ARMA models Part 1: Autoregressive models (AR)

Beáta Stehlíková

Time Series Analysis
Faculty of Mathematics, Physics and Informatics, Comenius University

ARMA models

- Terminology:
\diamond AR - autoregressive model
\diamond MA - moving average
\diamond ARMA - their combination
- Firstly: autoregressive process of first order - AR(1)
\diamond definition
\diamond stationarity, condition on parameters
\diamond calculation of moments and ACF
\diamond simulated data
\diamond practical example with real data
- Then:
\diamond autoregressive processes of higher order
\diamond how to choose a suitable order of an AR model for the data
I.

Autoregressive process of the first order AR(1)

$A R(1)$ - definition

- $\mathrm{AR}(1)$ process:

$$
x_{t}=\delta+\alpha x_{t-1}+u_{t}
$$

where δ and α are constants and $\left\{u_{t}\right\}$ is a white noise

- Let for time $t=t_{0}$ we are given the value $x_{t_{0}}$:

$$
\begin{aligned}
x_{t_{0}+1}= & \delta+\alpha x_{t_{0}}+u_{t_{0}+1} \\
x_{t_{0}+2}= & \delta+\alpha x_{t_{0}+1}+u_{t_{0}+2}= \\
& \delta(1+\alpha)+\alpha^{2} x_{t_{0}}+\left(\alpha u_{t_{0}+1}+u_{t_{0}+2}\right) \\
x_{t_{0}+3}= & \ldots
\end{aligned}
$$

in general:

$$
\begin{equation*}
x_{t_{0}+\tau}=\alpha^{\tau} x_{t_{0}}+\frac{1-\alpha^{\tau}}{1-\alpha} \delta+\sum_{j=0}^{\tau-1} \alpha^{j} u_{t_{0}+\tau-j} \tag{1}
\end{equation*}
$$

$A R(1)$ - stationarity

- From (1):

$$
x_{t}=\alpha^{t-t_{0}} x_{t_{0}}+\frac{1-\alpha^{t-t_{0}}}{1-\alpha} \delta+\sum_{j=0}^{t-t_{0}-1} \alpha^{j} u_{t-j}
$$

- Deterministic initial conditions: value of the process at time t_{0} is $x_{0} \rightarrow$ process
- Random initial conditions:
\diamond Process is generated for $t \in \mathbb{R} \rightarrow$ value $x_{t_{0}}$ is random.
\diamond If $-1<\alpha<1$, then for $t_{0} \rightarrow-\infty$ we obtain

$$
\begin{equation*}
x_{t}=\frac{1}{1-\alpha} \delta+\sum_{j=0}^{\infty} \alpha^{j} u_{t-j} \tag{2}
\end{equation*}
$$

\diamond Wold representation: $\psi_{j}=\alpha^{j}$ for $|\alpha|<1 \rightarrow$ process is weakly stationary.

AR(1) - moments

- Recall the explicit expression of the process (2):

$$
x_{t}=\frac{\delta}{1-\alpha}+\sum_{j=0}^{\infty} \alpha^{j} u_{t-j}
$$

- Expected value:

$$
\begin{aligned}
E\left[x_{t}\right] & =E\left[\frac{\delta}{1-\alpha}+\sum_{j=0}^{\infty} \alpha^{j} u_{t-j}\right] \\
& =\frac{\delta}{1-\alpha}+\sum_{j=0}^{\infty} \alpha^{j} E\left[u_{t-j}\right]=\frac{\delta}{1-\alpha}
\end{aligned}
$$

$\diamond E\left[x_{t}\right]=0$ iff $\delta=0$
\diamond in general: $E\left[x_{t}\right] \neq \delta$, but they have the same sign (since $|\alpha|<1$)

AR(1) - moments

- Variance:

$$
\begin{aligned}
\operatorname{Var}\left[x_{t}\right] & =\operatorname{Var}\left[\frac{\delta}{1-\alpha}+\sum_{j=0}^{\infty} \alpha^{j} u_{t-j}\right] \\
& =\sum_{j=0}^{\infty} \operatorname{Var}\left[\alpha^{j} u_{t-j}\right]=\sum_{j=0}^{\infty} \alpha^{2 j} \operatorname{Var}\left[u_{t-j}\right] \\
& =\sigma^{2} \sum_{j=0}^{\infty} \alpha^{2 j}=\sigma^{2} \frac{1}{1-\alpha^{2}}
\end{aligned}
$$

where
\diamond we used that the dispersion of a sum of uncorrelated random variables is a sum of variances
$\diamond \sigma^{2}$ is a variance of white noise $\left\{u_{j}\right\}$

