Lineárne a kvázilineárne PDR 1. rádu
Príklad 1. Nájdite všeobecné riešenie \(u(x,y)\) rovnice \[y \frac{\partial u}{ \partial x} -x \frac{\partial u}{\partial y} = 0. \]
Príklad 2. \[2\sqrt{x} \frac{\partial u}{ \partial x} - y \frac{\partial u}{\partial y} = 0\]
Príklad 3. \[x \frac{\partial u}{ \partial x} + y \frac{\partial u}{\partial y} - z \frac{\partial u}{\partial z} = 0 \]
Príklad 4. \[x \frac{\partial u}{ \partial x} + y \frac{\partial u}{\partial y} +2z \frac{\partial u}{\partial z} = 0 \]
Príklad 1. \[xy \frac{\partial u}{ \partial x} - x^2 \frac{\partial u}{\partial y} = yu\]
Príklad 2. \[y \frac{\partial u}{ \partial x} - x \frac{\partial u}{\partial y} = x-y\]
Príklad 1. \[(x+2y) \frac{\partial u}{ \partial x} - y \frac{\partial u}{\partial y} = 0\]
Príklad 2. \[x \frac{\partial u}{ \partial x} + y \frac{\partial u}{\partial y} +xy \frac{\partial u}{\partial z} = 0 \]
Príklad 3. \[y^2 \frac{\partial u}{ \partial x} +xy \frac{\partial u}{\partial y} = x\]
Príklad 4. \[y \frac{\partial u}{ \partial x} +xz \frac{\partial u}{\partial y} = 0\]
Príklad 5. \[x \frac{\partial u}{ \partial x} - 3y \frac{\partial u}{\partial y} = 0\]
Príklad 6. \[x \frac{\partial z}{ \partial x} -2y \frac{\partial z}{\partial y} = x^2+y^2\]
Príklad 7. Nájdite všeobecné riešenia.
Rovnica pre funkciu \(z(x,y)\):
\[x \frac{\partial z}{ \partial x}
+z \frac{\partial z}{\partial y}
= 0\]
Rovnica pre funkciu \(u(x,y,z)\): \[x \frac{\partial u}{ \partial x} +z \frac{\partial u}{\partial y} = 0\]
Príklad 8. \[y^2 \frac{\partial u}{ \partial x} + xy \frac{\partial u}{\partial y} +x \frac{\partial u}{\partial z} = 0 \]
Príklad 9. Na graf funkcie \(z(x,y)\) sa môžeme pozerať ako plochu v \(\mathbb{R}^3\). Nájdite teké riešenie rovnice \[yz \frac{\partial u}{ \partial x} + xz \frac{\partial u}{\partial y} =xy,\] aby táto ploch obsahovala krivku danú rovnosťami \[x=1,\,\, y^2+z^2=1\] (je to teda prienik roviny a plášťa kužeľa).
Príklad 10. \[x^2y \frac{\partial u}{ \partial x} + (x+z) \frac{\partial u}{\partial y} +yz^2 \frac{\partial u}{\partial z} = 0 \]
Príklad 11. \[ \frac{\partial u}{ \partial x_1} + \frac{\partial u}{ \partial x_2} + \dots + \frac{\partial u}{\partial x_n} = 0\]