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ARMA models motivation I.

• We estimate ACF and PACF for the data and they do
not like like neither AR nor MA process

• We would like to try tocombine AR and MA terms
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ARMA models - motivation II.

Consider a stationary and invertible process:
AR(p) MA(q)

ACF(τ ) nonzero 0 for τ > q

PACF(τ ) 0 for τ > p nonzero
AR(∞) representation finite sum infinite sum
MA(∞) repr. (Wold) infinite sum finite sum

• Neither of these models allows apossibility that both
ACF and PACF are nonzero

• We would need a proceswith infinite AR and MA
representations

• This property holds formixed ARMA models(mixed
= both AR and MA terms)
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VII.

Model ARMA(1,1)
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ARMA(1,1) - definition

• Let ut be a white noise, define

xt = δ + αxt−1 + ut − βut−1,

whereα 6= β. Processxt is then called anARMA(1,1)
process.

• Using lag operatorL:

(xt − αxt−1) = δ + (ut − βut−1)

(1− αL)xt = δ + (1− βL)ut(1)
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ARMA(1,1) - Wold repr. and stationarity

• From (1) we express the processxt:

xt = (1− αL)−1δ + (1− αL)−1(1− βL)ut(2)

• We know that(1− αL)−1 exists, if|α| < 1 and in this
case we have:

(1− αL)−1 = 1 + αL+ α2L2 + . . .

• Substitute into (2):

xt = δ/(1− α) + (1 + αL+ α2L2 + . . .)(1− βL)ut

= δ/(1− α) + ut + (α− β)ut−1 + α(α− β)ut−2 + . . .

so in Wold representation

ψ0 = 1, ψ1 = α(α−β), ψ2 = α
2(α−β), . . . , ψk = α

k(α−β), . . .

• Stationarity condition:|α| < 1 can we written as:root
of 1− αL has to be outside of the unit circle
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ARMA(1,1) - on the conditionα 6= β

• We have Wold representation:

xt = δ/(1− α) + (1 + αL+ α2L2 + . . .)(1− βL)ut

= δ/(1− α) + ut + (α− β)ut−1 + α(α− β)ut−2 + . . .

• If α = β, then

xt = δ/(1− α) + ut,

so the process is only constant + white noise
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ARMA(1,1) - invertibility

• From (1) we express the white noiseut, in order to
obtain the processxt written using its lagged values +
the current value of the white noise:

− δ + (1− αL)xt = (1− βL)ut

−(1− βL)−1δ + (1− βL)−1(1− αL)xt = ut

• We know that(1− βL)−1 exists, if|β| < 1

• This invertibility conditioncan be written as:root of
1− βL has to be outside of the unit circle
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ARMA(1,1) - summary

• We recall the process (1):

(1− αL)xt = δ + (1− βL)ut

• Stationarity condition:
⋄ root of1− αL is outside of the unit circle
⋄ depends only on the AR part of the process

• Invertibility condition:
⋄ root of1− βL is outside of the unit circle
⋄ depends only on the MA part of the process
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VIII.

Model ARMA(p,q)
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ARMA(p,q) - definition

• Let ut be a white noise, define

xt = δ+α1xt−1+. . .+αpxt−p+ut−β1ut−1−. . .−βqut−q,

this process is then calledARMA(p,q) process.

• Using lag operatorL:

(1− α1L− . . . αpL
p)xt = δ + (1− β1L− . . .− βqL

q)ut

α(L)xt = δ + β(L)ut(3)

where we require that polynomialsα(L), β(L) do not
have a common root (more about this later)
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ARMA(p,q) - Wold repr., stationarity

• From (3) we expressxt:

α(L)xt = δ + β(L)ut

xt = α(L)−1δ + α(L)−1β(L)ut

• We needα(L)−1β(L):

α(L)−1β(L) = ψ0 + ψ1L+ ψ2L
2 + . . .