AR(1) - moments

- Autocovariances (we use that že $\operatorname{Cov}\left[u_{k}, u_{l}\right]=\sigma^{2}$ for $k=l$ and $\operatorname{Cov}\left[u_{k}, u_{l}\right]=0$ for $\left.k \neq l\right)$:

$$
\begin{aligned}
\operatorname{Cov}\left[x_{t}, x_{t-s}\right] & =E\left[\left(\sum_{i=0}^{\infty} \alpha^{i} u_{t-i}\right)\left(\sum_{j=0}^{\infty} \alpha^{j} u_{t-s-j}\right)\right] \\
& =\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \alpha^{i+j} E\left[u_{t-i} u_{t-s-j}\right] \\
& =\sigma^{2} \sum_{j=0}^{\infty} \alpha^{s+2 j}=\alpha^{s} \frac{\sigma^{2}}{1-\alpha^{2}}
\end{aligned}
$$

- Autocorrelations:

$$
\operatorname{Cor}\left[x_{t}, x_{t-s}\right]=\frac{\operatorname{Cor}\left[x_{t}, x_{t-s}\right]}{\operatorname{Var}\left[x_{t}\right] \operatorname{Var}\left[x_{t-s}\right]}=\alpha^{s}
$$

Example - simulated data

- AR(1) process

$$
x_{t}=\delta+\alpha x_{t-1}+u_{t},
$$

where the white noise u_{t} has a normal distribution, $\delta=0, \sigma^{2}=1$

- We consider $\alpha=\{0.9,0.6,-0.9\}$
- We present:
\diamond theoretical ACF
\diamond simulated trajectory
\diamond sample ACF estimated from the simulated data

Example - simulated data, $\alpha=0.9$

- Theoretical ACF:

Revision question: What are its values equal to?

- Simulation of the process and its sample ACF:

Example - simulated data, $\alpha=0.6$

- Theoretical ACF:

Revision question: What are its values equal to?

- Simulation of the process and its sample ACF:

Example - simulated data, $\alpha=-0.9$

- Theoretical ACF:

Revision question: What are its values equal to?

- Simulation of the process and its sample ACF:

Example - real data

- G. Kirchgässner: Causality Testing of the Popularity Function: An Empirical Investigation for the Federal Republic of Germany, 1971-1982, Public Choice 45 (1985), p. 155-173.
- [Kirchgässner, Wolters], example 2.2
- Germany, January 1971 - April 1982
- $C D U_{t}=$ popularity of the $\mathrm{CDU} / \mathrm{CSU}$

a) Popularity of the CDU/CSU, 1971 - 1982

Example - real data

- Estimated AR(1) model:

$$
\begin{aligned}
& \mathrm{CDU}_{\mathrm{t}}=\underset{(3.43)}{8.053}+\underset{(17.10)}{0.834} \mathrm{CDU}_{\mathrm{t}-1}+\hat{\mathrm{u}}_{\mathrm{t}}, \\
& \overline{\mathrm{R}}^{2}=0.683, \mathrm{SE}=1.586, \mathrm{Q}(11)=12.516(\mathrm{p}=0.326) .
\end{aligned}
$$

The estimated t values are given in parentheses. The autocorrelogram, which is also given in Figure 2.4, does not indicate any higher-order process. Moreover, the Box-Ljung Q Statistic with 12 correlation coefficients (i.e. with 11 degrees of freedom) gives no reason to reject this model.

Example - real data

- Is the estimated model stationary?
- Residuals from the model should be a white noise:
\diamond On the graph with ACF there are intervals. What they are used for? Compute its bounds using the available data.
\diamond In the text authors mentioned ACF of the residuals and Ljung-Box Q statistics - what hypothesis are tested, how and what are the results?
- What is the expected value of the random variable $C D U_{t}$?

