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ON THE SINGULAR LIMIT OF SOLUTIONS TO THE
COX-INGERSOLL-ROSS INTEREST RATE MODEL WITH
STOCHASTIC VOLATILITY

BEATA STEHLfKOVA AND DANIEL SEVEOVIE

In this paper we are interested in term structure models for pricing zero coupon bonds
under rapidly oscillating stochastic volatility. We analyze solutions to the generalized
Cox—Ingersoll-Ross two factors model describing clustering of interest rate volatilities. The
main goal is to derive an asymptotic expansion of the bond price with respect to a singular
parameter representing the fast scale for the stochastic volatility process. We derive the
second order asymptotic expansion of a solution to the two factors generalized CIR model
and we show that the first two terms in the expansion are independent of the variable
representing stochastic volatility.

Keywords: Cox-Ingersoll-Ross two factors model, rapidly oscillating volatility, singular
limit of solution, asymptotic expansion
AMS Subject Classification: e.g. 35C20 35B25 62P05 60H10 35K05

1. INTRODUCTION

Term structure models describe a functional dependence between the time to matu-
rity of a discount bond and its present price. Yield of bonds, as a function of matu-
rity, forms the so-called term structure of interest rates. If we denote by P = P(t,T)
the price of a bond paying no coupons at time ¢ with maturity at 7" then the term
structure of yields R(¢,T) is given by

log P(¢,T)
T—t

(cf. Kwok [7]). Continuous interest rate models are often formulated in terms of
stochastic differential equations (SDEs) for the instantaneous interest rate (or short
rate) as well as SDEs for other relevant quantities like e.g. volatility of the short
rate process. In one-factor models there is a single stochastic differential equation
for the short rate. The volatility of the short rate process is given in a deterministic
way. It is assumed to be constant (the Vasicek model [9]) or it is a function of the
short rate itself. In the classical Cox, Ingersoll, and Ross model (CIR) the short rate
is modelled by a solution to the following stochastic differential equation:

dr = k(0 — r)dt + o\/rdw, (1)

P(t,T) = e BEDT=D 6 R(t,T) =
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where k,60,0 > 0 are parameters representing the rate of reversion, the long term
interest rate and volatility of the interest rate, respectively (see [2]). By dw we have
denoted the differential of the Wiener process. Beside these two simple models there
is a wide range of other term structure models including, in particular, the Chan-
Karolyi-Longstaff-Sanders model [1], the Hull-White model [6] and many others.
Based on the assumption made on the form of the short rate process one can derive
a linear scalar parabolic equation for the bond price as a function of the current
short rate and time to maturity.

In the two-factor models there are two sources of uncertainty yielding different
term structures for the same short rate as they may depend on the value of the
other factor. Moreover, two-factor models have a richer variety of possible shapes
of term structures including, in particular, nonmonotone yield curves. The reader is
referred to the books by Kwok [7] and Brigo and Mercurio [3] for detailed discussion
on two-factor interest rate modeling.

There are several ways how to incorporate the second stochastic factor. It is
reasonable to conjecture that in a financial market the volatility of a fluctuating
underlying process for the short rate can be fluctuating as well. In the so-called two-
factor models with a stochastic volatility we allow the volatility to have a stochastic
behavior driven by another stochastic differential equation. As a consequence of the
multidimensional [t6’s lemma the corresponding equation for the bond price is a
linear parabolic equation in two space dimensions. These spatial dimensions corre-
spond to the short rate and volatility. It is well known that the density distribution
of a stochastic process is a solution to the Focker-Planck partial differential equa-
tion and can be expressed analytically in the case the volatility undergoes the Bessel
square root process (see e.g. [5]). The actual value for the stochastic volatility is not
know in the market. We can just observe its statistical moments like e.g. the mean
value, volatility, skewness of the volatility etc. Knowing the density distribution of
the stochastic volatility we are able to perform averaging of the bond price and the
term structure with respect to the stochastic volatility. Unlike the short rate which
is known from the market data on daily basis, as it was already mentioned, the
volatility of the short rate process is unknown. Therefore such a volatility averaging
is of special importance for practitioners.

The main goal of the paper is to derive an asymptotic expansion of the bond price
with respect to a singular parameter representing the fast scale for the stochastic
volatility process. We derive the second order asymptotic expansion of a solution to
the two factors generalized CIR model and we show that the first two terms in the
expansion are independent of the stochastic volatility term.

