ARMA models part 3: mixed models (ARMA)

Beáta Stehlíková

ARMA models motivation I.

- We estimate ACF and PACF for the data and they do not like like neither AR nor MA process
- We would like to try to combine AR and MA terms

ARMA models - motivation II.

Consider a stationary and invertible process:

	$\operatorname{AR}(p)$	$\operatorname{MA}(q)$
$\operatorname{ACF}(\tau)$	nonzero	0 for $\tau>q$
$\operatorname{PACF}(\tau)$	0 for $\tau>p$	nonzero
$\operatorname{AR}(\infty)$ representation	finite sum	infinite sum
$\operatorname{MA}(\infty)$ repr. (Wold)	infinite sum	finite sum

- Neither of these models allows a possibility that both ACF and PACF are nonzero
- We would need a proces with infinite AR and MA representations
- This property holds for mixed ARMA models (mixed = both AR and MA terms)

VII.
 Model ARMA(1,1)

ARMA(1,1) - definition

- Let u_{t} be a white noise, define

$$
x_{t}=\delta+\alpha x_{t-1}+u_{t}-\beta u_{t-1},
$$

where $\alpha \neq \beta$. Process x_{t} is then called an $\operatorname{ARMA}(1,1)$ process.

- Using lag operator L :

$$
\begin{align*}
\left(x_{t}-\alpha x_{t-1}\right) & =\delta+\left(u_{t}-\beta u_{t-1}\right) \\
(1-\alpha L) x_{t} & =\delta+(1-\beta L) u_{t} \tag{1}
\end{align*}
$$

ARMA(1,1) - Wold repr. and stationarity

- From (1) we express the process x_{t} :

$$
\begin{equation*}
x_{t}=(1-\alpha L)^{-1} \delta+(1-\alpha L)^{-1}(1-\beta L) u_{t} \tag{2}
\end{equation*}
$$

- We know that $(1-\alpha L)^{-1}$ exists, if $|\alpha|<1$ and in this case we have:

$$
(1-\alpha L)^{-1}=1+\alpha L+\alpha^{2} L^{2}+\ldots
$$

- Substitute into (2):

$$
\begin{aligned}
x_{t} & =\delta /(1-\alpha)+\left(1+\alpha L+\alpha^{2} L^{2}+\ldots\right)(1-\beta L) u_{t} \\
& =\delta /(1-\alpha)+u_{t}+(\alpha-\beta) u_{t-1}+\alpha(\alpha-\beta) u_{t-2}+\ldots
\end{aligned}
$$

so in Wold representation

$$
\psi_{0}=1, \psi_{1}=\alpha(\alpha-\beta), \psi_{2}=\alpha^{2}(\alpha-\beta), \ldots, \psi_{k}=\alpha^{k}(\alpha-\beta), \ldots
$$

- Stationarity condition: $|\alpha|<1$ can we written as: root of $1-\alpha L$ has to be outside of the unit circle

$\operatorname{ARMA}(1,1)$ - on the condition $\alpha \neq \beta$

- We have Wold representation:

$$
\begin{aligned}
x_{t} & =\delta /(1-\alpha)+\left(1+\alpha L+\alpha^{2} L^{2}+\ldots\right)(1-\beta L) u_{t} \\
& =\delta /(1-\alpha)+u_{t}+(\alpha-\beta) u_{t-1}+\alpha(\alpha-\beta) u_{t-2}+\ldots
\end{aligned}
$$

- If $\alpha=\beta$, then

$$
x_{t}=\delta /(1-\alpha)+u_{t},
$$

so the process is only constant + white noise

ARMA(1,1) - invertibility

- From (1) we express the white noise u_{t}, in order to obtain the process x_{t} written using its lagged values + the current value of the white noise:

$$
\begin{aligned}
-\delta+(1-\alpha L) x_{t} & =(1-\beta L) u_{t} \\
-(1-\beta L)^{-1} \delta+(1-\beta L)^{-1}(1-\alpha L) x_{t} & =u_{t}
\end{aligned}
$$

