ARMA models Part 2: Moving average models (MA)

Beáta Stehlíková

Time Series Analysis
Faculty of Mathematics, Physics and Informatics, Comenius University

V.
 Moving average process of the first order MA(1)

Data from previous lecture

Ben Vogelvang: Econometrics. Theory and Applications with EViews. Pearson Education Limited, 2005.

Chapter 14.7. - The Box-Jenkins Approach in Practice

- Monthy data, January 1960 - September 2002
- $p c o c o a_{t}$ - cocoa prices, we take logarithms and because of stationarity we will work with differences

Data from previous lecture

- Estimated ACF:

- One significantly nonzero autocorrelation and the remaining ones are nearly zero

Example from the first lecture

- Let u_{t} be a white noise, we define

$$
x_{t}=u_{t}+u_{t-1}
$$

- We computed:

$$
\begin{aligned}
E\left[x_{t}\right] & =0, \operatorname{Var}\left[x_{t}\right]=2 \sigma^{2} \\
\operatorname{Cov}\left[x_{t}, x_{t+\tau}\right] & =\left\{\begin{array}{cc}
\sigma^{2} & \text { pre } \tau=1 \\
0 & \text { pre } \tau=2,3, \ldots
\end{array}\right. \\
\operatorname{Cor}\left[x_{t}, x_{t+\tau}\right] & =\left\{\begin{array}{cc}
1 / 2 & \text { pre } \tau=1 \\
0 & \text { pre } \tau=2,3, \ldots
\end{array}\right.
\end{aligned}
$$

- ACF is zero for $\tau=2,3, \ldots$ - exactly the property which we need

Generalization - MA(1) process

- Let u_{t} be a white noise, then

$$
x_{t}=\mu+u_{t}-\beta u_{t-1}
$$

is called a moving average process of the first order MA(1)

- Wold representation: $x_{t}=\mu+\sum_{j=0}^{\infty} \psi_{j} u_{t-j}$ MA(1) process: $\psi_{0}=1, \psi_{1}=-\beta, \psi_{j}=0$ for $j=2,3, \ldots$
- Moments and ACF:

$$
\begin{aligned}
& E\left[x_{t}\right]=\mu, \quad \operatorname{Var}\left[x_{t}\right]=\left(1+\beta^{2}\right) \sigma^{2} \\
& \operatorname{Cov}\left[x_{t}, x_{t+\tau}\right]=\left\{\begin{array}{cc}
-\beta \sigma^{2} & \text { for } \tau=1 \\
0 & \text { for } \tau=2,3, \ldots
\end{array}\right.
\end{aligned}
$$

MA(1) process - examples

1. Let u_{t} be a white noise with distribution $N(0,4)$, we define

$$
x_{t}=u_{t}+\frac{1}{2} u_{t-1}
$$

Then: $E\left[x_{t}\right]=0, \operatorname{Var}\left[x_{t}\right]=\left(1+(1 / 2)^{2}\right) \times 4=5$

$$
\operatorname{Cor}\left[x_{t}, x_{t+\tau}\right]=\left\{\begin{array}{cc}
\frac{1 / 2}{1+1 / 4}=2 / 5 & \text { for } \tau=1 \\
0 & \text { for } \tau=2,3, \ldots
\end{array}\right.
$$

2. Let u_{t} be a white noise with distribution $N(0,1)$, we define

$$
y_{t}=u_{t}+2 u_{t-1}
$$

Then: $E\left[y_{t}\right]=0, \operatorname{Var}\left[y_{t}\right]=(1+4) \times 1=5$

MA(1) process - generalization

- Let us take an MA(1) process, i.e. ACF of the form

$$
\operatorname{Cor}\left[x_{t}, x_{t+\tau}\right]=\left\{\begin{array}{cc}
-\frac{\beta}{1+\beta^{2}} & \text { for } \tau=1 \\
0 & \text { for } \tau=2,3, \ldots
\end{array}\right.
$$

- Suppose now that we are given the value $\rho_{1}=\rho(1)$ and we want to find the coefficient β, i.e.

$$
\rho_{1}=-\frac{\beta}{1+\beta^{2}} \Rightarrow \beta=?
$$

MA(1) process - generalization

- We have therefore the equation:
$\rho_{1}=-\frac{\beta}{1+\beta^{2}} \Rightarrow \beta^{2}+\frac{1}{\rho_{1}} \beta+1=0$

\rightarrow two solutions β_{1}, β_{2}, they satisfy $\beta_{1} \beta_{2}=1$.
- Processes

$$
x_{t}=\mu+u_{t}-\beta u_{t-1}, \quad x_{t}=\mu+u_{t}-\frac{1}{\beta} u_{t-1}
$$

have the same ACF

- If we want a unique parametrization, we need an additional condition.

