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Time series analysis

o We have monthly data - number of airline passengers:
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G. E. P. Box, G. M. Jenkindgime Series Analysis. Forecasting and Control.

o Question: What the future number of passenger going

to be?
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Time series analysis

o We see amcreasing tren@ndseasonalitfymonths).

o Decomposition in R software:
pl ot (deconpose(| og( AP) ) )
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Time series analysis

 Intuition: without a shockincreasing trend and
seasonality remajrso it is going to be something like:
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e QuestionsHow to express it quantitatively? How to
determine the accuracy of the estimates, how to
construct confidence intervals?
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Box a Jenkins

A big part of the course will be based on the approach of
Box and Jenkins

"The first paper you wrote
with Jenkins has been
considered as a
breakthrough in statistics.
How do you become
Interested In time series?"

Interview with G. E. P. Boxom after the celebration of hist8birthday (1999):
http://halweb.uc3m.es/esp/Personal/personas/dpaol@s/boxlJFinter4.PDF
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Modelling volatility

3

Robert F. Engle Ill Clive W.J. Granger

The Sveriges Riksbank Prize in Economic Sciences in Memaory of Alfred
Nobel 2003 was divided equally between Robert F. Engle Il "for
methods of analyzing economic time series with time-varying volatility
(ARCH)" and Clive W.], Granger "for methods of analyzing economic
time series with common trends (cointegration}".

http://www.nobelprize.org

o ARCH model and its generalizationglso a part of
this course
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Curiosity

o The wife of R. Engle was born in Slovakia, in Presov,
In 2005 they visited Presov together.

Rob, Marianne, Jordan and Lindsey in
Williamstown 2002,

http://www.nobelprize.org/nobgbrizes/economics/laureates/2003/engle-autobio.html

http://lwww.presov.sk/portal/?c=12&id=3590 (in Slovak)
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Basic concepts - outline of the lecture

o Time serie, moments
o Stationarity, ergodicity
o White noise

o Wold representation

e Autocorrelation function, tests about the
autocorrelation function

» Lag operator
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Time serie, moments

o Stochastic process, ...,z -itis fully determined
by T-dimensional cumulative distribution function
o Usually we concentrate on the first two moments:
o expected valueé’ ||
o varianceV ar|xy]
o covariances ' ov[x, x|, SO callecautacovariances
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Stationarity, ergodicity

o Usually we have only one time series - one realization
of the random process in order to o some statistical
Inference we need additional assumptions

o For example: to estimate the expected value,... we need
more than one realization of the random variable

e Ergodic process sample moments computed from the
time series withl’ observations converge as— oo to
corresponding moments

e This concept makes sense only if we assume that
Elxy] = p, Varlzy = o?,... forvt
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Stationarity, ergodicity

e Strong stationarityjoint CDF does not change when
shifted in time

o Usually we work with a weaker assumptienweak

stationarity:
(1) Elr = p Vi
(2) Covlzg, xs] = (|t —s|) Vi, s

from (2) it follows: Var|xz:] = const. for Vi

e In what follows, under "stationarity" we will
understand the weak stationarity
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Stationarity - data

o Stationary time serie: data are reverting to some
equilibrium value, around which they fluctuate

o Nonstationary time serie: for example with a trend
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Stationarity - data

e EXAMPLE 1

Japanese annual motor vehicle production for 1947-1989
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http://data.is/RVcjbL

We see:
Increasing trends- expected value is not constant in

time = time seriess not stationary
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Stationarity - data

e EXAMPLE 2
Relative price:if two goods are on the same market,

their relative price should fluctuate around some
equilibrium value

Chart 3.1 lllustrating stationary and non-stationary data series
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In Chart 3.1 above, Panel A shows a data series that is non-stationary — it shows no tendency to return to a stable value
over the period. Panel B, on the other hand, shows a stationary data series — the series rapidly reverts to a constant
long-run value over the period. If two products are in the same market then we would expect the relative price of these

two products to behave in a similar fashion to the data series in Panel B.
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Stationarity - data

Chart 3.2: Price of Scottish Salmon relative to the price of Norwegian salmon in the UK
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The above chart shows that the price of Scottish salmon relative to the price of Norwegian salman in the UK appears
to vary randomly around a constant long-run value, which suggests that the relative price is stationary. The econometric
test for stationarity confirms that the relative price of Scottish salmon is stationary, which is what we would expect to
observe if Scottish and Nerwegian gutted salmon compete in the same product market in the UK.

An Introduction to Quantitative Techniquesin Competition Analysis, Lexecon, 2005

http://www.crai.com/ecp/publications/fullst.htm.
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White noise

e White noise{w;} - an important example of a
stationary process

E[ut = 0 vVt
Varlu] = o° VWt
Covlug,us)] = 0 Vt#s
Ry J\/\ N/M m W

o Basic random process, we will use it to define others,
aISO mOdels for data Time series - introduction — p.16/35



Stationarity - example 1

e Let u; be awhite noise, we define

Tt = Ut + Ut—1

o We compute:
E[th] — O, V&T[th] = 20’2

o’  for|t—s| =1

Cov|xy, xg| = {

— process Is stationary

0 for|t—s|=2,3,...
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Stationarity - example 2

e Letwu; be awhite noise; we define

U1 fort =1
Yt =

Yi—1 +ur fort =2,3,...

e y; can be written ag; = Zle Uj

o We compute:
Ely] =0, Varly] =to?

