Application of nonlinear least squares: Estimating parameters of the Bass model

Beáta Stehlíková

Beáta Stehlíková Application of nonlinear least squares: Estimating parameters of

イロト イポト イヨト イヨト 三日

Bass model

Interactive graphs Estimating parameters of the Bass model in R Modelling sales of movies

Bass model

Beáta Stehlíková Application of nonlinear least squares: Estimating parameters of

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bass model

Frank Bass (1926-2006)

Mathematical models in marketing

Beáta Stehlíková

900

Application of nonlinear least squares: Estimating parameters of the

Bass model

F. Bass, A New Product Growth for Model Consumer Durables, Management Science, Vol. 15 (January 1969)

One of 10 papers in the selection *Top 10 Most Influential Papers* published in the 50-year history of Management Science (2004)

Perhaps the first thing to notice... is the title. It contains a typo. The correct title should be **A New Product Growth Model for Consumer Durables**. I suppose that I was so excited about having the paper accepted for publication that I failed to carefully proofread the galley proofs. (Frank Bass, 2004)

Mathematical model for a new product on the market

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Bass model

Example from the original Bass' paper:

Beáta Stehlíková

Application of nonlinear least squares: Estimating parameters of t

Bass model: idea

Innovators and imitators

The basic idea - there are two types of customers:

- innovators the buy the product using the information about the product, advertisement, etc.
- *imitators* their decision is based on experience of other people, their ratings, etc.

イロト イボト イヨト イヨト

-

Bass model: idea

Innovators and immitators - number of new customers:

Beáta Stehlíková

Application of nonlinear least squares: Estimating parameters of

Bass model: idea

New customers - total:

Bass model: idea

New customers and cumulative number of customers:

Beáta Stehlíková

Application of nonlinear least squares: Estimating parameters of the

Bass model: mathematical formulation

- Continuous time t
- F(t) = ratio of people (out of the total market volume) that bought the product by the time t
- ► f(t) = ratio of people (out of the total market volume) that bought the product at the time t, we have? f(t) = F'(t)
- Assumption: Probability that a person buys the product at time t, id he did not buy it before, is p + qF(t)
- Parameters: p given the effect of innovators, q the effect of imitators
- We obtain the equation:

$$\frac{f(t)}{1-F(t)}=p+qF(t),$$

pričom F(0) = 0

イロト 不得 トイヨト イヨト 二日

Bass model: solution

We have an ordinary differential equation for F(t):

$$\frac{F'(t)}{1-F(t)} = p + qF(t), F(0) = 0,$$

which can be solved by separation of variables:

$$\frac{dF}{(1-F)(p+qF)} = dt \Rightarrow F(t) = \frac{1-e^{-(p+q)t}}{1+\frac{q}{p}e^{-(p+q)t}}$$

イロト イポト イヨト イヨト 三日

Bass model: solution

Corresponding function f(t) = F'(t):

$$f(t) = \frac{(p+q)^2 e^{-(p+q)t}}{p \left[1 + \frac{q}{p} e^{-(p+q)t}\right]^2}$$

and its maximum - loosely speaking: at which time we sell the highest number of products - for q > p > 0:

$$t_{peak} = \frac{\ln(q/p)}{p+q}$$

・ロット (四) (日) (日) (日)

Bass model: solution

Exercises:

- Derive the expressions for f(t) = F(t)
- Derive the expression for t_{peak} from the previous slide, i.e., for the case of d q > p > 0.
- What happens for q < p? What is an intuitive explanation of this?

イロト 不得 トイヨト イヨト 三日

Bass model: parameters

As a first approximation - left: p, right: q

Baseline case: US, consumer, durable, launch in '76	0.016	0.409			
For other cases, multiply by the following factors					
Cellular telephone	0.226	0.635			
Non durable product	0.689	0.931			
Industrial	1.058	1.149			
Non commercial innovation	0.365	2.406			
Western Europe	0.464	0.949			
Asia	0.595	0.743			
Other regions	0.796	0.699			
For each year after 1976, multiply by	1.021	1.028			

Christophe Van den Bulte: *Want to know how diffusion speed varies across countries and products? Try using a Bass model.* PDMA Visions 26(4) 2002, pp. 12-15

Bass model: parameters

We define a function:

Now we can plot:

graphs (0.016, 0.409, 20) # baseline from the table

Bass model: parameters

Output

Beáta Stehlíková

Application of nonlinear least squares: Estimating parameters of

Interactive graphs

Beáta Stehlíková Application of nonlinear least squares: Estimating parameters of

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Bass model: interactive choice of parameters

We show how to create something like:

Library manipulate for R-studio

Load (if needed, install) library manipulate:

library(manipulate)

Example of how to use the function manipulate:

Among the parameters of slider we can specify also the initial value - using initial=... - try this.