Predictions

- Process is stationary \rightarrow it has a constant expected value
- It is also meaningful to compute conditional expected value
- In the previous example:
\diamond We have a stationary process as a model for popularity
\diamond We have found unconditional expected value of the process - it is constant
\diamond Conditional expected value - for example: What is the expected popularity next month if its current value is 40 percent? What if the initial popularity is 35 percent? - different answers

Predictions in an $A R(1)$ model

- Intuition (more precisely in more complicated models, where it is not so obvious)
- For $x_{t}:=C D U_{t}$ we have a model

$$
x_{t}=8.053+0.834 x_{t-1}+u_{t}
$$

- White noise u_{t} will be replaced by its expected value (zero)
- For x_{t-1} we take
\diamond its realized value x_{t-1}, if it is available
\diamond prediction of the value x_{t-1}, if it has not been realized yet

Predictions in an $A R(1)$ model

- For two different initial conditions:

- What is their common limit?

Motivation for more complicated models

Mills, Markellos: The Econometric Modelling of Financial Time Series. Cambridge University
Press, 2008
Dáta: http://www.lboro.ac.uk/departments/ec/cup/data.html

- Quarterly data, 1952Q1-2005Q4
- Variables:
\diamond short term interest rate (3 months))
\diamond long term interest rate (20 years)
- We will modell the difference between long term and short term rates

Motivation for more complicated models

- Behaviour of our time series:

Motivation for more complicated models

- Estimated ACF:
spread

Motivation for more complicated models

- In R, we will use the package astsa: Applied Statistical Time Series Analysis
- We estimate an AR(1) model:
sarima(spread,1,0,0,details="FALSE")
- For stationarity: the AR coefficient has to be less than 1 in absolute value
- AR in SARIMA relates to autoregressive terms
- SARIMA denotes more general models which we will study later

Motivation for more complicated models

```
> sarima(spread,1,0,0,details="FALSE")
$fit
Call:
stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
    Q), period = S), xreg = xmean, include.mean = FALSE, optim.control = list(tS
    REPORT = 1, reltol = tol))
Coefficients:
            ar1 xmean
    0.9156 1.0473
s.e. 0.0266 0.5491
sigma^2 estimated as 0.5106: log likelihood = -234.8, aic = 475.61
$AIC
[1] 0.3463184
$AICc
[1] 0.3561018
$BIC
[1] -0.622429
```


Motivation for more complicated models

- Checking residuals - ACF:

ACF of Residuals

- Revision:
\diamond What is the null hypothesis?
\diamond What are these intervals used for and how are they constructed?
\diamond What is the outcome?

Motivation for more complicated models

- Checking residuals - P values of Ljung-Box statistics:
p values for Ljung-Box statistic

- We have residuals from AR(1) model, the degress of freedom are decreased by 1
- Revision:
\diamond What is the null hypothesis? What is the result of the test?
\diamond How is the statistic computed and what is its distribution under null hpothesis?

II.

Autoregressive process of the second order AR(2)

Previous example - modelling spread

- We found out that AR(1) model

$$
x_{t}=\delta+\alpha x_{t-1}+u_{t},
$$

is not suitable (residuals are not white noise)

- We try to use in addition to x_{t-1} also x_{t-2} :

$$
x_{t}=\delta+\alpha_{1} x_{t-1}+\alpha_{2} x_{t-2}+u_{t}
$$

- Such a process is called autoregressive process of second order
- In the same way autoregressive process of p-th order:

$$
x_{t}=\delta+\alpha_{1} x_{t-1}+\ldots+\alpha_{p} x_{t-p}+u_{t}
$$

- Firstly we will study the AR(2) process

$A R(2)$ - definition

- $\mathrm{AR}(2)$ process:

$$
x_{t}=\delta+\alpha_{1} x_{t-1}+\alpha_{2} x_{t-2}+u_{t}
$$

- Already without u_{t} it is more complicated than $\operatorname{AR}(1)$ roots of the characteristic polynomial
- We try another approach (not substitution)
- Using lag operator:

$$
\begin{aligned}
\left(1-\alpha_{1} L-\alpha_{2} L^{2}\right) x_{t} & =\delta+u_{t} \\
\alpha(L) x_{t} & =\delta+u_{t}
\end{aligned}
$$

- Wold representation and stacionarity:

$$
x_{t}=\alpha^{-1}(L) \delta+\alpha^{-1}(L) u_{t}
$$

\rightarrow we need inverse operator $\alpha^{-1}(L)$

$A R(2)$ - definition

- Inverse operator $\alpha^{-1}(L)$; we find it using a method of undetermined coefficients:

$$
\alpha^{-1}(L)=\psi_{0}+\psi_{1} L+\psi_{2} L^{2}+\ldots
$$

and
(3) $1=\left(1-\alpha_{1} L-\alpha_{2} L^{2}\right)\left(\psi_{0}+\psi_{1} L+\psi_{2} L^{2}+\ldots\right)$

