Autoregressive processes II.

Beáta Stehlíková

Stationarity of a given $A R(p)$ process

Lecture: $A R(1)$ and $A R(2)$ processes

For the process

$$
x_{t}=\delta+\alpha x_{t-1}+u_{t}
$$

we have shown that stationarity is equivalent to $|\alpha|<1$.
Writing the process in terms of the lag operator L :

$$
(1-\alpha L) x_{t}=\delta+u_{t}
$$

Stationarity condition: the root of

$$
1-\alpha L=0
$$

are in absolute value greater than 1.

Lecture: $A R(1)$ and $A R(2)$ processes

The process

$$
x_{t}=\delta+\alpha_{1} x_{t-1}+\alpha_{2} x_{t-2}+u_{t}
$$

can be written as

$$
\left(1-\alpha_{1} L-\alpha_{2} L^{2}\right) x_{t}=\delta+u_{t}
$$

Stationarity condition: the roots of

$$
1-\alpha_{1} L-\alpha_{2} L^{2}=0
$$

are in absolute value greater than 1, i.e., they are outside of the unit circle.

General $A R(p)$ process

The process

$$
x_{t}=\delta+\alpha_{1} x_{t-1}+\cdots+\alpha_{p} x_{t-p}+u_{t}
$$

can be written as

$$
\left(1-\alpha_{1} L-\cdots-\alpha_{p} L^{p}\right) x_{t}=\delta+u_{t}
$$

Stationarity condition: the roots of

$$
1-\alpha_{1} L-\ldots \alpha_{p} L^{p}=0
$$

are in absolute value greater than 1, i.e., they are outside of the unit circle.

Stationarity in R

We will use the libary fArma and the function armaRoots
library (fArma)

Roots of

$$
1-\alpha_{1} L-\alpha_{2} L^{2}-\cdots-\alpha_{p} L^{p}=0
$$

can be found by:
armaRoots(c(alfa_1,alfa_2, ..., alfa_p))

Stationarity in R

For example:

```
# in we want both graphs in the same figure
# (otherwise they will be in separate figures):
par(mfrow = c(1, 2))
# roots of 1 - 1.2 L - 0.5 L`2 =0
armaRoots(c(1.2,0.5))
# restore original settings
par(mfrow = c(1, 1))
```

The output is graphical as well as given in a table (real part, imaginary part, absolute value)

Stationarity in R

Graphically:

Stationarity in R

One of the roots is not outside of the unit circle, therefore the process

$$
\left(1-1.2 L-0.5 L^{2}\right) x_{t}=\delta+u_{t}
$$

is not stationary.

Stationarity in R

Exercises:

- Check the stationarity of the $\operatorname{AR}(2)$ model for the spread from last week lesson
- Find another example of a stationry $\operatorname{AR}(2)$ process
- Find an example of a nonstationary $\operatorname{AR}(2)$ process.
- Part of fundamentals on exam: find out whether the given process is stationary

Autocorrelation function of an AR process

Solving the difference equation

We will solve the difference equations for ACF of the two $\operatorname{AR}(2)$ processes from the lecture.

Function ARMAacf

For the process $x_{t}=1.5 x_{t-1}-0.8 x_{t-2}+u_{2}$:
r <- ARMAacf (ar=c(1.5, -0.8), lag.max=10)

Plot the ACF (for example using barplot)

Result

Exercise: Modelling long-term unemployment

Data

```
library(WDI)
WDIsearch('long.*term.*unemployment')
```

\#\# indicator
\#\# [1,] "SL.UEM.LTRM.FE.ZS"
\#\# [2,] "SL.UEM.LTRM.MA.ZS"
\#\# [3,] "SL.UEM.LTRM.ZS"
\#\# name
\#\# [1,] "Long-term unemployment, female (\% of female unemp
\#\# [2,] "Long-term unemployment, male (\% of male unemployme
\#\# [3,] "Long-term unemployment (\% of total unemployment)"

Data

data <- WDI(indicator='SL.UEM.LTRM.ZS', country=c('CA'),
start=1982)
data <- data[order(data\$year),] \# 20 years
y <- data\$SL.UEM.LTRM.ZS
y <- ts(y, start=1982, frequency=1)

Exericise

Find a suitable AR model for y. Check its stationary and residuals. Does it have a periodical character (as suggested by the plot)?