The paper is organized as follows. In the next section we present an empirical
evidence of a short rate process for which the volatility is fluctuating and it has two
concentration values. Next we discuss a model for statistical distribution captur-
ing such a volatility clustering. Section 3 is devoted to the asymptotic analysis of
solutions to the bond pricing equation in the case when the fluctuating volatility
is rapidly oscillating. We derive explicit formulae for the first three terms in the
asymptotic expansion of a solution with respect to a small parameter representing
the fast time scale for rapidly oscillating volatility.
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Figure 1: Left: Estimates of CIR model’s dispersion o2 from 20-day intervals (3-months
Treasury bills, 90 intervals starting in January 1990). Right: the density distribution of
estimates of the dispersion o2.

2. Empirical evidence of existence of volatility clusters and their modeling

The key feature of the CIR modeling consists in the assumption made on constant
volatility of the stochastic process (1) driving the short rate r. However, in real
financial markets we can observe a substantial deviation from this assumption. To
provide an empirical evidence for such a volatility process, we computed maximum
likelihood estimates of the dispersion for the CIR model for 20-day-long intervals
using three months treasury bills data. Figure 1 (left) shows the estimated dispersion
as a function of time. Higher and lower volatility periods can be distinguished. They
can be seen also on the kernel density estimates of the values in Figure 1 (right).

In order to capture such a behavior of the dispersion o2 we shall consider a model
in which the limiting density of the dispersion (as ¢ — o) has two local maxima. It
corresponds to the so-called volatility clustering phenomenon where the dispersion
can be observed in the vicinity of two local maxima of the density distribution (see
[8]). The desired behavior of the process and its limiting density are show in the
Figure 2. A natural candidate for such a volatility process is

dy = aly)dt + w(y)duw (2)

having a drift function a(y) such that the differential equation % = a(y) has two
stable stationary solutions. With added stochastic part w(y)dw of the process, these
stationary solutions become values, around which the volatility concentrates. Recall
that the cumulative distribution function G' = G(y,t) = Prob(y(t) < y|ly(0) = yo)
of the process y = y(t) satisfying (2) and starting almost surely from the initial
datum yo can be obtained from a solution §j = G /0y to the so-called Focker-Planck

equation for the density function:

~ 2
o = 55 @D ~ 5 (@0, 5.0 =5~ ) 3)

(cf. Kwok [7]). Here §(y — yo) denotes the Dirac delta function located at yo. The
limiting density g(y) = lim;—,~ §(y, t) of the process is therefore a stationary solution
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to the Focker-Planck equation (3) and it forgets any information about the initial
datum gy, i.e

Lyg = 17(w(y)2g)

0? 0
2 0y?

- gy(a(y)g) =0. (4)
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Figure 2: Simulation of a process (left) and its asymptotic distribution (right).

In [8] one of the authors proposed a model with a property that the limiting den-
sity is a combination of two Gamma densities. Indeed, let us consider the following
two mean reverting Bessel square root stochastic processes:

dyi = ky(0; — yi)dt + v\/yidw;, i=1,2, (5)

where 0; > 0, 2x,0; > v2 > 0for i = 1,2, and dw,, dws, are uncorrelated differentials
of the Wiener process. Solving the stationary Focker-Planck equation (4) it turns out
that the limiting distributions of the processes y1,y2 are the Gamma distributions

with shape parameters 2, /v? and 2k,6;/v?. Denote their densities by g1 and gs.
2Ky 0; 2K/y

Then g;(y) = Ciy i exp(—=#y) for y > 0 and g;(y) = 0 otherwise. Here C; > 0

is a normalization constant such that fR 9i(y)dy = 1. Choose a parameter k € (0, 1).
Our aim is to construct a process with asymptotic density

9(y) = kg1 (y) + (1 = k)ga2(y), (6)

corresponding to a convex mixture of densities g; and gs. In the following theorem
we see that for the same square root volatility function of the form v,/y it is possible
to achieve this goal. Drift of the process a(y) can be written as a weighted sum of
drifts o;(y) = k(0; — y),i = 1,2, with the weights depending on y.

Theorem 1 [8, Section 5] Suppose that the drift term « has the form: a(y) =

w(y)ar(y)+(1-w(y))az(y) where w(y) = kgi(y)/(kgi(y)+(1—-k)g2(y)) and cu(y) =
k(0; —y). Then the stochastic process driven by the SDE: dy = a(y)dt + v\/ydw has
the limiting distribution g given by the conver combination (6) of densities g1, gz.