- We know that $(1-\beta L)^{-1}$ exists, if $|\beta|<1$
- This invertibility condition can be written as: root of $1-\beta L$ has to be outside of the unit circle

ARMA(1,1) - summary

- We recall the process (1):

$$
(1-\alpha L) x_{t}=\delta+(1-\beta L) u_{t}
$$

- Stationarity condition:
\diamond root of $1-\alpha L$ is outside of the unit circle
\diamond depends only on the AR part of the process
- Invertibility condition:
\diamond root of $1-\beta L$ is outside of the unit circle
\diamond depends only on the MA part of the process

VIII.
 Model $\operatorname{ARMA}(p, q)$

ARMA (p, q) - definition

- Let u_{t} be a white noise, define

$$
x_{t}=\delta+\alpha_{1} x_{t-1}+\ldots+\alpha_{p} x_{t-p}+u_{t}-\beta_{1} u_{t-1}-\ldots-\beta_{q} u_{t-q}
$$

this process is then called $\operatorname{ARMA}(p, q)$ process.

- Using lag operator L :
$\left(1-\alpha_{1} L-\ldots \alpha_{p} L^{p}\right) x_{t}=\delta+\left(1-\beta_{1} L-\ldots-\beta_{q} L^{q}\right) u_{t}$

$$
\begin{equation*}
\alpha(L) x_{t}=\delta+\beta(L) u_{t} \tag{3}
\end{equation*}
$$

where we require that polynomials $\alpha(L), \beta(L)$ do not have a common root (more about this later)

ARMA(p,q) - Wold repr., stationarity

- From (3) we express x_{t} :

$$
\begin{aligned}
\alpha(L) x_{t} & =\delta+\beta(L) u_{t} \\
x_{t} & =\alpha(L)^{-1} \delta+\alpha(L)^{-1} \beta(L) u_{t}
\end{aligned}
$$

- We need $\alpha(L)^{-1} \beta(L)$:

$$
\begin{aligned}
\alpha(L)^{-1} \beta(L)= & \psi_{0}+\psi_{1} L+\psi_{2} L^{2}+\ldots \\
\beta(L)= & \alpha(L)\left(\psi_{0}+\psi_{1} L+\psi_{2} L^{2}+\ldots\right) \\
\left(1-\beta_{1} L-\ldots-\beta_{q} L^{q}\right)= & \left(1-\alpha_{1} L-\ldots \alpha_{p} L^{p}\right) \times \\
& \times\left(\psi_{0}+\psi_{1} L+\psi_{2} L^{2}+\ldots\right)
\end{aligned}
$$

Comparing coefficients at L^{j}

ARMA(p,q) - Wold repr., stationarity

- For coefficients ψ_{j} of the Wold representation we get:
\diamond difference equation

$$
\psi_{k}-\alpha_{1} \psi_{k-1}-\ldots-\alpha_{p} \psi_{k-p}=0
$$

\diamond initial conditions

- To satisfy the convergence of $\sum \phi_{j}^{2}$ - roots of $\lambda^{p}-\alpha_{1} \lambda^{p-1}-\ldots \alpha_{p}=0$ have to be inside, i.e., roots of $\alpha(L)=0$ outside of the unit circle

ARMA (p, q) - invertibility

- From (3) we express u_{t} :

$$
\begin{aligned}
\alpha(L) x_{t} & =\delta+\beta(L) u_{t} \\
\beta(L) u_{t} & =-\delta+\alpha(L) x_{t} \\
u_{t} & =-\beta(L)^{-1} \delta+\beta(L)^{-1} \alpha(L) x_{t}
\end{aligned}
$$

- This can be done if $\beta(L)^{-1}$ exists, which means that roots of $\beta(L)=0$ sre outside of the unit circle

ARMA (p, q) - moments

- Expected value: μ :

$$
\begin{gathered}
x_{t}=\delta+\alpha_{1} x_{t-1}+\ldots+\alpha_{p} x_{t-p}+u_{t}-\beta_{1} u_{t-1}-\ldots-\beta_{q} u_{t-q} \\
\mu=\delta+\alpha_{1} \mu+\ldots+\alpha_{p} \mu \Rightarrow \mu=\frac{\delta}{1-\alpha_{1}-\ldots-\alpha_{p}}
\end{gathered}
$$

