximate analytical solution P ap is given by

ln P ap(τ, r) = −rB +
α

β
(τ −B) +

(
r2γ + qτ

) σ2

4β

[
B2 +

2
β

(τ −B)
]

−q
σ2

8β2

[
B2(2βτ − 1)− 2B

(
2τ − 3

β

)
+ 2τ2 − 6τ

β

]
(3)

where q(r) = γ(2γ − 1)σ2r2(2γ−1) + 2γr2γ−1(α + βr) and B(τ) = (eβτ − 1)/β.

Derivation of the formula (3) is based on calculating the price as an expected
value under a risk neutral measure. The tree property of conditional expectation
was used and the integral appearing in the exact price was approximated to obtain
a closed form approximation.

Authors furthermore showed that such an approximation coincides with the exact
solution in the case of the Vasicek model. Moreover, they compared the above
approximation with the exact solution of the CIR model which is also known in a
closed form (c.f. (3)). Graphical and tabular description of the relative error in the
bond prices has been also provided in (1).

The main purpose of this paper is to derive the order of accuracy of the approx-
imation formula (3) by estimating the difference ln P ap − ln P ex of logarithms of
approximative and exact solutions of the bond valuation equation (2). Then, we
give an approximation formula of higher order and we analyze its order of conver-
gence analytically and numerically.

2.1. Error estimates for the approximate analytical solution. In this part
we derive the order of accuracy for the approximation derived by Choi and Wirjanto
(1).

Theorem 3. Let P ap be the approximative solution given by (3) and P ex be the
exact bond price given as a unique complete solution to (2). Then

ln P ap(τ, r)− ln P ex(τ, r) = c5(r)τ5 + o(τ5)

as τ → 0+ where

c5(r) = − 1
120

γr2(γ−2)σ2
[
2α2(−1 + 2γ)r2 + 4β2γr4 − 8r3+2γσ2

+2β(1− 5γ + 6γ2)r2(1+γ)σ2 + σ4r4γ(2γ − 1)2(4γ − 3)(4)
+2αr

(
β(−1 + 4γ)r2 + (2γ − 1)(3γ − 2)r2γσ2

)]
.

The convergence is uniform w. r. to r on compact subintervals [r1, r2] ⊂⊂ (0,∞).

Remark 1. The function c5(r) remains bounded as r → 0+ for the case of the CIR
model in which γ = 1/2. More precisely, limr→0 c5(r) = − σ2

120αβ. If 1/2 < γ < 1,
then c5(r) becomes singular, c5(r) = O

(
r2(γ−1)

)
as r → 0+.
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Proof: Recall that the exact bond price P ex(τ, r) for the model (1) is given by a
solution of the PDE (2). Let us define the following auxiliary function: fex(τ, r) =
ln P ex(τ, r) . Clearly, ∂τP ex = P ex∂τfex, ∂rP

ex = P ex∂rf
ex and

∂2
rP ex = P ex

[
(∂rf

ex)2 + ∂2
rfex

]
. Hence the PDE for the function fex reads as

follows:

(5) −∂τfex +
1
2
σ2r2γ

[
(∂rf

ex)2 + ∂2
rfex

]
+ (α + βr)∂rf

ex − r = 0.

Substitution of fap = ln P ap into equation (5) yields a nontrivial right-hand side
h(τ, r) for the equation for the approximative solution fap:

(6) −∂τfap +
1
2
σ2r2γ

[
(∂rf

ap)2 + ∂2
rfap

]
+ (α + βr)∂rf

ap − r = h(τ, r).