β(L) = α(L)(ψ0 + ψ1L+ ψ2L
2 + . . .)

(1− β1L− . . .− βqL
q) = (1− α1L− . . . αpL

p)×

×(ψ0 + ψ1L+ ψ2L
2 + . . .)

Comparing coefficients atLj
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ARMA(p,q) - Wold repr., stationarity

• For coefficientsψj of the Wold representation we get:
⋄ difference equation

ψk − α1ψk−1 − . . .− αpψk−p = 0

⋄ initial conditions

• To satisfy the convergence of
∑

φ2j - roots of
λp − α1λ

p−1 − . . . αp = 0 have to be inside, i.e.,roots of
α(L) = 0 outside of the unit circle
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ARMA(p,q) - invertibility

• From (3) we expressut:

α(L)xt = δ + β(L)ut

β(L)ut = −δ + α(L)xt

ut = −β(L)−1δ + β(L)−1α(L)xt

• This can be done ifβ(L)−1exists, which means that
roots ofβ(L) = 0 sre outside of the unit circle
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ARMA(p,q) - moments

• Expected value:µ:

xt = δ+α1xt−1+ . . .+αpxt−p+ut−β1ut−1− . . .−βqut−q

µ = δ + α1µ+ . . . + αpµ⇒ µ =
δ

1− α1 − . . .− αp

• Variance, autocovariances -- WLOG δ = 0:

xt = α1xt−1 + . . .+ αpxt−p + ut − β1ut−1 − . . .− βqut−q

/

× xt−s, E[.]

γ(s) = α1γ(s− 1) + . . .+ αpγ(s− p)

+E[utxt−s]− β1E[ut−1xt−s]− . . .− βqE[ut−qxt−s]
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ARMA(p,q) - moments

• For s > q are all expected values

E[utxt−s], E[ut−1xt−s], . . . , E[ut−pxt−s]

zero⇒ for s > q ∧ s > p (because we need at leastp
initial values) we have a difference equation for
autocovariances:

γ(s) = α1γ(s− 1) + . . .+ αpγ(s− p)(4)

• ACF - dividing (4) by varianceγ(0) - we get a
difference equation for the autocorrelationsρ(s),
s > max(p, q):

ρ(s) = α1ρ(s− 1) + . . .+ αpρ(s− p)(5)

- the same as for the process without MA terms; they,
however, enter the initial condition
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Example: ARMA(1,1)

• Expected valueµ:

xt = δ + αxt−1 + ut − βut−1

/

E[.]

µ = δ + αµ+ 0⇒ µ =
δ

1− α

• Variance, autocovariances- WLOG δ = 0:

xt = αxt−1 + ut − βut−1

/

× xt−s, E[.]

E[xtxt−s] = αE[xt−1xt−s] + E[utxt−s]− βE[ut−1xt−s]

γ(s) = αγ(s− 1) + E[utxt−s]− βE[ut−1xt−s](6)

Expected valueE[utxt−s] is nonzero only fors = 0,
E[ut−1xt−s] is nonzero only fors = 0 ands = 1

ARMA models part 3: mixed models (ARMA) – p.17/30



Example: ARMA(1,1)

• Concrete valuesE[utxt−s] andE[ut−1xt−s] are obtained
from the Wold representation

xt−s = ut−s + (α− β)ut−s−a + α(α− β)ut−s−2 + . . .

We get:

E[utxt−s] =

{

σ2 for τ = 0

0 for τ = 1, 2, 3, . . .