- Variance, autocovariances - WLOG $\delta=0$:

$$
\begin{aligned}
& x_{t}=\alpha_{1} x_{t-1}+\ldots+\alpha_{p} x_{t-p}+u_{t}-\beta_{1} u_{t-1}-\ldots-\beta_{q} u_{t-q} \\
& \quad / \times x_{t-s}, E[.] \\
& \begin{array}{r}
\gamma(s)= \\
\quad \alpha_{1} \gamma(s-1)+\ldots+\alpha_{p} \gamma(s-p) \\
\\
\quad+E\left[u_{t} x_{t-s}\right]-\beta_{1} E\left[u_{t-1} x_{t-s}\right]-\ldots-\beta_{q} E\left[u_{t-q} x_{t-s}\right]
\end{array}
\end{aligned}
$$

ARMA (p, q) - moments

- For $s>q$ are all expected values

$$
E\left[u_{t} x_{t-s}\right], E\left[u_{t-1} x_{t-s}\right], \ldots, E\left[u_{t-p} x_{t-s}\right]
$$

zero \Rightarrow for $s>q \wedge s>p$ (because we need at least p initial values) we have a difference equation for autocovariances:

$$
\begin{equation*}
\gamma(s)=\alpha_{1} \gamma(s-1)+\ldots+\alpha_{p} \gamma(s-p) \tag{4}
\end{equation*}
$$

- ACF - dividing (4) by variance $\gamma(0)$ - we get a difference equation for the autocorrelations $\rho(s)$,
$s>\max (p, q)$:

$$
\begin{equation*}
\rho(s)=\alpha_{1} \rho(s-1)+\ldots+\alpha_{p} \rho(s-p) \tag{5}
\end{equation*}
$$

- the same as for the process without MA terms; they, however, enter the initial condition

Example: ARMA(1,1)

- Expected value μ :

$$
\begin{aligned}
x_{t} & =\delta+\alpha x_{t-1}+u_{t}-\beta u_{t-1} \quad / \quad E[.] \\
\mu & =\delta+\alpha \mu+0 \Rightarrow \mu=\frac{\delta}{1-\alpha}
\end{aligned}
$$

- Variance, autocovariances - WLOG $\delta=0$:

$$
\begin{aligned}
x_{t} & =\alpha x_{t-1}+u_{t}-\beta u_{t-1} \quad / \times x_{t-s}, E[\cdot] \\
E\left[x_{t} x_{t-s}\right] & =\alpha E\left[x_{t-1} x_{t-s}\right]+E\left[u_{t} x_{t-s}\right]-\beta E\left[u_{t-1} x_{t-s}\right] \\
(6) \gamma(s) & =\alpha \gamma(s-1)+E\left[u_{t} x_{t-s}\right]-\beta E\left[u_{t-1} x_{t-s}\right]
\end{aligned}
$$

Expected value $E\left[u_{t} x_{t-s}\right]$ is nonzero only for $s=0$, $E\left[u_{t-1} x_{t-s}\right]$ is nonzero only for $s=0$ and $s=1$

Example: ARMA(1,1)

- Concrete values $E\left[u_{t} x_{t-s}\right]$ and $E\left[u_{t-1} x_{t-s}\right]$ are obtained from the Wold representation

$$
x_{t-s}=u_{t-s}+(\alpha-\beta) u_{t-s-a}+\alpha(\alpha-\beta) u_{t-s-2}+\ldots
$$

We get:

$$
\begin{gathered}
E\left[u_{t} x_{t-s}\right]=\left\{\begin{array}{cc}
\sigma^{2} & \text { for } \tau=0 \\
0 & \text { for } \tau=1,2,3, \ldots
\end{array}\right. \\
E\left[u_{t-1} x_{t-s}\right]=\left\{\begin{array}{cc}
(\alpha-\beta) \sigma^{2} & \text { for } \tau=0 \\
\sigma^{2} & \text { for } \tau=1 \\
0 & \text { for } \tau=2,3, \ldots
\end{array}\right.
\end{gathered}
$$

and substitute into (6).