If we insert the approximate solution into (2) then, after long but straightforward
calculations based on expansion of all terms into a Taylor series in τ we obtain:

(7) h(τ, r) = k4(r)τ4 + k5(r)τ5 + o(τ5)

where k4 and k5 are given by

k4(r) =
1
24

γr2(γ−2)σ2
[
2α2(−1 + 2γ)r2 + 4β2γr4 − 8r3+2γσ2

+2β(1− 5γ + 6γ2)r2(1+γ)σ2 + σ4r4γ(−3 + 16γ − 28γ2 + 16γ3)
+2αr

(
β(−1 + 4γ)r2 + (2− 7γ + 6γ2)r2γσ2

)]
,(8)

k5(r) =
γσ2

120
r2(−2+γ)

[
6α2β (−1 + 2γ) r2 + 12β3γr4 − 10(1− 2γ)2r1+4γσ4

+6β2σ2
(
1− 5γ + 6γ2

)
r2(1+γ)

+βr2γσ2
(
−10 (5 + 2γ) r3 + 3(1− 2γ)2 (−3 + 4γ) r2γσ2

)

+2αr

(
3β2 (−1 + 4γ) r2 + 3β

(
2− 7γ + 6γ2

)
r2γσ2

− 5 (−1 + 2γ) r1+2γσ2

)]
.(9)

Let us consider a function g(τ, r) = fap−fex. As (∂rg)2 = (∂rf
ap)2−(∂rf

ex)2−
2∂rf

ex∂rg we have

−∂τg +
1
2
σ2r2γ

[
(∂rg)2 +

(
∂2

rg
)]

+ (α + βr)∂rg

=
{
−∂τfap +

1
2
σ2r2γ

[
(∂rf

ap)2 + ∂2
rfap

]
+ (α + βr)∂rf

ap

}

−
{
−∂τfex +

1
2
σ2r2γ

[
(∂rf

ex)2 +
(
∂2

rfex
)]

+ (α + βr)∂rf
ex

}

−σ2r2γ∂rf
ex∂rg .

It follows from (5) and (6) that the function g satisfies the following PDE: we obtain
a PDE for the function g:

−∂τg +
1
2
σ2r2γ

[
(∂rg)2 + ∂2

rg
]

+ (α + βr)∂rg

= h(τ, r)− σ2r2γ(∂rf
ex)(∂rg),(10)

where h(τ, r) satisfies (7). Let us expand the solution of (10) into a Taylor se-
ries with respect to τ with coefficients depending on r. We obtain g(τ, r) =
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∑∞
i=0 ci(r)τ i =

∑∞
i=ω ci(r)τ i, i.e. the first nonzero term in the expansion is cω(r)τω.

Then ∂τg = ωcω(r)τω−1 + o(τω−1) and h(τ, r) = k4(r)τ4 + o(τ4) as τ → 0+. Here
the term k4(r) is given by (8). The remaining terms in (7) are of the order o(τω−1)
as τ → 0+. Hence −ωcω(τ) = k4(r)τ4 from which we deduce, for ω = 5, c5(r) =
− 1

5k4(r). It means that g(τ, r) = ln P ap(τ, r) − ln P ex(τ, r) = − 1
5k4(r)τ5 + o(τ5)

which completes the proof. ♦
Corollary 1. Theorem 3 enables us to compute error in yield curves which are
given by R(τ, r) = − ln P (τ,r)

τ and relative error in bond prices.
(1) The error in yield curves can be expressed as

Rap(τ, r)−Rex(τ, r) = −c5(r)τ4 + o(τ4) as τ → 0+;

(2) The relative error1 of P is given by

P ap(τ, r)− P ex(τ, r)
P ex(τ, r)

= −c5(r)τ5 + o(τ5) as τ → 0+.

The convergence is uniform w. r. to r on compact subintervals [r1, r2] ⊂⊂ (0,∞).

Proof: The first corollary follows from the formula for calculating yield curves.
To prove the second statement we note that Theorem 3 gives ln P ap − ln P ex =
c5(r)τ5 +o(τ5). Hence P ap/P ex = ec5(r)τ

5+o(τ5) = 1+c5(r)τ5 +o(τ5) and therefore
P ap−P ex

P ex = −c5(r)τ5 + o(τ5). ♦
Remark 2. For the CIR model with γ = 1/2 the term k4(r) defined in (8) can be
simplified to 1

24σ2
[
αβ + r(β2 − 4σ2)

]
and hence

ln P ap
CIR(τ, r)− ln P ex

CIR(τ, r) = − 1
120

σ2
[
αβ + r(β2 − 4σ2)

]
τ5 + o(τ5)

as τ → 0+ uniformly w. r. to r on compact subintervals [r1, r2] ⊂⊂ [0,∞).

