Modelling volatility - ARCH and GARCH models

Beáta Stehlíková Time series analysis

Stock prices

- Weekly stock prices (library quantmod)
- Continuous returns:

```
1 library(quantmod)
2 library(astsa)
3
4 getSymbols("EBAY", from="2010-01-01", to="2014-12-31", auto.assign=TRUE)
5 EBAY <- to.weekly(EBAY)
6 returns <- diff(log(EBAY$EBAY.Adjusted))[-1] # omit NA at the beginning
7 chartSeries(returns, theme="white")
8</pre>
```

• At the beginning of the term we analyzed their autocorrelations in a HW

Returns

• Time evolution:

Modelling volatility - ARCH and GARCH models $\,$ – p.3/33

• Based on ACF, they look like a white noise:

Series: returns

• We model them as a white noise:

```
11 model1<-sarima(returns,0,0,0, details=FALSE)
12 acf2(model1$fit$residuals) # the same as acf2(vynosy) -> ok
13 acf2(model1$fit$residuals^2) # -> PROBLEM
14
```

 \rightarrow residuals are just - up to a contant - the returns

- If the absolute value of a residual is small, usually follows a residual with a small absolute value
- Similarly, after a residual with a large absolute value, there is often another residual with a large absolute value - it can be positive or negative, so it cannot be seen on the ACF
- Second powers will likely be correlated (but this does not hold for a white noise)

Returns

• ACF of squared residuals:

Series: model1\$fit\$residuals^2

 \rightarrow significant autocorrelation

• QUESTION:

Which model can capture this property?

Returns

• Possible explanation: nonconstant variance

ARCH and GARCH models

• *u* is not a white noise, but

$$u_t = \sqrt{\sigma_t^2 \ \eta_t},$$

where η is a white noise with unit variance, i.e., $u_t \sim N(0, \sigma_t^2)$

- ARCH model (autoregressive conditional heteroskedasticity) - equation for variance σ_t^2 : $\sigma_t^2 = \omega + \alpha_1 u_{t-1}^2 + \dots \alpha_q u_{t-q}^2$
- Constraints on parameters:
 - ◊ variance has to be positive:

$$\omega > 0, \alpha_1, \ldots, \alpha_{q-1} \ge 0, \alpha_q > 0$$

◊ stationarity:

$$\alpha_1 + \ldots + \alpha_q < 1$$

ARCH and GARCH models

- Disadvantages of ARCH models:
 - \diamond a small number of terms u_{t-i}^2 is often not sufficient
 - squares of residuals are still often correlated
 - for a larger number of terms, these are often not significant or the constraints on paramters are not satisfied
- Generalization: GARCH models solve these problems

ARCH and GARCH models

• GARCH(p,q) model (generalized autoregressive conditional heteroskedasticity) - equation for variance σ_t^2 :

$$\sigma_t^2 = \omega + \alpha_1 u_{t-1}^2 + \ldots + \alpha_q u_{t-q}^2 + \beta_1 \sigma_{t-1}^2 + \ldots + \beta_p \sigma_{t-p}^2$$

- Constraints on parameters:
 - ◊ variance has to be positive:

$$\omega > 0, \alpha_1, \dots, \alpha_{q-1} \ge 0, \alpha_q > 0$$
$$\beta_1, \dots, \beta_{p-1} \ge 0, \beta_p > 0$$

◊ stationarity:

$$(\alpha_1 + \ldots + \alpha_q) + (\beta_1 + \ldots + \beta_p) < 1$$

• A popular model is GARCH(nk, val) tility - ARCH and GARCH models - p.10/33

GARCH models in R

- Modelling YHOO returns continued
- In R:
 - ◊ library fGarch
 - ◊ function garchFit, model is writen for example like arma(1,1)+garch(1,1)
 - parameter trace=FALSE we do not want the details about optimization process
- We have a model constant + noise; we try to model the noise by ARCH/GARCH models

ARCH(1)

• Estimation of ARCH(1) model:

```
17 # arch(1) = garch(1,0)
18 model10 <- garchFit(~garch(1,0), data=returns, trace=FALSE)
19 stand.res <- model10@residuals/model10@sigma.t # standardized reziduals
20 acf2(stand.res)
21 acf2(stand.res^2)
22 summary(model10)</pre>
```

- We check
 - 1. ACF of standardized residuals
 - 2. ACF of squared standardized residuals
 - 3. summary with tests about standardized residuals and their squares