- We compare coefficients in front of L^{j} on both sides of (3):

$$
\begin{gathered}
\psi_{j}-\alpha_{1} \psi_{j-1}-\alpha_{2} \psi_{j-2}=0 \\
\psi_{0}=1, \psi_{1}=\alpha_{1}
\end{gathered}
$$

$A R(2)$ - stationarity

- Stationarity conditions: To satisfy the condition $\sum \psi_{j}^{2}<\infty$ the roots of the charakteristic equation

$$
\lambda^{2}-\alpha_{1} \lambda-\alpha_{2}=0
$$

need to be less than 1 in absolute value

- In other words: roots of the equation

$$
\alpha(L)=1-\alpha_{1} L-\alpha_{2} L^{2}=0
$$

have to be greater than 1 in absolute value, i.e. outside of the unit circle

- The same as for $\operatorname{AR}(1)$ before: roots of $\alpha(L)=0$ are outside of unit circle

Example - modelling spread

```
Estimated AR(2) model:
> sarima(spread,2,0,0, details="FALSE")
$fit
Zall:
stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
    Q), period = S), xreg = xmean, include.mean = FALSE, optim.control = list(tS
    REPORT = 1, reltol = tol))
Zoefficients:
\begin{tabular}{rrrr} 
& ar1 & ar2 & xmean \\
3.e. & 1.1809 & -0.2886 & 1.0449 \\
0.0650 & 0.0651 & 0.4212
\end{tabular}
sigma^2 estimated as 0.4677: log likelihood = -225.42, aic = 458.84
$AIC
[1] 0.2678181
$AICc
[1] 0.277955
$BIC
[1] -0.6853031
```


Example - modelling spread

- Show that the estimate process is stationary.
- What we test about the residuals - state null hypotheses and explain the tests
- What is their result?

Example - modelling spread

- ACF:

Example - modelling spread

- P-values of Ljung-Box statistics
p values for Ljung-Box statistic

For residuals from $\operatorname{AR}(\mathrm{p})$ model the degrees of freedom are decreased by p.

AR(2) - moments

- Weakly stationary $\operatorname{AR}(2)$ process:

$$
x_{t}=\delta+\alpha_{1} x_{t-1}+\alpha_{2} x_{t-2}+u_{t}
$$

- Expected value:
\diamond denote $\mu=E\left[x_{i}\right]$; then

$$
\begin{aligned}
\mu & =\delta+\alpha_{1} \mu+\alpha_{2} \mu \\
\mu & =\frac{\delta}{1-\alpha_{1}-\alpha_{2}}
\end{aligned}
$$

$A R(2)$ - moments

- Autocovariances of $\operatorname{AR}(2)$ process - motivation :
\diamond recall - sample ACF for spread:
spread

AR(2) - moments

- Autocovariances of $\operatorname{AR}(2)$ process - motivation:
\diamond sample ACF for spread was similar to AR(1) process
\diamond however, AR(1) was not a good model, but AR(2) was
\diamond what is the bahaviour of the ACF of AR(2) process?
\diamond can it be similar to ACF of AR(1)? (it seems so)
\diamond can it be "totally different"? (i.e. "this is certainly not AR(1), but it can be AR(2)")

$A R(2)$ - moments

- Autocovariances - computation: we can assume zero expected value, i.e.

$$
\begin{aligned}
x_{t} & =\alpha_{1} x_{t-1}+\alpha_{2} x_{t-2}+u_{t} / \times x_{t-s}, E[.] \\
E\left[x_{t-s} x_{t}\right] & =\alpha_{1} E\left[x_{t-s} x_{t-1}\right]+\alpha_{2} E\left[x_{t-s} x_{t-2}\right]+E\left[x_{t-s} u_{t}\right]
\end{aligned}
$$

- For $s=0,1,2$ we obtain:

$$
\begin{aligned}
\gamma(0) & =\alpha_{1} \gamma(1)+\alpha_{2} \gamma(2)+\sigma^{2} \\
\gamma(1) & =\alpha_{1} \gamma(0)+\alpha_{2} \gamma(1) \\
\gamma(2) & =\alpha_{1} \gamma(1)+\alpha_{2} \gamma(0)
\end{aligned}
$$