2.2. Improved higher order approximation formula. It follows from (3) that
the term ln P ap(τ, r)− c5(r)τ5 is the higher order accurate approximation of ln P ex

when compared to the original approximation ln P ap(τ, r) from (1). Furthemore,
we show, that it is even possible to compute O(τ6) term and to obtain a new
approximation ln P ap2(τ, r) such that the difference ln P ap2(τ, r) − ln P ex(τ, r) is
o(τ6) for small values of τ > 0.

Let P ex be the exact bond price in the model (1). Let us define an improved
approximation P ap2 by the formula

(11) ln P ap2(τ, r) = ln P ap(τ, r)− c5(r)τ5 − c6(r)τ6

where ln P ap is given by (3), c5(τ) is given by (4) in Theorem 1 and

c6(r) =
1
6

(
1
2
σ2r2γc′′5(r) + (α + βr)c′5(r)− k5(r)

)

where c′5 and c′′5 stand for the first and second derivative of c5(r) w. r. to r and k5

is defined in (9).

Theorem 4. The difference between the higher order approximation ln P ap2 given
by (11) and the exact solution ln P ex satisfies ln P ap2(τ, r) − ln P ex(τ, r) = o(τ6)
as τ → 0+. The convergence is uniform w. r. to r on compact subintervals
[r1, r2] ⊂⊂ (0,∞).

1This is referred to as the relative mispricing in (1)
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Proof: We have to prove that g(τ, r) = c5(r)τ5 + c6(r)τ6 +o(τ6) where c5 and c6

are given above. We already know the form of the coefficient c5 = c5(r). Consider
the following Taylor series expansions:

g(τ, r) =
∞∑

i=5

ci(r)τ i, h(τ, r) =
∞∑

i=4

ki(r)τ i, f(τ, r) =
∞∑

i=1

li(r)τ i.

The absolute term l0 is zero because fex(0, r) = ln P ex(0, r) = ln 1 = 0 for all r > 0.
Substituting power series into equation (10) and comparing coefficients of the order
τ5 enables us to derive the identity: −6c6(r)+ 1

2σ2r2γc′′5(r)+(α+βr)c′5(r)−k5(r) = 0
and hence c6(r) = 1

6

(
1
2σ2r2γc′′5(r) + (α + βr)c′5(r)− k5(r)

)
The term k5(r) given

by (9) is obtained by computing the expansion of h. ♦
The order of relative error of bond prices and order of error of interest rates for

the new higher order approximation can be derived similarly as in Corollary 1.

Remark 3. It is not obvious how to obtain the next higher order terms of expansion
because the equations contain unknown coefficients li(r), i ≥ 1, of logarithm of the
exact solution which is not known explicitly.

Remark 4. In the case of the CIR model we have

cCIR
5 (r) = − σ2

120
(
αβ + r(β2 − 4σ2)

)
, kCIR

5 (r) =
βσ2

40
(
αβ + (β2 − 10σ2)r

)

and so cCIR
6 (r) = σ2

360

(−2αβ2 + 17βσ2r − 2β3r + 2ασ2
)
. Hence

ln P ap2
CIR = ln P ap

CIR +
σ2

120
(
αβ + r(β2 − 4σ2)

)
τ5

− σ2

360
(−2αβ2 + 17βσ2r − 2β3r + 2ασ2

)
τ6

The theorem yields ln P ap2
CIR(τ, r)− ln P ex

CIR(τ, r) = o(τ6). By computing the expan-
sions of both exact and this approximative solutions we finally obtain

ln P ap2
CIR(τ, r) = ln P ex

CIR(τ, r)− σ2

5040

(
11αβ3 + 11β4r − 34αβσ2

−180β2rσ2 + 34rσ4

)
τ7 + o(τ7) as τ → 0+.

2.3. Comparison of approximations to the exact solution for the CIR
model. In this section we present a comparison of the original and improved ap-
proximations in the case of the CIR model where the exact solution is known. We
use the parameter values from (1), i.e. α = 0.00315, β = −0.0555 and σ = 0.0894.