GARCH models in v R

- Useful values:
 - ◊ @fitted fitted values
 - ◊ @residuals residuals
 - ◊ @h.t estimated variance
 - ◊ @sigma.t estimated standard deviation
- Standardized residuals residuals divided by their standard deviation rezíduá vydelené ich štadardnou should be a white noise
- Also their squares should be a white noise

ARCH(1)

• Residuals:

ARCH(1)

• Squares:

• Tests:

Standardised Residuals Tests:

			Statistic	p-value
Jarque-Bera Test	R	Chi^2	29.18907	4.588523e-07
Shapiro-Wilk Test	R	W	0.9821336	0.002392983
Ljung-Box Test	R	Q(10)	12.29485	0.2658079
Ljung-Box Test	R	Q(15)	21.08263	0.1342099
Ljung-Box Test	R	Q(20)	28.34245	0.1015375
Ljung-Box Test	R^2	Q(10)	27.55866	0.002123322
Ljung-Box Test	R^2	Q(15)	44.23218	0.0001011277
Ljung-Box Test	R^2	Q(20)	46.02944	0.0007985573
LM Arch Test	R	TR^2	25.98164	0.01079828

- We have: normality test, Ljung-Box for standardized residuals and their sqaures
- What is new: testing homoskedasticity for the residuals

ARCH(2)

• We try ARCH(2) - results of the tests:

Standardised Residu	als T	ests:		
			Statistic	p-Value
Jarque-Bera Test	R	Chi^2	34.65834	2.978778e-08
Shapiro-Wilk Test	R	W	0.9814854	0.001841151
Ljung-Box Test	R	Q(10)	10.75724	0.3767411
Ljung-Box Test	R	Q(15)	19.54396	0.1901334
Ljung-Box Test	R	Q(20)	26.93409	0.1371285
Ljung-Box Test	R^2	Q(10)	14.11704	0.1677196
Ljung-Box Test	R^2	Q(15)	27.9337	0.02198778
Ljung-Box Test	R^2	Q(20)	30.13048	0.06776678
LM Arch Test	R	TR^2	20.09535	0.06530357

ARCH(3)

• ARCH(3) - results of the tests:

Standardised Residuals Tests:							
			Statistic	p-Value			
Jarque-Bera Test	R	Chi^2	33.88186	4.391851e-08			
Shapiro-Wilk Test	R	W	0.9816512	0.001968254			
Ljung-Box Test	R	Q(10)	10.70552	0.3809165			
Ljung-Box Test	R	Q(15)	19.44674	0.1941989			
Ljung-Box Test	R	Q(20)	26.77638	0.1416733			
Ljung-Box Test	R^2	Q(10)	14.01256	0.1724194			
Ljung-Box Test	R^2	Q(15)	27.74511	0.02322011			
Ljung-Box Test	R^2	Q(20)	29.97015	0.07033882			
LM Arch Test	R	TR^2	20.00903	0.06691536			

ARCH(4)

• ARCH(4) - results of the tests:

Standardised Residuals Tests:							
		Statistic	p-Value				
R	Chi^2	12.79082	0.001669201				
R	W	0.9880808	0.0302226				
R	Q(10)	10.54746	0.3938435				
R	Q(15)	18.98255	0.2145258				
R	Q(20)	26.02379	0.1650277				
R^2	Q(10)	14.41393	0.1549343				
R^2	Q(15)	21.97894	0.1083574				
R^2	Q(20)	23.88737	0.2473466				
R	TR^2	18.14053	0.1114896				
	als T R R R R R^2 R^2 R^2 R^2 R^2 R	als Tests: R Chi^2 R W R Q(10) R Q(15) R Q(20) R^2 Q(10) R^2 Q(15) R^2 Q(20) R^2 Q(20) R TR^2	als Tests: R Chi^2 12.79082 R W 0.9880808 R Q(10) 10.54746 R Q(15) 18.98255 R Q(20) 26.02379 R^2 Q(10) 14.41393 R^2 Q(15) 21.97894 R^2 Q(20) 23.88737 R TR^2 18.14053				

• No autocorrelation in residuals and their squares.