3. Generalized CIR model with rapidly oscillating stochastic volatility and its
asymptotic analysis

The aim of this section is to provide a tool for modeling the effects of rapidly oscil-
lating stochastic volatility that can be observed in real markets. If the length of the
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time scale for dispersion y is denoted by €, the equation for the variable y reads as
Q@
i ()

follows: /i
UV\Y
= —22dt + —=dw,. 7
Y - NG y (7)
In what follows we will assume that 0 < € < 1 is a small singular parameter. Notice
that the limiting density function g of the stochastic process driven by SDE (7) is
independent of the scaling parameter € > 0. The statement follows directly from the
stationary Focker-Planck equation (4). Concerning structural assumption made on
the drift function « : R — R we shall henceforth assume the following hypothesis:

> 1, limsup@ < 0.

v Y—00

(A) o is a C' function on [0, c0),

Now it is straightforward computation to verify the following auxiliary lemma.

Lemma 1 Let the drift function a(y) be defined as a mizture of two Gamma limiting
distributions as in Theorem 1. Then the function « satisfies the hypothesis (A) with

a(0) = kmin(0y,02) and limsup,_, # = -k <0.

Next we shall show the limiting density g of the process driven by SDE (7) is
uniquely given by the following lemma:

Lemma 2 Under the hypothesis (A) made on the drift function a the stationary
Focker-Planck equation Lig = %aa—;(yg) — %(a(y)g) = 0 has a unique solution g
such that g(0) =0 for y < 0. It can be explicitly expressed as:

y 200(0 y
g(y) = Cy exp <1122/1 a(;)c%) = 0y exp (1)22/1 &(€)d£>

fory > 0 and g(y) = 0 for y < 0. Here &(y) = (a(y) — «(0))/y and C > 0 is a
normalization constant such that fooo g(y)dy = 1.

Proof. It follows by direct verification of the equation. The other linearly indepen-
dent solution g2 to the equation (4) has a nontrivial limit g2(0+) > 0. &

In what follows, we denote by 02, D > 0, and S the limiting mean value, dispersion
and skewness of the stochastic process for the y-variable representing stochastic
dispersion, i.e.

= [ wwdn D= [ w-oowdn S=— [ oMo )
0 0 D2 Jo

Notice that D = — [;° [/(£ — 0%)g(€) dédy. In the generalized CIR model with a

stochastic volatility, the instantaneous interest rate (short rate) r will be modelled

by the mean reverting process of the form (1) where the volatility of is replaced by

a square root of a stochastic dispersion v, i.e.

dr = k(0 — r)dt + \/yy/rdw, . 9)
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The differentials of the Wiener processes dw, and dw, are assumed to be uncorre-
lated throughout the paper, i.e. E(dwydw,) = 0. Then the corresponding partial
differential equation for the bond price P¢ = P¢(t,r,y) has the following form:

oprs ~ 1 oPs 1 0%pP¢ .
e (k(0—7r) — M(y,")r2/y) o + Y rP (10)
1 ~ oP* 1 opPs w2y o%p¢
+ % (—/\z(y,r)v\/gjay> + g (a(y) ay + 7 8y2 > =0

(t,r,y) € Qpr = (0,T) x Rt x RT, where Ay, Ay are the so-called market prices of
risk (cf. [7, Chapter 7]). By a solution P¢ to (11) we mean a bounded function
P € CY2(Q7) N C(Qr) satisfying equation (11) on Q7. Concerning the structural
form of market prices of risk functions A;, A we shall suppose that

Mt Y) =MV At y) =Xy

where A1, A2 € R are constants. It is worthwile noting that the latter assumption
is not restrictive as the original one-factor CIR model assumes such a form of the
market price of risk (cf. Kwok [7]). We shall rewrite PDE (11) in the operator form:

(e Lo +e7Y2L, 4 Ly)PF =0, (11)

where the linear differential operators Ly, L1, Lo are defined as follows:

0 vy 02 0
Ly = a(y)67y + 5 7 L= _A2vy@’
0 0 1 92
Ly = e + (k(0—71) — Alry)g + iryw -7 (12)

Next we expand the solution P¢ into Taylor power series:
o0
“(t,ry) = ZgéPj (t,7,y) (13)
7=0

with the terminal conditions Py(T,r,y) = 1,P;(T,r,y) = 0 for j > 1 at expiry
t = T. The main goal of this paper is to examine the singular limiting behavior of
a solution P¢ as ¢ — 0%. More precisely, we shall determine the first three terms
Py, Py, Py of the asymptotic expansion (13). We shall henceforth denote by (i)
the averaged value of the function ¢ € C(]0,00)) with respect to the density g, i.e.

fO y) dy. We shall also use the notation (£5) standing for the averaged
hnear operator EQ, ie.