E[ut−1xt−s] =







(α− β)σ2 for τ = 0

σ2 for τ = 1

0 for τ = 2, 3, . . .

and substitute into (6).
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Example: ARMA(1,1)

• Finally, from (6) we get fors = 0, s = 1:

s = 0 ⇒ γ(0) = αγ(1) + σ2 − β(α− β)σ2

s = 1 ⇒ γ(1) = αγ(0)− βσ2

→ system of 2 equations with 2 unknowns, the solution
is

γ(0) =
1 + β2 − 2αβ

1− α2
σ2, γ(1) =

(α− β)(1− αβ)

1− α2
σ2

(7)

• For s = 2, 3, . . . we get a recurrent relation for the next
γ(s):

γ(s) = αγ(s− 1)
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Example: ARMA(1,1)

• For s = 2, 3, . . . we have

γ(s) = αγ(s− 1)

/

1

γ(0)

ρ(s) = αρ(s− 1)

→ the same difference equation for the ACF as for the
process without the MA part

• butswith a different initial condition- from(7) we have

ρ(1) =
γ(1)

γ(0)
=
(α− β)(1− αβ)

(1 + β2 − 2αβ)

- depends also on the MA part

ARMA models part 3: mixed models (ARMA) – p.20/30



PACF

• PACFin the same way as before:

Φkk =

det















1 ρ(1) . . . ρ(1)

ρ(1) 1 . . . ρ(2)

. . . . . .

ρ(k − 1) ρ(k − 2) . . . ρ(k)















det















1 ρ(1) . . . ρ(k − 1)

ρ(1) 1 . . . ρ(k − 2)

. . . . . .

ρ(k − 1) ρ(k − 2) . . . 1















(8)

• Example: for ARMA(1,1) process we substitute
ρ(k) = αk−1ρ(1), ρ(1) = (α−β)(1−αβ)

(1+β2−2αβ)
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Example - ACF and PACF

It does NOT holdthatACF (k) = 0 for k > q and
PACF (k) = 0 for k > p - for example:
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Example - real data

[Kirchgässner, Wolters], example 2.15

• USA, March 1994 - August 2003

• USRt = 3-month interest rate
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Example - real data

Estimated model for the differences ofUSR:
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Example - real data

Questions:

• Is the model stationary? Is it invertible?

• "The autocorrelogram of the estimated residuals... not
provide any evidence of a higher order process"-
explain

• "...the Box-Ljung Q statistic, which is calculated for
this model with 12 autocorrelation coefficients (i.e.
with 10 degrees of freedom)..."
⋄ what is the null hypothesis?
⋄ explain the degrees of freedom
⋄ what is the outcome?
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ARMA(p,q) - common AR and MA roots

• Recall the definition of the ARMA(p,q) process:

(1− α1L− . . .− αpL
p)xt = δ + (1− β1L− . . .− βqL

q)ut

α(L)xt = δ + β(L)ut

where we require thatα(L), β(L) do not have common
roots

• Why there cannot be common roots ofα(L), β(L) ?

• Generalization of the property that for ARMA(1,1) we
needα 6= β, otherwise we have trivial process
"constant + white noise"
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ARMA(p,q) - common AR and MA roots

• Consider "ARMA(2,2)" process

(1− α1L− α2L
2)xt = δ + (1− β1L− β2L

2)ut,

where 1− α1L− α2L
2 = (1− γL)(1− γ1L)

1− β1L− β2L
2 = (1− γL)(1− γ2L)

i.e., AR and MA have a common rootγ

• Then:

(1− γL)(1− γ1L)xt = δ + (1− γL)(1− γ2L)ut

(1− γ1L)xt = (1− γL)−1δ + (1− γ2L)ut

so it is ARMA(1,1), and not ARMA(2,2) model

• From a practical point of view -if we have close AR
and MA roots, instead of ARMA(p,q) we should try
ARMA(p-1,q-1) model
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ARMA(p,q) - example

• EXAMPLE : ARMA(1,2) model for the differenced of
log prices of cocoa (fromt the previous chapter on MA
models):
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ARMA(p,q) - example

• Residuals:
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ARMA(p,q) - example

• EXERCISE:
Compute the roots of AR and MA parts

• We get:AR root is close to one of the MA roots

• So we should tryARMA(0,1) = MA(1) model instead
of ARMA(1,2), and it was indeed a good model for the
data
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