- system of equations $\rightarrow \gamma(0)=\operatorname{Var}\left[x_{t}\right], \gamma(1), \gamma(2)$
- For $s \geq 2$ - difference equation:

$$
\begin{equation*}
\gamma(s)-\alpha_{1} \gamma(s-1)-\alpha_{2} \gamma(s-2)=0 \tag{4}
\end{equation*}
$$

with initial conditions from the previous point

AR(2) - moments

- Autocorrelations: we divide the difference equation (4) and its initial conditions by $\gamma(0)$:

$$
\begin{gathered}
\rho(s)-\alpha_{1} \rho(s-1)-\alpha_{2} \rho(s-2)=0 \\
\rho(0)=1, \rho(1)=\frac{\alpha_{1}}{1-\alpha_{2}}
\end{gathered}
$$

AR(2) - ACF - example 1

- Spread modelled by AR(2) process:

Zoefficients:			
ar1	ar2	xmean	
	1.1809	-0.2886	1.0449
s.e.	0.0650	0.0651	0.4212

- Difference equation for autocorrelations:

$$
\rho(s)-1.1809 \rho(s-1)+0.2886 \rho(s-2)=0
$$

initial conditions: $\rho(0)=1, \rho(1)=\frac{1.1809}{1+0.2886}$

$A R(2)-A C F$

- ACF is a solution to difference eqution

$$
\rho(s)-\alpha_{1} \rho(s-1)-\alpha_{2} \rho(s-2)=0
$$

\Rightarrow behaviour depends on roots of charakteristic equation

$$
\lambda^{2}-\alpha_{1} \lambda-\alpha_{2}=0
$$

- λ_{1}, λ_{2} - real (and different): ACF has a form

$$
\rho(s)=c_{1} \lambda_{1}^{s}+c_{2} \lambda_{2}^{s}
$$

Stationarity: $\left|\lambda_{1,2}\right|<1$

- λ_{1}, λ_{2} - complex: ACF is a dumped combination of sine and cosine

$$
\rho(s)=r^{s}\left(c_{1} \cos (k s)+c_{2} \sin (k s)\right)
$$

Stationarity: $r<1$

$A R(2)-A C F$ - example 2

- Process: $x_{t}=1.4 x_{t-1}-0.85 x_{t-2}+u_{t}$
\diamond correlations satisft the difference eqution

$$
\rho(t)-1.4 \rho(t-1)+0.85 \rho(t-2)=0
$$

\diamond and its solution

$$
\rho(t)=0.922^{t}\left(c_{1} \cos (0.709 t)+c_{2} \sin (0.709 t)\right)
$$

$\diamond c_{1}, c_{2}$ from initial conditions $\rho(0), \rho(1)$
$\diamond \cos (k t), \sin (k t) \rightarrow$ period $\frac{2 \pi}{k}$
in our case $\frac{2 \pi}{k}=\frac{2 \pi}{0.709}=8.862 \approx 9$
\Rightarrow in data generated by this process we can expect this period

AR(2) - ACF - example

- Figure:
\diamond realization of the process

$$
x_{t}=1.4 x_{t-1}-0.85 x_{t-2}+u_{t}
$$

\diamond sample ACF

AR(2) - real data

[Kirchgässner, Wolters], example 2.6

- 3-months interest rate, Germany, 1970q1-1998q4

$A R(2)$ - real data

- Estimated AR(2) model:

$$
\begin{aligned}
& \mathrm{GSR}_{\mathrm{t}}=\underset{(2.82)}{0.577}+\underset{(17.49)}{1.407} \mathrm{GSR}_{\mathrm{t}-1}-\underset{(-6.16)}{0.498} \mathrm{GSR}_{\mathrm{t}-2}+\hat{\mathrm{u}}_{\mathrm{t}}, \\
& \overline{\mathrm{R}}^{2}=0.910, \mathrm{SE}=0.812, \mathrm{Q}(6)=6.431(\mathrm{p}=0.377)
\end{aligned}
$$

$A R(2)$ - real data

- Questions about the model:
\diamond Is it stationary?
\diamond Check residuals - ACF, Q-statistics (what are the degrees of freedom?).
\diamond What is the expected value of the process?
\diamond What is the bahaviour of its ACF?
\diamond Explain the following assertion from the book (p.49) and compute the given values: "The two roots of the process are 0.70 +/- 0.06i, i.e. they indicate cycles ... the frequency $f=0.079$ corresponds to a period of 79.7 quarters and therefore of nearly 20 years."