For more info: ?slider

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Estimating parameters of the Bass model in R

Beáta Stehlíková Application of nonlinear least squares: Estimating parameters of

Example - data

Source: P. S. P. Cowpertwait, A. V. Metcalfe, Introductory Time Series with R. Springer 2009. Kapitola 3.3.4, str. 52-54

We are going to model the sales of VCRs in the USA in 1980-1989:

T <- 1:10 # time, year = 1979 + T Sales <- c(840,1470,2110,4000,7590,10950,10530,9470, 7790,5890)

Model: $Sales(t) = M \times f(t)$, where M are the total sales.

Exercise 1: Plot the time evolution of the sales.

イロト 不得 トイヨト イヨト 二日

Estimation of parameters

Function nls - estimates parameters using the method of nonlinear least squares.

We need initial values of parameters, we take:

- ▶ p a q from the table in the slides or using manipulate
- M equal to the total sales so far (they start decreasing and the total cummulative sales will not be much higher) or somewhat higher

イロト イポト イヨト イヨト 三日

Estimation of parameters

We use nls:

イロト イポト イヨト イヨト 三日

Estimation of parameters

Output:

```
##
## Formula: Sales ~ M * (((P + Q)^2/P) * exp(-(P + Q) * T))
       exp(-(P + Q) * T))^{2}
##
##
## Parameters:
##
      Estimate Std. Error t value Pr(>|t|)
## M 6.798e+04 3.128e+03 21.74 1.10e-07 ***
## P 6.594e-03 1.430e-03 4.61 0.00245 **
## Q 6.381e-01 4.140e-02 15.41 1.17e-06 ***
## ---
## Signif. codes:
                     0
                       '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
##
## Residual standard error: 727.2 on 7 degrees of freedom
                   Beáta Stehlíková
                               Application of nonlinear least squares: Estimating parameters of
```

Estimation of parameters

Exercise 2: Compare the actual sales with the fitted and make a prediction for the following years.

Remark: How to access the estimated parameters:

coef(Bass.nls)

M P Q ## 6.798093e+04 6.593972e-03 6.380909e-01

as.vector(coef(Bass.nls))

[1] 6.798093e+04 6.593972e-03 6.380909e-01

ヘロト ヘ河ト ヘヨト ヘヨト

Modelling sales of movies

Beáta Stehlíková Application of nonlinear least squares: Estimating parameters of

Sales of movies

Again, it makes sense to distinguish:

- some people go to see a movie because they know about it and want to see it (*innovators* in Bass model)
- others decide to see it because of the recommendation of those who have already seen it (*imitators* in Bass model)

イロト イボト イヨト イヨト

Two kinds of movies (I.)

Advertisement, people are waiting for the movie - a lot of people come to see it in the first days, e.g. *The Hobbit: An Unexpected Journey (2012)*

Sales by weeks:

Two kinds of movies (II.)

A movie becomes popular later, e.g. *The Blair Witch Project (1999)* Sales by weeks:

Beáta Stehlíková

Application of nonlinear least squares: Estimating parameters of the

Example

Data can be found for example at http://www.the-numbers.com We will use weekly data (1.-7. day, 8.-14. day, etc.) For example:

Date	Rank	Gross	% Change	Theaters	Per Theater	Total Gross	Davs	
2003/12/17	1	\$34,450,834		3,703	\$9,303	\$34,450,834	1	1
2003/12/18	1	\$17,019,987	-51%	3,703	\$4,596	\$51,470,821	2	
2003/12/19	1	\$21,811,549	+28%	3,703	\$5,890	\$73,282,370	3	150139984
2003/12/20	1	\$27,492,053	+26%	3,703	\$7,424	\$100,774,423	4	
2003/12/21	1	\$23,326,111	-15%	3,703	\$6,299	\$124,100,534	5	
2003/12/22	1	\$13,563,208	-42%	3,703	\$3,663	\$137,663,742	6	
2003/12/23	1	\$12,476,242	-8%	3,703	\$3,369	\$150,139,984	7	
2003/12/24	1	\$7,544,400	-40%	3,703	\$2,037	\$157,684,384	8	
2003/12/25	1	\$13,986,220	+85%	3,703	\$3,777	\$171,670,604	9	
2003/12/26	1	\$19,152,196	+37%	3,703	\$5,172	\$190,822,800	10	92233724
2003/12/27	1	\$17,249,267	-10%	3,703	\$4,658	\$208,072,067	11	
2003/12/28	1	\$14,196,641	-18%	3,703	\$3,834	\$222,268,708	12	
2003/12/29	1	\$10,490,000	-26%	3,703	\$2,833	\$232,759,000	13	
2003/12/30	1	\$9,615,000	-8%	3,703	\$2,597	\$241,937,000	14	
2003/12/31	1	\$7,500,000	-22%	3,703	\$2,025	\$249,400,000	15	

Beáta Stehlíková

Application of nonlinear least squares: Estimating parameters of

Example

Exercise: Estimate parameters of the Bass model and compare the actual and the fitted sales.

イロト イポト イヨト イヨト