ARCH(4)

• ACF of squared residuals:

 \rightarrow without significant correlation

ARCH(4)

• But ARCH coefficients α_i are not significant:

Error	Analysis:							
	Estimate	Std. Error	t value P	r(> t)				
mu	4.022e-03	2.433e-03	1.653	0.0983				
omega	1.170e-03	2.003e-04	5.842 5	.16e-09	***			
alpha1	3.839e-02	1.250e-01	0.307	0.7587				
alpha2	1.259e-01	8.058e-02	1.563	0.1181				
alpha3	1.000e-08	1.475e-01	0.000	1.0000				
alpha4	1.098e-01	8.052e-02	1.364	0.1726				
Signif	. codes: 0	'***' 0.001	'**' 0.01	'*' 0.0	5 '.'	0.1	•	' 1

GARCH(1,1)

- We try GARCH(1,1)
- Tests:

Standardised Residuals Tests:

			Statistic	p-Value
Jarque-Bera Test	R	Chi^2	11.47005	0.003230806
Shapiro-Wilk Test	R	W	0.987312	0.02152423
Ljung-Box Test	R	Q(10)	10.26988	0.4171434
Ljung-Box Test	R	Q(15)	17.86043	0.2700744
Ljung-Box Test	R	Q(20)	23.83093	0.2498554
Ljung-Box Test	R^2	Q(10)	9.549341	0.4808792
Ljung-Box Test	R^2	Q(15)	17.0167	0.3178669
Ljung-Box Test	R^2	Q(20)	19.01346	0.5209512
LM Arch Test	R	TR^2	12.16882	0.4322184

GARCH(1,1)

• Estimates:

Error /	Analysis:				
	Estimate	Std. Error	t value Pi	r(> t)	
mu	3.262e-03	2.351e-03	1.388	0.1652	
omega	2.428e-05	3.596e-05	0.675	0.4994	
alpha1	4.334e-02	2.401e-02	1.805	0.0711 .	
beta1	9.396e-01	3.923e-02	23.954	<2e-16 ***	
Signif	. codes: 0	'***' 0.001	'**' 0.01	'*' 0.05 '.' O.	.1''1

• We obtain it using @sigma.t :

Estimated standard deviation

• Another access to the graphs - plot(model11):

> plot(model11)

Make a plot selection (or 0 to exit):

- 1: Time Series
- 2: Conditional SD
- 3: Series with 2 Conditional SD Superimposed
- 4: ACF of Observations
- 5: ACF of Squared Observations
- 6: Cross Correlation
- 7: Residuals
- 8: Conditional SDs
- 9: Standardized Residuals
- 10: ACF of Standardized Residuals
- 11: ACF of Squared Standardized Residuals
- 12: Cross Correlation between r^2 and r
- 13: QQ-Plot of Standardized Residuals

Selection:

Predictions

• We use the function predict with parameter n.ahead (number of observations)

Predictions

 Parameter nx - we can change the number of observations from the data which are shown in the plot (here nx=100:

Prediction with confidence intervals

• Predicted standard deviation: plot(ts(predictions[3]))

Predictions

• For a longer time (exercise: compute its limit):

Application: Value at risk (VaR)

- Value at risk (VaR) is basicly a quantile
- Let X be a portfolio value, then

 $\mathcal{P}(X \le VaR) = \alpha,$

for example for $\alpha = 0.05$

- A standard GARCH assumes normal distribution we can compute quantiles
- Shortcomings:
 - o normality assumptions
 - $\diamond~$ there are also better risk measures than VaR

Apication: Value at risk (VaR)

- WHAT WE WILL DO:
 - \diamond Start with *N* observations of returns
 - ◇ Estimate the GARCH model.
 - Make a prediction for standard deviation and using the prediction we construct *VaR* for returns for the following day
 - Every day move the window with data (we have a new observation), estimate GARCH again and compute thes new *VaR*

Not required - for those interested

- https://systematicinvestor.wordpress.com/2012/01/06/ trading-using-garch-volatility-forecast/
- "... Now, let's create a strategy that switches between mean-reversion and trend-following strategies based on GARCH(1,1) volatility forecast." + R code
- From the website:

- Threshold GARCH:
 - $\diamond u_t > 0$ "good news", $u_t < 0$ "bad news"
 - TARCH can model their different effect on volatility
 - o leverage effect: bad news have a higher impact
- We do not model variance (as in ARCH/GARCH models), but
 - \diamond its logarithm \rightarrow exponential GARCH
 - $\diamond~$ any power of standard deviation \rightarrow power GARCH
- and others...