III.

Autoregressive process of p-th order - $A R(p)$

$A R(p)$ - introduction

- We have seen $\operatorname{AR}(1)$ and $\operatorname{AR}(2)$ proceses, their ACF can be similar - how to distinguish them?
- In the same way we can define $\operatorname{AR}(\mathrm{p})$ process - what is its ACF?
- How to determine the correct order of a model for data?
- $\mathrm{AR}(\mathrm{p})$ process - we show:
\diamond stationarity: roots outside of the unit circle
\diamond ACF: given by a difference equation of p-th order
\diamond the first p autocorrelations (initial conditions for the difference equation): from the system of equations; useful computation, we will use it also later

$A R(p)$ proces - stationarity

- $\mathrm{AR}(\mathrm{p})$ process:
(5) $x_{t}=\delta+\alpha_{1} x_{t-1}+\alpha_{2} x_{t-2}+\ldots+\alpha_{p} x_{t-p}+u_{t}$,
t. j. $\alpha(L) x_{t}=\delta+u_{t}$, where
$\alpha(L)=1-\alpha_{1} L-\ldots-\alpha_{p} L^{p}$
- Wold representation and stationarity:

$$
x_{t}=\alpha(L)^{-1}\left(\delta+u_{t}\right),
$$

inverse operator $\alpha(L)^{-1}$ in the form

$$
\alpha(L)^{-1}=1+\psi_{1} L+\psi_{2} L^{2}+\ldots
$$

- For coefficients ψ_{j} we obtain difference equation

$$
\psi_{k}-\alpha_{1} \psi_{k-1}-\ldots-\alpha_{p} \psi_{k-p}=0
$$

\Rightarrow in order to $\sum \psi_{j}^{2}$ the roots of
$\lambda^{k}-\alpha_{1} \lambda^{k-1}-\ldots-\alpha_{p}=0$ need to be inside the unit circle, i.e. roots of $\alpha(L)=0$ have to be outside of the unit circle ARMA models Part 1: Autoregressive models (AR) - p. $49 / 75$

$A R(p)$ process - moments

- Expected value:
we denote $\mu=E\left[x_{t}\right]$ and take expected value of both sides of (5):

$$
\mu=\delta+\alpha_{1} \mu+\ldots+\alpha_{p} \mu \Rightarrow \mu=\frac{\delta}{1-\alpha_{1}-\ldots-\alpha_{p}}
$$

- Variance autocovariances - WLOG $\delta=0$

$$
\begin{aligned}
x_{t} & =\alpha_{1} x_{t-1}+\ldots+\alpha_{p} x_{t-p}+u_{t} / \times x_{t-s}, E[.] \\
\gamma(s) & =\alpha_{1} \gamma(s-1)+\ldots \alpha_{p} \gamma(s-p)+E\left[u_{t} x_{t-s}\right]
\end{aligned}
$$

$A R(p)$ process - moments

- Variance, autocovariances - continued:
$\diamond s=0,1, \ldots, p \rightarrow$ system of $p+1$ equations with unknowns $\gamma(0), \gamma(1), \ldots, \gamma(p)$:

$$
\begin{align*}
\gamma(0)= & \alpha_{1} \gamma(1)+\alpha_{2} \gamma(2)+\ldots+\alpha_{p} \gamma(p)+\sigma^{2} \\
\gamma(1)= & \alpha_{1} \gamma(0)+\alpha_{2} \gamma(1)+\ldots+\alpha_{p} \gamma(p-1) \\
& \ldots \tag{6}\\
\gamma(p)= & \alpha_{1} \gamma(p-1)+\alpha_{2} \gamma(p-2)+\ldots+\alpha_{p} \gamma(0)
\end{align*}
$$

\diamond others from the difference eqution
(7) $\quad \gamma(t)-\alpha_{1} \gamma(t-1)-\ldots-\alpha_{p} \gamma(t-p)=0$

