Application of nonlinear least squares: Estimating parameters of the Bass model

Beáta Stehlíková
Bass model
Bass model

Frank Bass (1926-2006)

Mathematical models in marketing
Bass model

Perhaps the first thing to notice... is the title. It contains a typo. The correct title should be A New Product Growth Model for Consumer Durables. I suppose that I was so excited about having the paper accepted for publication that I failed to carefully proofread the galley proofs. (Frank Bass, 2004)

Mathematical model for a new product on the market
Bass model

Example from the original Bass’ paper:

![Graph showing actual sales and sales predicted by the Bass model for clothes dryers.](image-url)
Bass model: idea

Innovators and imitators

The basic idea - there are *two types of customers*:

- *innovators* - the buy the product using the information about the product, advertisement, etc.
- *imitators* - their decision is based on experience of other people, their ratings, etc.
Bass model: idea

Innovators and immitators - number of new customers:

Beáta Stehlíková Application of nonlinear least squares: Estimating parameters of the Bass model
Bass model: idea

New customers - total:
Bass model: idea

New customers and cumulative number of customers:
Bass model: mathematical formulation

- Continuous time t
- $F(t) =$ ratio of people (out of the total market volume) that bought the product by the time t
- $f(t) =$ ratio of people (out of the total market volume) that bought the product at the time t, we have? $f(t) = F'(t)$
- **Assumption:** Probability that a person buys the product at time t, if he did not buy it before, is $p + q F(t)$
- **Parameters:** p given the effect of innovators, q the effect of imitators
- We obtain the equation:

\[
\frac{f(t)}{1 - F(t)} = p + qF(t),
\]

pričom $F(0) = 0$
Bass model: solution

We have an ordinary differential equation for \(F(t) \):

\[
\frac{F'(t)}{1 - F(t)} = p + qF(t), \quad F(0) = 0,
\]

which can be solved by separation of variables:

\[
\frac{dF}{(1 - F)(p + qF)} = dt \Rightarrow F(t) = \frac{1 - e^{-(p+q)t}}{1 + \frac{q}{p}e^{-(p+q)t}}
\]
Bass model: solution

Corresponding function $f(t) = F'(t)$:

$$f(t) = \frac{(p + q)^2 e^{-(p+q)t}}{p \left[1 + \frac{q}{p} e^{-(p+q)t} \right]^2}$$

and its maximum - loosely speaking: at which time we sell the highest number of products - for $q > p > 0$:

$$t_{peak} = \frac{\ln(q/p)}{p + q}$$
Exercises:

- Derive the expressions for \(f(t) \) a \(F(t) \)
- Derive the expression for \(t_{\text{peak}} \) from the previous slide, i.e., for the case of \(d \ q > p > 0 \).
- What happens for \(q < p \)? What is an intuitive explanation of this?
Bass model: parameters

As a first approximation - left: p, right: q

Baseline case:
US, consumer, durable, launch in '76 ... 0.016 0.409

For other cases, multiply by the following factors ...

<table>
<thead>
<tr>
<th>Category</th>
<th>Multiplicator</th>
<th>Multiplicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular telephone</td>
<td>0.226</td>
<td>0.635</td>
</tr>
<tr>
<td>Non durable product</td>
<td>0.689</td>
<td>0.931</td>
</tr>
<tr>
<td>Industrial</td>
<td>1.058</td>
<td>1.149</td>
</tr>
<tr>
<td>Non commercial innovation</td>
<td>0.365</td>
<td>2.406</td>
</tr>
<tr>
<td>Western Europe</td>
<td>0.464</td>
<td>0.949</td>
</tr>
<tr>
<td>Asia</td>
<td>0.595</td>
<td>0.743</td>
</tr>
<tr>
<td>Other regions</td>
<td>0.796</td>
<td>0.699</td>
</tr>
</tbody>
</table>