Example: ARMA(1,1)

- Finally, from (6) we get for $s=0, s=1$:

$$
\begin{aligned}
& s=0 \Rightarrow \gamma(0)=\alpha \gamma(1)+\sigma^{2}-\beta(\alpha-\beta) \sigma^{2} \\
& s=1 \Rightarrow \gamma(1)=\alpha \gamma(0)-\beta \sigma^{2}
\end{aligned}
$$

\rightarrow system of 2 equations with 2 unknowns, the solution is

$$
\begin{equation*}
\gamma(0)=\frac{1+\beta^{2}-2 \alpha \beta}{1-\alpha^{2}} \sigma^{2}, \gamma(1)=\frac{(\alpha-\beta)(1-\alpha \beta)}{1-\alpha^{2}} \sigma^{2} \tag{7}
\end{equation*}
$$

- For $s=2,3, \ldots$ we get a recurrent relation for the next $\gamma(s)$:

$$
\gamma(s)=\alpha \gamma(s-1)
$$

Example: ARMA(1,1)

- For $s=2,3, \ldots$ we have

$$
\begin{aligned}
& \gamma(s)=\alpha \gamma(s-1) \quad / \frac{1}{\gamma(0)} \\
& \rho(s)=\alpha \rho(s-1)
\end{aligned}
$$

\rightarrow the same difference equation for the ACF as for the process without the MA part

- but swith a different initial condition - from(7) we have

$$
\rho(1)=\frac{\gamma(1)}{\gamma(0)}=\frac{(\alpha-\beta)(1-\alpha \beta)}{\left(1+\beta^{2}-2 \alpha \beta\right)}
$$

- depends also on the MA part

PACF

- PACF in the same way as before:

$$
\Phi_{k k}=\frac{\operatorname{det}\left(\begin{array}{cccc}
1 & \rho(1) & \ldots & \rho(1) \\
\rho(1) & 1 & \ldots & \rho(2) \\
& \ldots & \ldots & \\
\rho(k-1) & \rho(k-2) & \ldots & \rho(k)
\end{array}\right)}{\operatorname{det}\left(\begin{array}{cccc}
1 & \rho(1) & \ldots & \rho(k-1) \\
\rho(1) & 1 & \ldots & \rho(k-2) \\
& \ldots & \ldots & \\
\rho(k-1) & \rho(k-2) & \ldots & 1
\end{array}\right)}
$$

- Example: for ARMA(1,1) process we substitute

$$
\rho(k)=\alpha^{k-1} \rho(1), \rho(1)=\frac{(\alpha-\beta)(1-\alpha \beta)}{\left(1+\beta^{2}-2 \alpha \beta\right)}
$$

Example - ACF and PACF

It does NOT holdthat $A C F(k)=0$ for $k>q$ and $\operatorname{PACF}(k)=0$ for $k>p$ - for example:

Example - real data

[Kirchgässner, Wolters], example 2.15

- USA, March 1994 - August 2003
- $U S R_{t}=3$-month interest rate

Example - real data

Estimated model for the differences of $U S R$:

The following ARMA $(1,1)$ model has been estimated for this time series:

$$
\begin{aligned}
& \Delta \mathrm{USR}_{\mathrm{t}}=\underset{(-0.73)}{-0.006}+\underset{(10.91)}{0.831} \Delta \mathrm{USR}_{\mathrm{t}-1}+\hat{\mathrm{u}}_{\mathrm{t}}-\underset{(-3.57)}{0.457} \hat{\mathrm{u}}_{\mathrm{t}-1}, \\
& \overline{\mathrm{R}}^{2}=0.351, \mathrm{SE}=0.166, \mathrm{Q}(10)=7.897(\mathrm{p}=0.639) .
\end{aligned}
$$

The $\operatorname{AR}(1)$ as well as the $\mathrm{MA}(1)$ terms are different from zero at the 0.1 percent significance level. The autocorrelogram of the estimated residuals, which is also given in Figure 2.10, as well as the Box-Ljung Q statistic, which is calculated for this model with 12 autocorrelation coefficients (i.e. with 10 degrees of freedom), do not provide any evidence of a higher order process.