Invertibility of a process

- We will try to write the process in $\operatorname{AR}(\infty)$ form:

$$
x_{t}=\hat{\mu}+u_{t}+\psi_{1} x_{t-1}+\psi_{2} x_{t-2}+\psi_{3} x_{t-3}+\ldots
$$

- if is it possible, the process is called invertible
- For MA(1) process:

$$
\begin{aligned}
& x_{t}=\mu+(1-\beta L) u_{t} \\
&(1-\beta L)^{-1} x_{t}=(1-\beta L)^{-1} \mu+u_{t} \\
&(1-\beta L)^{-1} \text { exists for }|\beta|<1, \text { then } \\
&\left(1+\beta L+\beta^{2} L^{2}+\ldots\right) x_{t}=\mu /(1-\beta)+u_{t} \\
& x_{t}+\beta x_{t-1}+\beta^{2} x_{t-2}+\ldots=\mu /(1-\beta)+u_{t}
\end{aligned}
$$

MA(1) - invertibility

- We obtained invertibility condition for MA(1) process: $|\beta|<1$
- Another way how to express it:
\diamond we have a process $x_{t}=\mu+(1-\beta L) u_{t}$
\diamond root of the polynomial $1-\beta L$ is $1 / \beta$
\diamond invertibility condition means that root of $1-\beta L=0$ has to be in absolute value greater than 1 , i.e. outside of the unit circle

MA(1) - computation of PACF

- Recall the general formula:

$$
\Phi_{k k}=\frac{\operatorname{det}\left(\begin{array}{cccc}
1 & \rho(1) & \ldots & \rho(1) \tag{1}\\
\rho(1) & 1 & \ldots & \rho(2) \\
& \ldots & \ldots & \\
\rho(k-1) & \rho(k-2) & \ldots & \rho(k)
\end{array}\right)}{\operatorname{det}\left(\begin{array}{cccc}
1 & \rho(1) & \ldots & \rho(k-1) \\
\rho(1) & 1 & \ldots & \rho(k-2) \\
& \ldots & \ldots & \\
\rho(k-1) & \rho(k-2) & \ldots & 1
\end{array}\right)}
$$

- For MA(1) we have $\rho(k)=0$ for $k=2,3, \ldots$

MA(1) - computation of PACF

- PACF is not zero after some lags (as it holds for AR):

$$
\begin{aligned}
\Phi_{11}= & \rho(1) \\
\Phi_{22}= & \frac{\operatorname{det}\left(\begin{array}{cc}
1 & \rho(1) \\
\rho(1) & \rho(2)
\end{array}\right)}{\operatorname{det}\left(\begin{array}{cc}
1 & \rho(1) \\
\rho(1) & 1
\end{array}\right)}=\frac{\operatorname{det}\left(\begin{array}{cc}
1 & \rho(1) \\
\rho(1) & 0
\end{array}\right)}{\operatorname{det}\left(\begin{array}{cc}
1 & \rho(1) \\
\rho(1) & 1
\end{array}\right)}=\frac{-\rho(1)^{2}}{1-\rho(1)^{2}} \\
\Phi_{33}= & \frac{\operatorname{det}\left(\begin{array}{ccc}
1 & \rho(1) & \rho(1) \\
\rho(1) & 1 & \rho(2) \\
\rho(2) & \rho(1) & \rho(3)
\end{array}\right)}{\operatorname{det}\left(\begin{array}{ccc}
1 & \rho(1) & \rho(2) \\
\rho(1) & 1 & \rho(1) \\
\rho(2) & \rho(1) & 1
\end{array}\right)}=\frac{\operatorname{det}\left(\begin{array}{ccc}
1 & \rho(1) & \rho(1) \\
\rho(1) & 1 & 0 \\
0 & \rho(1) & 0
\end{array}\right)}{\operatorname{det}\left(\begin{array}{ccc}
1 & \rho(1) & 0 \\
\rho(1) & 1 & \rho(1) \\
0 & \rho(1) & 1
\end{array}\right)}=\frac{\rho(1)^{3}}{1-2 \rho(1)^{2}} \\
\Phi_{4}= & \frac{-\rho(1)^{4}}{\left(1-\rho(1)^{2}\right)^{2}-\rho(1)^{2}}
\end{aligned}
$$

Real data - cocoa prices

- Data from the beginning of the lecture
- MA(1) model for differences of logarithms (variable y in the output from R):

```
> sarima(y,0,0,1, details=FALSE)
$fit
Call:
stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
    Q), period = S), xreg = xmean, include.mean = FALSE, optim.control = lisS
    REPORT = 1, reltol = tol))
Coefficients:
            ma1 xmean
        0.3520 0.0024
s.e. 0.0402 0.0037
sigma^2 estimated as 0.003897: log likelihood = 693.61, aic = -1381.21
```


Real data - cocoa prices

- ACF of residuals:

ACF of Residuals

- Ljung-Box statistics:
p values for Ljung-Box statistic

- Model is OK.