For each year after 1976, multiply by ... 1.021 1.028

Bass model: parameters

We define a function:

```r
graphs <- function(p,q,t.max) {
  t <- seq(from=0,to=t_max,by=0.01)
  Bass.f <- ((p+q)^2/p)*exp(-(p+q)*t)/(1+(q/p)*exp(-(p+q)*t))^2
  Bass.F <- (1-exp(-(p+q)*t))/(1+(q/p)*exp(-(p+q)*t))
  par(mfrow=c(1,2))
  plot(t, Bass.f, type="l"); plot(t, Bass.F, type="l")
}
```

Now we can plot:

```r
graphs(0.016, 0.409, 20)  # baseline from the table
```
Bass model: parameters

Output

![Graph 1](image1.png)
![Graph 2](image2.png)
Interactive graphs
Bass model: interactive choice of parameters

We show how to create something like:
Library manipulate for R-studio

Load (if needed, install) library manipulate:

```r
library(manipulate)
```

Example of how to use the function `manipulate`:

```r
manipulate(graphs(p,q,t.max),
    p=slider(min=0.001, max=0.1, step=0.001),
    q=slider(min=0.1, max=1, step=0.01),
    t.max=slider(min=5, max=30, step=5))
```

Among the parameters of `slider` we can specify also the initial value - using `initial=...` - try this.

For more info: `?slider`
Estimating parameters of the Bass model in R
Example - data

We are going to model the sales of VCRs in the USA in 1980-1989:

```
T <- 1:10  # time, year = 1979 + T
Sales <- c(840,1470,2110,4000,7590,10950,10530,9470,7790,5890)
```

Model: \(Sales(t) = M \times f(t) \), where \(M \) are the total sales.

Exercise 1: Plot the time evolution of the sales.
Function `nls` - estimates parameters using the method of nonlinear least squares.

We need initial values of parameters, we take:

- \(p \), \(a \), \(q \) from the table in the slides or using `manipulate`
- \(M \) equal to the total sales so far (they start decreasing and the total cumulative sales will not be much higher) or somewhat higher
Estimation of parameters

We use `nls`:

```r
Bass.nls <- nls(Sales ~ M*(((P+Q)^2/P)*exp(-(P+Q)*T))/(1+(Q/P)*exp(-(P+Q)*T))^2,
               # add P and Q below
               start = c(list(M=sum(Sales),P=...,Q=...)))
summary(Bass.nls)
```
Estimation of parameters

Output:

```r
##
## Formula: Sales ~ M * (((P + Q)^2/P) * exp(-(P + Q) * T)) * exp(-(P + Q) * T))^2
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## M 6.798e+04 3.128e+03 21.74 1.10e-07 ***
## P 6.594e-03 1.430e-03 4.61 0.00245 **
## Q 6.381e-01 4.140e-02 15.41 1.17e-06 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
##
## Residual standard error: 727.2 on 7 degrees of freedom
```
Estimation of parameters

Exercise 2: Compare the actual sales with the fitted and make a prediction for the following years.

Remark: How to access the estimated parameters:

```r
coef(Bass.nls)
```

```r
## M P Q
## 6.798093e+04 6.593972e-03 6.380909e-01
```

```r
as.vector(coef(Bass.nls))
```

```r
```
Modelling sales of movies
Sales of movies

Again, it makes sense to distinguish:

- some people go to see a movie because they know about it and want to see it (*innovators* in Bass model)
- others decide to see it because of the recommendation of those who have already seen it (*imitators* in Bass model)
Two kinds of movies (I.)

Advertisement, people are waiting for the movie - a lot of people come to see it in the first days, e.g. *The Hobbit: An Unexpected Journey* (2012)

Sales by weeks:
Two kinds of movies (II.)

A movie becomes popular later, e.g. *The Blair Witch Project* (1999)

Sales by weeks:
Example

Data can be found for example at http://www.the-numbers.com

We will use weekly data (1.-7. day, 8.-14. day, etc.)

For example:
Example

The LOTR: Return of the King
Sales <- c(150139984, 92233724, 52192378, 20100138,
 15302761, 9109110, 7300394, 5612861, 5995863,
 3809753, 3140000, 4062251, 2923806, 2055943)

Exercise: Estimate parameters of the Bass model and compare the actual and the fitted sales.