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Modelling seasonality

e We have seen models with seasonal character - for
example AR(2) model with complex roots

e These models are, however, not sufficient to model all
seasonal data

o Also, we might want to include seasonality (quarterly
data, monthly data) into specification

o There are models which are specifically for modelling
seasonal dataSARIMA models(seasonal ARIMA
models)
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Example - data

o Number of airline passengers by Box and Jenkins -
founders of ARIMA modelling

o Monthly data, January 1949 - December 1960
o We work with logarithms, they stabilize variance
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Example - differences

» We take differences - in R - they also have
seasonality:
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Example - differences

o ACF and PACF for these differences -In R

Series: diff(x)
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Example - differences

o We can tkeseasonal differences — z;_15 - IN R

Series: diff(x, 12)
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Example - differences

e Both classical and seasonal differencedassical
because of the trend, seasonal because of the

differences - Iin R
Series: diff{diff{x, 12))
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Example - differences

o What to do with that:

Series: diff(diff(x, 12))
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Example - seasonal AR and MA terms

o Based on ACF we malyey using terms up tma(12)

o Box and Jenkins:
o not allma(l), ma(2), ..., ma(12)
o neither onlyma(l) ama(12)
o but multiply polynomials of order 1 and 12:

(1—BL)(1 — 6L %)uy
- we getl3 materms but we need only 2

coefficients

o Inthe same way + we can combine them:
o seasonamaterms of higher order:
1 — 0L — 6,1
o seasonaar term with an ordinary one:
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SARIMA models - terminology

o RecallARIMA (p,d,q) models:
o p-number of AR terms
o d - how many times we take a difference

o ¢ - number of MA terms

o SARIMA (p,d,q) x (P,D,(Q), has also:
o P -number of seasonal AR terms

o D - how many seasonal differences
o () - number of seasonal AR terms
o s - period of the data

o We need to check that the data we use - after
differencing - does not have a unit root
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Example - model in R

o For our dataSARIMA (0,1,1) x (0,1, 1), Where
s =12

o Time seriesliff(diff(x,12)) does not have neither trend
nor a unit root

e In R:sarima(x,0,1,1,0,1,1,12)
o We get:

> garima(x,0,1,1,0,1,1,12,detail=="FLLSE"™)
Efit

Series: xXdata

ARTMA (O0,1,1) (0,1,1)[12]

Coefficients:
mal smal
-0.4018 -0.556%
=.e. 0.0896 0.0731

2igma”™Z eztimated a= 0.001348: log likelihood=244.7
ATC=-483.4 ATICc=-4823.21 BIC=-474.,77

SATC
[1] -5.58133
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Example - model in R

e Residuals are ok:

ACF of Residuals Normal Q-Q Plot of 5td Residuals
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Example - predictions in R

o We have a modebARIMA (0,1,1) x (0,1, 1)
o Prediction for the following 2 years:
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Exercises

Find a suitable SARIMA model (data on course webpage):

e Spai n. t xt - number of tourists in Spain, mothly dat
from January 1970 to March 1989

e souvenirs.txt -salesinasouvenir shopona

beach in Australia, monthly data from January 1987 to
December 1993
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