VI.
 Moving average process of order $q-M A(q)$

MA(q) process - definition and properties

- Let u_{t} be a white noise, then

$$
x_{t}=\mu+u_{t}-\beta_{1} u_{t-1}-\beta_{2} u_{t-2}-\ldots-\beta_{q} u_{t-q}
$$

is called a moving average proces of q-th order MA(q)

- Wold representation: $x_{t}=\mu+\sum_{j=0}^{\infty} \psi_{j} u_{t-j}$

MA(q) process: $\psi_{0}=1, \psi_{1}=-\beta_{1}, \ldots \psi_{q}=-\beta_{q}, \psi_{j}=0$ for $j>q \rightarrow \mathrm{MA}(\mathrm{q})$ proces is always stationary

- Moments, ACF, PACF:

$$
\begin{aligned}
& E\left[x_{t}\right]=\mu, \operatorname{Var}\left[x_{t}\right]=\left(1+\beta_{1}^{2}+\ldots \beta_{q}^{2}\right) \sigma^{2} \\
& \operatorname{Cov}\left[x_{t}, x_{t+\tau}\right]=0 \text { for } \tau=q+1, q+2, \ldots \\
& \Rightarrow \operatorname{Cor}\left[x_{t}, x_{t+\tau}\right]=0 \text { for } \tau=q+1, q+2, \ldots
\end{aligned}
$$

MA(q) process - definition and properties

- Computation of the first q autocorrelations (we can assume $\mu=0$):

$$
\left.\begin{array}{rl}
\operatorname{Cov}\left[x_{t},\right. & \left.x_{t+\tau}\right]= \\
E\left[\left(u_{t}-\beta_{1} u_{t-1}-\ldots-\beta_{q} u_{t-q}\right) \times\right. \\
& \left.\left(u_{t+\tau}-\beta_{1} u_{t+\tau-1}-\ldots-\beta_{q} u_{t+\tau-q}\right)\right]
\end{array}\right] \begin{aligned}
& E\left[u_{t}\left(u_{t+\tau}-\beta_{1} u_{t+\tau-1}-\ldots-\beta_{q} u_{t+\tau-q}\right)\right] \\
& \\
& \quad-\beta_{1} E\left[u_{t-1}\left(u_{t+\tau}-\beta_{1} u_{t+\tau-1}-\ldots-\beta_{q} u_{t+\tau-q}\right)\right] \\
& \\
& \quad \cdots \\
& \quad-\beta_{q} E\left[u_{t-q}\left(u_{t+\tau}-\beta_{1} u_{t+\tau-1}-\ldots-\beta_{q} u_{t+\tau-q}\right)\right]
\end{aligned}
$$

MA(q) process - definition and properties

- Continued:

$$
\begin{aligned}
& \tau=1 \Rightarrow \gamma(1)=\left(-\beta_{1}+\beta_{1} \beta_{2}+\ldots+\beta_{q-1} \beta_{q}\right) \sigma^{2} \\
& \tau=2 \Rightarrow \gamma(2)=\left(-\beta_{2}+\beta_{1} \beta_{3}+\ldots+\beta_{q-2} \beta_{q}\right) \sigma^{2} \\
& \cdots \\
& \tau=q \Rightarrow \gamma(q)=\left(-\beta_{q}\right) \sigma^{2}
\end{aligned}
$$

- PACF - substitution of ACF into (1)

MA(q) process - definition and properties

- Invertibility:

$$
\begin{aligned}
& x_{t}=\mu+u_{t}-\beta_{1} u_{t-1}-\beta_{2} u_{t-2}-\ldots-\beta_{q} u_{t-q} \\
& x_{t}=\mu+\left(1-\beta_{1} L-\ldots-\beta_{q} L^{q}\right) u_{t}
\end{aligned}
$$

- Existence of $\left(1-\beta_{1} L-\ldots-\beta_{q} L^{q}\right)^{-1}$ - roots of $1-\beta_{1} L-\ldots-\beta_{q} L^{q}=0$ have to be outside of the unit circle