$A R(p)$ process - moments

- ACF :
\diamond difference equation - we divide (7) by $\gamma(0)$:

$$
\rho(t)-\alpha_{1} \rho(t-1)-\ldots-\alpha_{p} \rho(t-p)=0
$$

\diamond initial conditions - last p equations from (6) divided by $\gamma(0)$:

$$
\begin{aligned}
\rho(1) & =\alpha_{1}+\alpha_{2} \rho(1)+\ldots+\alpha_{p} \rho(p-1) \\
\rho(2) & =\alpha_{1} \rho(1)+\alpha_{2}+\ldots+\alpha_{p} \rho(p-2)
\end{aligned}
$$

$$
\rho(p)=\alpha_{1} \rho(p-1)+\alpha_{2} \rho(p-2)+\ldots+\alpha_{p}
$$

(8)

- called Yule-Wolker equations

$A R(p)$ process - ACF - example 1

- ACF in R:
\diamond function ARMAacf from package stats
\diamond we computed ACF of the process

$$
x_{t}=1.4 x_{t-1}-0.85 x_{t-2}+u_{t}
$$

\diamond now in R:
ARMAacf($\operatorname{ar}=\mathbf{c}(1.4,-0.85)$, lax. $\max =20)$

AR(p) process - ACF - example 1

$A R(p)$ process - ACF - example 2

- AR(3) process $x_{t}=1.5 x_{t-1}-0.8 x_{t-2}+0.2 x_{t-3}+u_{t}$

AR(p) process - ACF - example 3

- AR(3) process $x_{t}=1.2 x_{t-1}-0.4 x_{t-2}-0.1 x_{t-3}+u_{t}$
- We can expect complex roots.

AR(p) process - ACF - example 3

- Roots v R:
\diamond function armaRoots from package fArma
\diamond returns values of the roots - they have to be outside of the unit circle
- EXERCSE: write down the polynomial, the roots of which we compute now

AR(p) process - ACF - example 4

- How is it possible?
\diamond absolute value of ACF greater than 1
\diamond increasing

AR(p) process - ACF - example 4

	$\overline{\mathbb{R}} \mathrm{R}$ Graphics: Device 2 (ACTVE)					- \square^{-1}
R Console	Roots and Unit Circle					
,						

- Process is not stationary \rightarrow ACF calculation does not make sense

$A R(p)$ process - ACF - example 5

- ACF for two processes: one is $\operatorname{AR}(2)$ and the other is AR(3)
- We cannot distinguish them
- Working with real data - moreover, we do not have exact values but estimates

IV.

Parctial autocorrelation function - determining the order of AR process

PACF - motivation

- consider some random process x_{t} with zero expected value and modell it using its k lagged values:

$$
x_{t}=\beta_{1} x_{t-1}+\beta_{2} x_{t-2}+\ldots+\beta_{k} x_{t-k}+u_{t}
$$

- Denote coefficients $\mathbf{b} \Phi_{k i}$, where k is the number of lags of x which we used and i is a coefficient at x_{t-i}
- So:

$$
\begin{aligned}
x_{t} & =\Phi_{11} x_{t-1}+u_{t} \\
x_{t} & =\Phi_{21} x_{t-1}+\Phi_{22} x_{t-2}+u_{t} \\
x_{t} & =\Phi_{31} x_{t-1}+\Phi_{32} x_{t-2}+\Phi_{33} x_{t-3}+u_{t}
\end{aligned}
$$

$$
x_{t}=\Phi_{k 1} x_{t-1}+\Phi_{k 2} x_{t-2}+\Phi_{k 3} x_{t-3}+\ldots+\Phi_{k k} x_{t-k}+u_{t}
$$

- If x is an $\operatorname{AR}(\mathrm{p})$ process, then $\Phi_{k k}=0$ for $k>p$.

PACF - definition and computation

- Coefficient $\Phi_{k k}$ is called partial autocorrelation of order k
- Their sequence form the partial autocorrelation function (PACF)
- Computation: we start from
$x_{t}=\Phi_{k 1} x_{t-1}+\Phi_{k 2} x_{t-2}+\Phi_{k 3} x_{t-3}+\ldots+\Phi_{k k} x_{t-k}+u_{t}$ and similarly as in the case of Yule-Wolker equations we get

$$
\begin{aligned}
\rho(1)= & \Phi_{k 1}+\Phi_{k 2} \rho(1)+\ldots+\Phi_{k k} \rho(k-1) \\
\rho(2)= & \Phi_{k 1} \rho(1)+\Phi_{k 2}+\ldots+\Phi_{k k} \rho(k-2) \\
& \ldots \\
\rho(k)= & \Phi_{k 1} \rho(k-1)+\Phi_{k 2} \rho(k-2)+\ldots+\Phi_{k k}
\end{aligned}
$$