In Table 1 we show L∞ and L2−norms with respect to r of the difference
ln P ap − ln P ex and ln P ap2 − ln P ex where we considered r ∈ [0, 0.15]. Maxi-
mum value considered 0.15 means 15 percent interest rate, which should be suf-
ficient for practical use. We also compute the experimental order of convergence
(EOC) in these norms. Recall that the experimental order of convergence gives
an approximation of the exponent α of expected power law estimate for the error
‖ ln P ap(τ, .)− ln P ex(τ, .)‖ = O(τα) as τ → 0+. The EOCi is given by a ratio

EOCi =
ln(erri/erri+1)

ln(τi/τi+1)
where erri = ‖ ln P ap(τi, .)− ln P ex(τi, .)‖p .

In Table 2 and Figure 1 we show the L2− error of the difference between the
original and improved approximations for larger values of τ . It turned out that the
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Table 1. The L∞ and L2− errors for the original lnP ap
CIR and

improved ln P ap2
CIR approximations

τ ‖ ln P ap − ln P ex‖∞ EOC ‖ ln P ap2 − ln P ex‖∞ EOC

1 2.774× 10−7 4.930 4.682× 10−10 7.039

0.75 6.717× 10−8 4.951 6.181× 10−11 7.029

0.5 9.023× 10−9 4.972 3.576× 10−12 7.004
0.25 2.876× 10−10 – 2.786× 10−14 –

τ ‖ ln P ap − ln P ex‖2 EOC ‖ ln P ap2 − ln P ex‖2 EOC

1 6.345× 10−8 4.933 9.828× 10−11 7.042
0.75 1.535 ×10−8 4.953 1.296× 10−11 7.031

0.5 2.061 ×10−9 4.973 7.492× 10−13 7.012
0.25 6.563 ×10−11 – 5.805× 10−15 –

Table 2. The L2− error with respect to r for large values of τ .

τ 1 2 3 4 5

‖ ln P ap − ln P ex‖2 6.345× 10−8 1.877× 10−6 1.314× 10−5 5.093× 10−5 1.427× 10−4

‖ ln P ap2 − ln P ex‖2 9.828× 10−11 1.314× 10−8 2.329× 10−7 1.799× 10−6 8.798× 10−6

τ 6 7 8 9 10

‖ ln P ap − ln P ex‖2 3.255× 10−4 6.441× 10−4 1.148× 10−3 1.890× 10−3 2.921× 10−3

‖ ln P ap2 − ln P ex‖2 3.217× 10−5 9.618× 10−5 2.479× 10−4 5.705× 10−4 1.200× 10−3
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Figure 1. The error ‖ ln P ap(τ, .) − ln P ex(τ, .)‖2 for the origi-
nal approximation (dashed line) and the new approximation (solid
line). Horizontal axis is time to maturity τ .

higher order approximation P ap2 gives about twice better approximation of bond
prices in the long time horizon up to 10 years.

2.4. Comparison of approximate and numerical solutions. In Table 3 we
present a comparison of the original approximation formula with a numerical so-
lution Pnum. The numerical solution was obtained using a finite volume method.
We used 105 spatial and 4.107 time discretization grid points in the computational
domain τ ∈ [0, 1], r ∈ [0, 0.5] in order to achieve the L2− errors less than 10−11

between exact solution for the CIR model and the numerical solution. The differ-
ence O(10−11) between the numerical and approximate solutions is therefore of the
same order of accuracy as the numerical scheme and hence it was not reasonable
to compute EOC in this case.
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Table 3. Norms of the difference ln P ap(τ, .) − ln Pnum(τ, .) for
several values of τ and γ.