<£2>_9+( (0 —7) — \iro?) 4

5 ar o r— —7T (14)

Lemma 3 Let 1) € C1([0,00)) be such that Loy is bounded. Then (Lotb) = 0.
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Proof. Notice that the operator Lf is the adjoint operator to the linear operator
Lo with respect to the L?>~inner product (¢, ¢) = fooow(y)(b(y) dy. It means that
(Lo) = (Lo, g) = (¥, LEg) = 0 because the density g is a solution to Eq. (4). ¢

The following lemma will be useful when computing higher order term in series
expansion (13).

Lemma 4 Let ' € C([0,00)) be such that (F) = 0. Then, up to an additive
constant, there ezists a unique solution ¥ € C?((0,00)) N C([0,00)) to the non-

homogeneous equation Lo = %F Its derivative % s given by

N
) = / F(©)g(€)de.

Moreover, (L11) = Agv fooo F(y)yg(y)dy. In particular, if ¥ is a solution to the
equation Lo = 0 then ¢ is a constant function with respect to the y-variable.

Proof. Using equation (4) for the limiting density g and inserting % into the

operator Ly we obtain that 1 is a solution to the equation Lyt = %F Other
independent solutions are not continuous at y = 0. The formula for (£11) follows
from the definition of the operator £; by applying integration by parts formula. <>

Now we proceed with collecting the terms of the power series expansion of (11).

o In the order e ~! we have LoPy = 0. According to Lemma 4 we have Py = Py(t,7),

i.e. Py is independent of the y-variable.

e In the order e~%/2 we have LoP; + £1Py = 0. Since Py = Py(t,r) we deduce
L1Py =0 and so LoP; = 0. By Lemma 4, P, = P;(¢,r) is independent of y.

e In the order € we have LoPy + L1 P, + L2Py = 0. Since P, = Py(t,r) we have
L1Py = 0. Hence LoPy + L2Py = 0. Taking the average (.) of both sides of the
latter equation we obtain (LoP2) + (L2P;) = 0. By Lemma 3 and the fact that P,
is independent of y-variable we conclude (L2)Py = (L2Py) = 0. Therefore Py is a
solution to the classical one-factor PDE equation for the CIR model satisfying the
terminal condition Py(T,r) = 1 for any r > 0. It is well known that the solution
Py = Py(t,r) to the equation (L9)Py = 0 is given by the explicit formula:

P0<t,7“) = Ao(t)e_B(t)T7 (15)

2

where Aj = k0B and B’ = (k + \Mo?)B+ 5 B* — 1, Ao(T) =1,B(T) =0, i.e.

2k6

2pelbt)(T—1)/2 a2 B — 2(e®T=1) 1)
FrETTTE) PO et

Ao(t) = (

=K+ o2, ¢ = /1?2 + 202 (cf. Kwok [7, Chapter 7]). Since (L) Py = 0 we have
—LoPy = ((L2) — L2) Py = (6 — y) f(t)re” B where

F(8) = (uB() + 5 BH) Ao(t)
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Hence LoPy = —LoPy = (02 — y) f(t)re " BHT. According to Lemma 4 we have

op, _
oy

1Y )
o / (€ - o®)g(©)de.  (16)

2 t)r
—a Ore PO, ) =

e In the order £'/2 we have LoPs + L1 Py + LoP, = 0. Since (£oPs) = 0 we have
(L1P2) + (L2Py) = 0. The function P; = Py(t,r) is independent of the y-variable
and therefore (Lo)P1 = (LoPy) = —(L£1P»). By Lemma 4 we have

L1Py = 2 f( yre POy H(y),  —(L1Ps) = K1 f(t)re B0,

where K; = —22 fo NS 9(&)dédy = 22D is a constant (see (8)). Notice
that the constant K 1 and the functlon f(t) depend on the first two moments o2 and
D of the stochastic dispersion only. Equation (£2)P; = (L2P1) = —(L1P) reads as:

oP oP 1 o%p
aitl + (K(0 = 1) = Miro®) 877“1 + 57’0'2 8r21 — 7Py = K, f(t)re BOT, (17)

The solution P; satisfying the terminal condition P;(7T,r) = 0 for r > 0 can be
found in the closed form:

Pi(t,7) = (Asg(t) + Ay (t)r)e BOT (18)
where the functions Aj(t), A11(t) are solutions to the system of linear ODEs:

Al (t) = (kOB(t) + K+ Mo? + 0*B(t)) A (t) + K1 £ (1), (19)
1o(®) KOB(t)A1o(t) — kOA11 (1),

with terminal conditions A19(7) = 0, A11(T) = 0. We can analytically and also
numerically compute Ajg, A1; in a fast and accurate manner. This way we have
obtained the term P (¢,7). In Figure 3 examples of numerical approximation of the
term structure R* (T —7,7) = — L log(P*(T —,r,.)) corresponding to the second or-
der expansion of the averaged value of (P¢(t,r,.)), P(t,r,y) = Py(t,r) +/ePi(t, 7).
We plot term structures starting from the short rate r = 0.03 (left) and r = 0.031
(right) for parameters k = 5, 8 = 0.03, x, = 100, v = 1.1832, 6; = 0.025, 0, = 0.1,
k=1/3, A1 = —1, A2 = —100 and ¢ = 0,0.001, 0.01 (black, red and blue curves).

d 38—1;2 we can compute the term L£q P, + LoP;. With regard to

Lemma 4 equation LoP3 = —L1 P, — LoP; then yields a formula for i; and

& ((2/\2

Having P; an

<£1P3> = — K3+ K10’ )f( ) G_B(t)r —I-D( AMr— +

or 2 Or2

8P1 T 82P1 )>

where the constant K3 = [ &3 H(£)g(&)d¢ = —%SDg — 02D depends on the first
three statistical moments of the stochastic dispersion.

o In the order ¢! we have LoPy + £1Ps + L3P, = 0. Proceeding similarly as before
we have (LoPy) = 0 and therefore

(L1P3) + (L2P2) = 0. (20)
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Figure 3: The approximate term structure R° = R°(T — 7,7) based on the first two
leading terms of the bond price P® ~ Po(T — 7,7) + \/eP1(T — 7,7) starting from the
short rate r = 0.03 (left) and r = 0.031 (right) for several values of the singular parameter
€ =0,0.001,0.01 (black, red and blue curves), resp.

We decompose the function Pa(t,r,y) in the form
PZ(tm,y):]52(15,7“)+}32(t,r,y), (21)

where P, is the averaged value of P, and ]52 is a zero mean fluctuation, i.e. (]52> =0.
APy, _ 9Py
oy ~— Oy -

Py(t,r,y) = —%f(t)re—B(t)r </y H(&)dE — Kg)
v 0

where Ky = fooo g(s) fos H(§)dEds is a constant and the function H is given by
(16). Now we can use decomposition (21) to evaluate (LaP2). We have (LoPy) =
(Lo(P2 + P3)) = (L2)P2 + (L2Ps) because P, is independent of y. Next we can

determine (Lo P,) in the following form:

Taking into account (LoPy) = 0

As P, does not depend on y, we have
we obtain

2 2 o 10? B
<£2P2> = *EKALf(t)T' <A18r + 287,.2) (7'6 B(t) )

where Ky = [ [V H(£)dé(y—0?)g(y)dy. 1t is worthwile noting that both constants
K>, K, depend on all nontrivial statistical moments of the stochastic dispersion.
Equation (20) then becomes

(L) Py = —<1.32152> —(L1P3) = (a(t) + b(t)r + c(t)rz)efB(t)r, Py(T,r) =0,

which is a partial differential equation for P, = Ps(t,r,y) with a right hand side
which can be explicitly computed from already obtained results in the closed form:

Py(t,1) = (Ago(t) + Aoy (t)r + Aga(t)r?)e BT (22)

where the functions Asg, As1, Ao are solutions to a linear system of ODEs. We omit
details here.
In summary we have shown the following main result of this paper:
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Theorem 2 The solution P = P¢(t,r,y) of the generalized CIR bond pricing equa-
tion (11) with rapidly oscillating dispersion can be approzimated, for small values of
the singular parameter 0 < e < 1, by Pe(t,r,y) =~ Py(t,r)++/ePi(t,r)+ePa(t,r,y)+
O(e3).

The first two terms Py, P1 are independent of the y-variable representing unob-
served stochastic volatility. They depend only the first two statistical moments (mean
value and dispersion) of the stochastic dispersion and other model parameters.

The next term in the expansion Py nontrivially depends on the y-variable. Ps as
well as its averaged value (Py) depends also on all nontrivial statistical moments of
the stochastic dispersion.

The terms Py, P1, Py can be evaluated by closed-form formulae (15), (18), (22).
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