PACF - definition and computation

- Matrix form:

$$
\left[\begin{array}{cccc}
1 & \rho(1) & \ldots & \rho(k-1) \\
\rho(1) & 1 & \ldots & \rho(k-2) \\
& & \ldots & \\
\rho(k-1) & \rho(k-2) & \ldots & 1
\end{array}\right]\left[\begin{array}{c}
\Phi_{k 1} \\
\Phi k 2 \\
\ldots \\
\Phi k k
\end{array}\right]=\left[\begin{array}{c}
\rho(1) \\
\rho(2) \\
\cdots \\
\rho(k)
\end{array}\right]
$$

- We need only $\Phi_{k k}$, we use Cramer rule:

$$
\Phi_{k k}=\frac{\operatorname{det}\left(\begin{array}{cccc}
1 & \rho(1) & \ldots & \rho(1) \tag{9}\\
\rho(1) & 1 & \ldots & \rho(2) \\
& \ldots & \ldots & \\
\rho(k-1) & \rho(k-2) & \ldots & \rho(k)
\end{array}\right)}{\operatorname{det}\left(\begin{array}{cccc}
1 & \rho(1) & \ldots & \rho(k-1) \\
\rho(1) & 1 & \ldots & \rho(k-2) \\
& \ldots & \ldots & \\
\rho(k-1) & \rho(k-2) & \ldots & 1
\end{array}\right)}
$$

PACF - example: $A R(1)$

- We compute:

$$
\begin{aligned}
& \Phi_{11}=\rho(1) \\
& \Phi_{22}= \operatorname{det}\left(\begin{array}{cc}
1 & \rho(1) \\
\rho(1) & \rho(2)
\end{array}\right) \\
& \operatorname{det}\left(\begin{array}{cc}
1 & \rho(1) \\
\rho(1) & 1
\end{array}\right)
\end{aligned}=\frac{\rho(2)-\rho(1)^{2}}{1-\rho(1)^{2}}=0
$$

- From the definition of PACF - also the following $\Phi_{k k}=0$
- For $\alpha=0.9$:

PACF - example 1

- PACF in R - again ARMAacf from package stats
- For $x_{t}=1.4 x_{t-1}-0.85 x_{t-2}+u_{t}$ we computed ACF, now PACF:

ARMAacf(ar=c(1.4,-0.85), lax.max=20, pacf='true"')

PACF - example 1

PACF - example 2

- AR(3) process $x_{t}=1.2 x_{t-1}-0.8 x_{t-2}+0.5 x_{t-3}+u_{t}$

PACF - example 3

- $\mathrm{AR}(4)$ process

$$
x_{t}=1.2 x_{t-1}-0.8 x_{t-2}+0.4 x_{t-3}+0.15 x_{t-4}+u_{t}
$$

PACF - example 4

- Recall:

ACF for two processes, one is $\mathrm{AR}(2)$ and the other one $\operatorname{AR}(3)$, but we were not able to distinguish them:

PACF - example 4

- PACF of these processes:

- Now it is clear that in the left we have $\operatorname{AR}(2)$ and in the right we have $\mathrm{AR}(3)$ process

PACF - estimation from data

- Into (15) we set the consistent estimates of autocorrelations \rightarrow consistent estimates of $\hat{\Phi}_{k k}$
- For $\operatorname{AR}(\mathrm{p})$ process we have $\Phi_{k k}=0$ for $k>p$, for these k asymptotically

$$
\operatorname{Var}\left[\hat{\Phi}_{k k}\right] \approx \frac{1}{T}
$$

PACF estimation - example 1

- We modelled spread; using function acf2(spread) we get ACF and PACF:

Series: spread

- We see that it suggest estimating $\operatorname{AR}(2)$ process (which we did)

PACF estimation - example 2

- Previous real data examples:
\diamond popularity (left) - AR(1)
\diamond interest rates (right) - AR(2)

Next lecture

- Data: pcocoa - cocoa prices; ACF for differences of lagarithms:

- Following lecture: models with this property