γ = 0.5 γ = 0.75
τ L∞ norm L2 norm L∞ norm L2 norm

1 2.771× 10−7 8.967× 10−8 5.576× 10−8 1.429× 10−8

0.75 6.694× 10−8 2.165× 10−8 1.691× 10−8 3.429× 10−9

0.5 8.854× 10−9 2.867× 10−9 1.411× 10−8 4.656× 10−10

0.25 3.400× 10−10 7.236× 10−11 6.963× 10−9 9.542× 10−11

γ = 1.00 γ = 1.32
τ L∞ norm L2 norm L∞ norm L2 norm

1 5.798× 10−9 1.296× 10−9 2.664× 10−9 5.536× 10−10

0.75 1.216× 10−9 2.838× 10−10 1.406× 10−9 2.352× 10−10

0.5 9.071× 10−10 7.488× 10−11 1.113× 10−9 1.413× 10−10

0.25 6.154× 10−10 5.663× 10−11 7.860× 10−10 8.524× 10−11

3. Conclusions

We analyzed qualitative properties of the approximation formula for pricing zero
coupon bonds due to Choi and Wirjanto (1). We furthermore proposed a higher
order approximation formula for pricing zero coupon bonds. We derived the order
accuracy for both approximations and we test them numerically. The improved
approximation is more accurate for a reasonable range of time horizons.
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Appendix A. Uniqueness of a solution to zero coupon bond PDE

In this section, we give a proof of Theorem 1. Our aim is to prove the inequality

(12)
d
dτ

∫ ∞

0

rωP 2dr ≤ K

∫ ∞

0

rωP 2dr

to be satisfied by any solution of (2) with some constants K and ω ≥ 0. It implies
the uniqueness of a solution to the PDE (2). Indeed, if P1 and P2 are two solutions of
(2) with the same initial condition P (0, r) = 1. Then P = P1−P2 is also a solution
to (2) with P (0, r) = 0. Let us define a function y(τ) =

∫∞
0

rωP 2(τ, r)dr. Then
the inequality (12) means dy(τ)

dτ ≤ Ky(τ) for τ > 0. It implies: d
dτ

(
e−Kτy(τ)

)
=

−Ke−Kτy(τ)+e−Kτ dy(τ)
dτ ≤ 0. Since y(0) = 0 and y(τ) ≥ 0, it follows that y(τ) = 0

for all τ . Thereof P (τ, r) = 0 for all τ ≥ 0, r ≥ 0 and hence P1 ≡ P2 as claimed.
Now let us derive inequality (12). Multiplying the equation by rωP , where

ω > 0 and 2γ +ω− 1 > 0 using the identity 1
2

d
dτ

∫∞
0

rωP 2dr =
∫∞
0

rωP∂τPdr, and
integrating with respect to r from 0 to infinity we obtain2

(13)
1
2

d
dτ

∫ ∞

0

rωP 2 =
σ2

2

∫ ∞

0

r2γ+ω∂2
rPP +

∫ ∞

0

(α + βr)rω∂rPP −
∫ ∞

0

rω+1P 2.

2In what follows, we shall omit the differential dr from the notation
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We use the notation P ′ = ∂rP , P ′′ = ∂2
rP . Firstly, we use integration by parts

for the following integrals from the above equation:
∫ ∞

0

r2γ+ωP ′′P = −(2γ + ω)
∫ ∞

0

r2γ+ω−1PP ′ −
∫ ∞

0

r2γ+ω(P ′)2

=
1
2
(2γ + ω)(2γ + ω − 1)

∫ ∞

0

r2γ+ω−2P 2 −
∫ ∞

0

r2γ+ω(P ′)2

where we have used the identity
∫∞
0

rω+ξP ′P = −ω+ξ
2

∫∞
0

rω+ξ−1P 2 valid for any
ω, ξ ≥ 0 and a function P satisfying the decay estimates from Definition 1. Substi-
tuting this to (13), we end up with the identity

1
2

d
dτ

∫ ∞

0

rωP 2

=
σ2

4
(2γ + ω)(2γ + ω − 1)

∫ ∞

0

r2γ+ω−2P 2 − σ2

2

∫ ∞

0

r2γ+ω(P ′)2(14)

− αω

2

∫ ∞

0

rω−1P 2 − (ω + 1)β
2

∫ ∞

0

rωP 2 −
∫ ∞

0

rω+1P 2.

Case 1: γ = 1
2 and 2α ≥ σ2. We recall that the condition 2α ≥ σ2 in the case of

CIR model (γ = 1
2 ) is very well understood as it almost surely guarantees the strict

positivity of the stochastic processes r = rt satisfying the stochastic differential
equation: dr = (α + βr) dt + σ

√
rdw (see e.g. (4)).

