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Time series analysis

• We have monthly data - number of airline passengers:

G. E. P. Box, G. M. Jenkins:Time Series Analysis: Forecasting and Control.

• Question: What the future number of passenger going
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Time series analysis

• We see anincreasing trendandseasonality(months).

• Decomposition in R software:
plot(decompose(log(AP)))
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Time series analysis

• Intuition: without a shock,increasing trend and
seasonality remain, so it is going to be something like:

• Questions:How to express it quantitatively? How to
determine the accuracy of the estimates, how to
construct confidence intervals?
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Box a Jenkins

A big part of the course will be based on the approach of
Box and Jenkins

"The first paper you wrote
with Jenkins has been
considered as a
breakthrough in statistics.
How do you become
interested in time series?"

Interview with G. E. P. Boxom after the celebration of his 80th birthday (1999):

http://halweb.uc3m.es/esp/Personal/personas/dpena/articles/boxIJFinter4.PDF
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Modelling volatility

http://www.nobelprize.org

• ARCH model and its generalizations- also a part of
this course
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Curiosity

• The wife of R. Engle was born in Slovakia, in Prešov,
in 2005 they visited Prešov together.

http://www.nobelprize.org/nobelprizes/economics/laureates/2003/engle-autobio.html

http://www.presov.sk/portal/?c=12&id=3590 (in Slovak)
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Basic concepts - outline of the lecture

• Time serie, moments

• Stationarity, ergodicity

• White noise

• Wold representation

• Autocorrelation function, tests about the
autocorrelation function

• Lag operator
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Time serie, moments

• Stochastic processx1, . . . , xT - it is fully determined
by T -dimensional cumulative distribution function

• Usually we concentrate on the first two moments:
⋄ expected valueE[xt]
⋄ varianceV ar[xt]
⋄ covariancesCov[xt, xs], so calledautocovariances
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Stationarity, ergodicity

• Usually we have only one time series - one realization
of the random process→ in order to o some statistical
inference we need additional assumptions

• For example: to estimate the expected value,... we need
more than one realization of the random variable

• Ergodic process- sample moments computed from the
time series withT observations converge asT → ∞ to
corresponding moments

• This concept makes sense only if we assume that
E[xt] = µ, V ar[xt] = σ

2, . . . for ∀t
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Stationarity, ergodicity

• Strong stationarity: joint CDF does not change when
shifted in time

• Usually we work with a weaker assumption→ weak
stationarity:

E[xt] = µ ∀t(1)

Cov[xt, xs] = γ(|t− s|) ∀t, s(2)

from (2) it follows: V ar[xt] = const. for ∀t
• In what follows, under "stationarity" we will

understand the weak stationarity
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Stationarity - data

• Stationary time serie: data are reverting to some
equilibrium value, around which they fluctuate

• Nonstationary time serie: for example with a trend
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Stationarity - data

• EXAMPLE 1

http://data.is/RVcjbL

We see:
increasing trend⇒ expected value is not constant in
time ⇒ time seriesis not stationary
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Stationarity - data

• EXAMPLE 2
Relative price:if two goods are on the same market,
their relative price should fluctuate around some
equilibrium value
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Stationarity - data

An Introduction to Quantitative Techniques in Competition Analysis, Lexecon, 2005

http://www.crai.com/ecp/publications/fulllist.htm.
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White noise

• White noise{ut} - an important example of a
stationary process

E[ut] = 0 ∀t
V ar[ut] = σ2 ∀t

Cov[ut, us] = 0 ∀t 6= s
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• Basic random process, we will use it to define others,
also models for data Time series - introduction – p.16/35



Stationarity - example 1

• Let ut be a white noise, we define

xt = ut + ut−1

• We compute:

E[xt] = 0, V ar[xt] = 2σ
2

Cov[xt, xs] =

{

σ2 for |t− s| = 1
0 for |t− s| = 2, 3, . . .

→ process is stationary
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Stationarity - example 2

• Let ut be a white noise; we define

yt =

{

u1 for t = 1

yt−1 + ut for t = 2, 3, . . .

• yt can be written asyt =
∑t

i=1 ui

• We compute:

E[yt] = 0, V ar[yt] = t σ
2

Cov[yt, ys] = σ
2 min(t, s)

→ process is not stationary
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Stationarity - examples 1, 2

• Comparison of trajectories of the processes from the
previous examples:
⋄ left - stationary process (ex. 1)
⋄ right - nonstationary process (ex. 2), we can see the

increasing dispersion
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Stationarity - example 3

• Let {ut}∞t=−∞ be a white noise; define

xt = µ+

∞
∑

j=0

ψjut−j ,(3)

where the coefficientsψj satisfy the condition
∑∞

j=0 ψ
2
j <∞, ψ0 = 1

• We compute:

E[xt] = µ, V ar[xt] =

∞
∑

j=0

ψ2j

Cov[xt, xt+k] = σ
2

∞
∑

j=0

ψjψk+j

→ process is stationary
Time series - introduction – p.20/35



Woldo representation

• Previous example: processxt, which has the form (3),
is stationary

• It can be shown:
Every stationary processxt can be written in the form
(3) , i. e.

xt = µ+

∞
∑

j=0

ψjut−j ,

where the coefficientsψj satisfy
∑∞

j=0 ψ
2
j <∞, ψ0 = 1 and ut is a white noise

• This representation of a stochatic process is called the
Wold representation(Wold, 1938)
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Autocorrelation function - motivation

• Left: yt = ut, right: yt = 0.9yt−1 + ut
• Sample path and how the valueyt depends onyt−1
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Autocorrelation function

• Autocorrelation function (ACF)of a stationary process:

ρ(τ) =
γ(τ)

γ(0)t. j.

