1. Fundamentals: Stationarity and invertibility, 16.12.2015. Decide whether the process

$$
x_{t}=3+1.5 x_{t-1}-1.2 x_{t-2}+u_{t}-1.3 u_{t-1}-0.2 u_{t-2}+0.2 u_{t-3}
$$

is stationary and invertible
For each of these properties write:

- (1 point for each property) polynomial, the roots of which you compute and the number of roots
- (1 point for each property) absolute values of these roots
- (1 point for each property) conclusion - if the process is stationary and invertble

2. The same for the processes:

- (sample exam, 2015) $x_{t}=2+1.2 x_{t-1}-1.1 x_{t-2}+0.7 x_{t-3}+u_{t}-1.3 u_{t-1}+1.2 u_{t-2}$
- (16.12.2015, second exam) $x_{t}=5+1.2 x_{t-1}+u_{t}+1.8 u_{t-1}+0.25 u_{t-2}+0.9 u_{t-3}$
- (8.1.2016) $x_{t}=5+1.2 x_{t-1}-0.8 x_{t-2}+0.1 x_{t-3}+u_{t}+1.8 u_{t-1}$

3. Fundamentals: ARIMA modelling, 16.12.2015 Load the data:
```
library(astsa); y <- ts(fmri$L1T5[,3])
```

(a) Test the hypothesis about the unit root. Write:

- (1 point) type of the test which you used and the reason for this choice
- (2 points) estimated regression (based on the output from R , not a general case),
- (2 points) hypothesis about the coefficients which is tested and derivation, why it corresponds to a unit root
- (1 point) conclusion - is there a unit root or not, and what are the consequences of this result for the modelling
(b) (6 points) Find a suitable model for the dat. Write only which ARIMA(p,d,q) model it is (i.e., specify p, d, q). Requirements: correct order of differencing, stationarity, invertibility, residuals
(c) (2 points)Write down the polynomials which we need to check when checking stationarity and invertibility. What condition has to be satisfied?

4. The same for the data

- (sample exam, 2015) library (astsa) ; y <- ts(fmri\$L1T1[,1])
- (16.12.2015, second exam) library(astsa) ; y <- ts(fmri\$L9T1[1:90,3])
- (8.1.2016) library (astsa) ; y <- ts(fmri\$L9T1[10:100,2])