Subcase 1a: 2α > σ2. We use the equality (14) with γ = 1/2 and ω = 2α
σ2 −1 >

0 to obtain the desired inequality (12) with K = (ω + 1)β.
Subcase 1b: 2α = σ2. Using identity (14) with ω = 0 (or simply by multiplying

the PDE with P and integrating over (0,∞)) we obtain the inequality (12) with
K = β.

Case 2: γ ∈ (
1
2 , 1

)
. We use equation (13) with ω = 2 and estimate the integral∫∞

0
r2γP 2 by using Hölder’s inequality:

∫ ∞

0

r2γP 2 =
∫ ∞

0

(
r4γ−2P 4γ−2

) (
r2−2γP 4−4γ)

)
≤

(∫ ∞

0

r2P 2

)2γ−1 (∫ ∞

0

rP 2

)2−2γ

.

It follows from the Young’s inequality ab ≤ 1
pεp ap + 1

q εqbq for p, q ≥ 1 such that
1
p + 1

q = 1 and any ε > 0 we get

∫ ∞

0

r2γP 2 ≤ (2γ − 1)
(

1
ε

) 1
2γ−1

∫ ∞

0

r2P 2 + (2− 2γ)ε
1

2γ−2

∫ ∞

0

rP 2.

Again using (14) with ω = 2 and the above estimate we obtain

1
2

d
dτ

∫ ∞

0

r2P 2 ≤ σ2

2
(γ + 1)(2γ + 1)

∫ ∞

0

r2γP 2 − α

∫ ∞

0

rP 2 − 3β

2

∫ ∞

0

r2P 2

≤ K

∫ ∞

0

r2P 2 +
(
σ2(γ + 1)(2γ + 1)(1− γ)ε

1
2−2γ − α

) ∫ ∞

0

rP 2.

where K = σ2

2 (γ + 1)(2γ + 1)(2γ − 1)
(

1
ε

) 1
2γ−1 − 3β

2 . By choosing ε > 0 sufficiently
small such that σ2(γ +1)(2γ +1)(1−γ)ε

1
2−2γ −α < 0, we finally obtain the desired

inequality 1
2

d
dτ

∫∞
0

r2P 2 ≤ K
∫∞
0

r2P 2.
Case 3: γ = 1. We again use the equation (14) with ω = 2. we obtain (12)

with K = 3(2σ2 − β).
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Case 4: γ ∈ (
1, 3

2

)
. Similarly as in the case 1

2 < γ < 1 we make use of the
Hölder’s inequality integral estimation:

∫ ∞

0

r2γP 2 =
∫ ∞

0

(
r6−4γP 6−4γ

) (
r6γ−6P 4γ−4

) ≤
(∫ ∞

0

r2P 2

)3−2γ (∫ ∞

0

r3P 2

)2γ−2

and, by Young’s inequality, we obtain, for any ε > 0,
∫ ∞

0

r2γP 2 ≤ (3− 2γ)
(

1
ε

) 1
3−2γ

∫ ∞

0

r2P 2 + (2γ − 2)ε
1

2γ−2

∫ ∞

0

r3P 2.

By (14) with ω = 2 we have

1
2

d
dτ

∫ ∞

0

r2P 2 ≤ σ2

2
(γ + 1)(2γ + 1)

∫ ∞

0

r2γP 2 − 3β

2

∫ ∞

0

r2P 2 −
∫ ∞

0

r3P 2

≤ K

∫ ∞

0

r2P 2 +
(
σ2(γ + 1)(2γ + 1)(γ − 1)ε

1
2γ−2 − 1

)∫ ∞

0

r3P 2.

where K = σ2

2 (γ + 1)(2γ + 1)(3− 2γ)
(

1
ε

) 1
3−2γ − 3β

2 . By choosing ε > 0 sufficiently
small such that σ2(γ + 1)(2γ + 1)(γ − 1)ε

1
2γ−2 − 1 < 0 we end up with the desired

inequality 1
2

d
dτ

∫∞
0

r2P 2 ≤ K
∫∞
0

r2P 2.
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