2

Covlys,ys] = 0 min(t, s)

— process is not stationary
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Stationarity - examples 1, 2

o Comparison of trajectories of the processes from the
previous examples:

o left - stationary process (ex. 1)

o right - nonstationary process (ex. 2), we can see the
Increasing dispersion
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Stationarity - example 3

o Let{u}* _ be awhite noise; define
(3) Tt =+ Z Vjut—j,
§=0

where the coefficients; satisfy the condition
Z;)i()w? < 007¢0 — 1
o We compute:

Bl = p, Var|z) = Z¢
7=0

Cov|y, Tit| = o’ Z ViV
j=0

— process is stationary
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Woldo representation

o Previous example: process which has the form (3),
IS stationary

e It can be shown:
Every stationary process can be written in the form
(3), 1. e.

@)
Ly — W -+ Z @bjut—j»
7=0

where the coefficients; satisfy
> oot <oo,4p=1 and u; isawhite noise

o This representation of a stochatic process is called the
Wold representatiof/\Vold, 1938)
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Autocorrelation function - motivation

o Left: y; = wy, right:y; = 0.9y 1 + wy
o Sample path and how the valye depends on;_
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Autocorrelation function

o Autocorrelation function (ACFf a stationary process:

(1)
Cov(xy, Tiyr)

\/Var(zt) Var(xeyr)

p(7) = Cor(wy, Tpir) =

o Properties:

p(0) =1, p(1)=p(-7)

— It suffices to compute(r) forr=1,2,...
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Autocorrelation function

o Ergodic process» expected value, variance,
covariances can be consistently estimated from the
datax;. ... z7:

T—1

W7) =7 ) (@ = i) (@ — )

t=1
— consistent estimate of the ACF:

- asymptotically unbiased
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Autocorrelation function - tests

o Estimate of the ACHn the case of a white noise
o asymptotically unbiased
o variancex 1/T

o approximate 95 % confidence interva2/+/T, it
IS often plotted together with estimated ACF

e Inthe case of a stochastic process, for whicth = 0
for - > k, for theser we have

Var[p(t) <1—|—22p )
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Autocorrelation function - tests

o Testing,if a give time series is a white noise:
1. confidence intervak=2/+/T for every
autocovariance separately

2. testing the zero value ofp(1), ..., p(m) together:
o Box & Pierce, 1970if Hj, holds, asymptotically

Q= sz ~ Xim

o Ljung & Box, 1978. modlflcatlon with better
properties in finite samples:

— p(j) 2
71=1
o degress of freedom change when we are testing
residuals from a model
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ACF of a time series - example 1

o We simulate 150 independent realizations\@b, 1)
distribution (so a white noise):

e L

e ACF In R software:

o function , for example.

o autocorrelation for lag O is always equal to 1, we
can omit it, for example:
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ACF of a time series - example 1

o Output:

R R Console

> act (x)
> 2/=3grt (150)
[1] ©0.1832993

> |

R R Graphics: Device 2 (ACTIVE)

Series X

1.0

ACF
0.6
I

0.2
|
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ACF of a time series - example 1

o Without lag O:

Series X

0.15
I

ACF
0.05
I

-0.05
I

-0.15

o Review guestions: -9

o What hypothesis can we test for every
autocorrelation?

o When is this hypothesis rejected?
o What is the result in this concrete.example?. .. - ;.2o/ss



ACF of a time series - example

e Ljung-Box statistics:
o In R - function

o for example, we want to test whether the first three
autocorrelations are zero:

o Review guestions:
o How Is the test statistics computed?

o What is the probability distribution of the statistics
under the null hypothesis?

o When is the null hypothesis rejected?
o~ How can we compute the p-value?
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ACF of a time series - example

o We get. > Box.test (x,lag=3,type="Lijung™)

Box-Ljung test

data: x
X—-=zquared = 1.7655, df = 3, p-value = 0.6225

o Extracting p-values:

— we write a loop and plot the p-hodnoty for all of the
lags and compare them with 0.65what follows from
this plot?
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Lag operator

o Lag operatorL - useful when studying time series
e Shifts the value of the process one period backwards:

Lxy = x4

o Properties:
o powers:L?x; = L(Lx;) = x4_9
o LV =1 isanidentity:(1 — L)x; = x; — 241
o working with powers: L?(L?%) = L°
o multiplication:
(1-0.5L)(1—-0.3L) =1—0.8L+ 0.15L?

o If ¢ Is a constant, then for example
(1—-0.1L+2L%)c=(1—-0.1+2)c=2.9c
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Practice problems

Compute the expected value, variance and autocorrelation
function for the following processes:

1. 2y = u; + up_o, Whereu IS a white noise

2. vy = wu—1, Whereu; are independent realizations of a
random variable with zero expected value zero and a
finite variance

3. z; = u; for t odd andr; = ¥2(u?_, — 1) for ¢ even,
whereu Is a white noise with distributiotv (0, 1)
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Practice problems - remark

o |t might be useful to check the computation by
simulating the process and computing its sample ACF
(and maybe running this for a couple of times).

o For example for the problem 2:

> set.seed(1234) # for reproducibility

> nh <- 500 # length of u

> U <- rnorm(n) # we need concrete distribution
> X <- u[2:n]*u[l:(n-1)] # process x

> plot(acf(x)[1:20]) # sample ACF
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Practice problems - remark

o Output from this code:

Series X
L
[ B
d |
s g | ]
E g I‘ ‘ |‘| ‘ ‘I
Ly
o |
=
| | | ]
5 10 15 20
Lag
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