ρ(τ) = Cor(xt, xt+τ ) =
Cov(xt, xt+τ )

√

V ar(xt) V ar(xt+τ )

• Properties:

ρ(0) = 1, ρ(τ) = ρ(−τ)

→ it suffices to computeρ(τ) for τ = 1, 2, . . .
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Autocorrelation function

• Ergodic process→ expected value, variance,
covariances can be consistently estimated from the
datax1, . . . , xT :

µ̂ =
1

T

T
∑

t=1

xt, γ̂(0) =
1

T

T
∑

t=1

(xt − µ̂)2

γ̂(τ) =
1

T

T−τ
∑

t=1

(xt − µ̂)(xt+τ − µ̂)

→ consistent estimate of the ACF:

ρ̂(τ) =
γ̂(τ)

γ̂(0)

- asymptotically unbiased
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Autocorrelation function - tests

• Estimate of the ACFin the case of a white noise
⋄ asymptotically unbiased
⋄ variance≈ 1/T
⋄ approximate 95 % confidence interval: ±2/

√
T , it

is often plotted together with estimated ACF

• In the case of a stochastic process, for whichρ(τ) = 0
for τ > k, for theseτ we have

V ar[ρ̂(τ)] ≈ 1
T

(

1 + 2

k
∑

j=1

ρ̂(j)2

)
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Autocorrelation function - tests

• Testing,if a give time series is a white noise:

1. confidence interval±2/
√
T for every

autocovariance separately
2. testing the zero value ofρ(1), . . . , ρ(m) together:

⋄ Box & Pierce, 1970:if H0 holds, asymptotically

Q = T

m
∑

j=1

ρ(j)2 ∼ χ2m

⋄ Ljung & Box, 1978: modification with better
properties in finite samples:

Q = T (T + 2)

m
∑

j=1

ρ(j)2

T − j
∼ χ2m

⋄ degress of freedom change when we are testing
residuals from a model
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ACF of a time series - example 1

• We simulate 150 independent realizations ofN(0, 1)
distribution (so a white noise):

Time

x
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• ACF in R software:
⋄ functionacf, for example.acf(x)
⋄ autocorrelation for lag 0 is always equal to 1, we

can omit it, for example:
plot(acf(x)[1:20])
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ACF of a time series - example 1

• Output:
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ACF of a time series - example 1

• Without lag 0:
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• Review questions:
⋄ What hypothesis can we test for every

autocorrelation?
⋄ When is this hypothesis rejected?
⋄ What is the result in this concrete example?Time series - introduction – p.29/35



ACF of a time series - example

• Ljung-Box statistics:
⋄ in R - functionBox.test
⋄ for example, we want to test whether the first three

autocorrelations are zero:

Box.test(x, lag=3, type="Ljung")

• Review questions:
⋄ How is the test statistics computed?
⋄ What is the probability distribution of the statistics

under the null hypothesis?
⋄ When is the null hypothesis rejected?
⋄ How can we compute the p-value?
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ACF of a time series - example

• We get:

• Extracting p-values:
Box.test(x,lag=3,type="Ljung")$p.value
→ we write a loop and plot the p-hodnoty for all of the
lags and compare them with 0.05→ what follows from
this plot?
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Lag operator

• Lag operatorL - useful when studying time series

• Shifts the value of the process one period backwards:

Lxt = xt−1

• Properties:
⋄ powers:L2xt = L(Lxt) = xt−2
⋄ L0 = 1 is an identity:(1− L)xt = xt − xt−1

⋄ working with powers:L2(L3) = L5

⋄ multiplication:
(1− 0.5L)(1− 0.3L) = 1− 0.8L+ 0.15L2

⋄ if c is a constant, then for example
(1− 0.1L+ 2L2)c = (1− 0.1 + 2)c = 2.9c
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Practice problems

Compute the expected value, variance and autocorrelation
function for the following processes:

1. xt = ut + ut−2, whereu is a white noise

2. xt = utut−1, whereut are independent realizations of a
random variable with zero expected value zero and a
finite variance

3. xt = ut for t odd andxt =
√
2

2
(u2t−1 − 1) for t even,

whereu is a white noise with distributionN(0, 1)
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Practice problems - remark

• It might be useful to check the computation by
simulating the process and computing its sample ACF
(and maybe running this for a couple of times).

• For example for the problem 2:
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Practice problems - remark

• Output from this code:
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