Example - real data

Questions:

- Is the model stationary? Is it invertible?
- "The autocorrelogram of the estimated residuals... not provide any evidence of a higher order process" explain
- "...the Box-Ljung Q statistic, which is calculated for this model with 12 autocorrelation coefficients (i.e. with 10 degrees of freedom)..."
\diamond what is the null hypothesis?
\diamond explain the degrees of freedom
\diamond what is the outcome?

ARMA (p, q) - common $A R$ and MA roots

- Recall the definition of the $\operatorname{ARMA}(p, q)$ process:

$$
\begin{aligned}
\left(1-\alpha_{1} L-\ldots-\alpha_{p} L^{p}\right) x_{t} & =\delta+\left(1-\beta_{1} L-\ldots-\beta_{q} L^{q}\right) u_{t} \\
\alpha(L) x_{t} & =\delta+\beta(L) u_{t}
\end{aligned}
$$

where we require that $\alpha(L), \beta(L)$ do not have common roots

- Why there cannot be common roots of $\alpha(L), \beta(L)$?
- Generalization of the property that for $\operatorname{ARMA}(1,1)$ we need $\alpha \neq \beta$, otherwise we have trivial process "constant + white noise"

ARMA (p, q) - common $A R$ and MA roots

- Consider "ARMA(2,2)" process

$$
\left(1-\alpha_{1} L-\alpha_{2} L^{2}\right) x_{t}=\delta+\left(1-\beta_{1} L-\beta_{2} L^{2}\right) u_{t}
$$

where $1-\alpha_{1} L-\alpha_{2} L^{2}=(1-\gamma L)\left(1-\gamma_{1} L\right)$

$$
1-\beta_{1} L-\beta_{2} L^{2}=(1-\gamma L)\left(1-\gamma_{2} L\right)
$$

i.e., AR and MA have a common root γ

- Then:

$$
\begin{aligned}
(1-\gamma L)\left(1-\gamma_{1} L\right) x_{t} & =\delta+(1-\gamma L)\left(1-\gamma_{2} L\right) u_{t} \\
\left(1-\gamma_{1} L\right) x_{t} & =(1-\gamma L)^{-1} \delta+\left(1-\gamma_{2} L\right) u_{t}
\end{aligned}
$$

so it is $\operatorname{ARMA}(1,1)$, and not $\operatorname{ARMA}(2,2)$ model

- From a practical point of view - if we have close AR and MA roots, instead of ARMA (p, q) we should try ARMA(p-1,q-1) model

ARMA (p, q) - example

- EXAMPLE: ARMA $(1,2)$ model for the differenced of log prices of cocoa (fromt the previous chapter on MA models):

```
> p=read.table("pcocoa.txt")
> p=ts(p,frequency=12,start=c (1960,1))
> sarima(log(p),1,1,2,details=FALSE)
$fit
Call:
stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
    Q), period = S), xreg = constant, optim.control = list(trace = trc, REPORT =S
    reltol = tol))
Coefficients:
\begin{tabular}{rrrr} 
ar1 & ma1 & ma2 & constant \\
0.8708 & -0.5174 & -0.3030 & 0.0025 \\
0.3563 & 0.3622 & 0.1401 & 0.0038
\end{tabular}
sigma^2 estimated as 0.003897: log likelihood = 693.62, aic = -1377.24
```


ARMA (p, q) - example

- Residuals:

$$
p \text { values for Ljung-Box statistic }
$$

ARMA (p, q) - example

- ExERCISE:

Compute the roots of AR and MA parts

- We get: AR root is close to one of the MA roots
- So we should tryARMA(0,1) = MA(1) model instead of ARMA(1,2), and it was indeed a good model for the data

