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Stock prices

• Weekly stock prices (libraryquantmod)

• Continuous returns:

• At the beginning of the term we analyzed their
autocorrelations in a HW
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Returns

• Time evolution:
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Returns

• Based on ACF, they look like a white noise:
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Returns

• We model them as a white noise:

→ residuals are just - up to a contant - the returns

• If the absolute value of a residual is small, usually
follows a residual with a small absolute value

• Similarly, after a residual with a large absolute value,
there is often another residual with a large absolute
value - it can be positive or negative, so it cannot be
seen on the ACF

• Second powers will likely be correlated(but this does
not hold for a white noise)
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Returns

• ACF of squared residuals:

→ significant autocorrelation

• QUESTION:
Which model can capture this property?
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Returns

• Possible explanation:nonconstant variance
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ARCH and GARCH models

• u is not a white noise, but
ut =

√

σ2t ηt,

whereη is a white noise with unit variance, i.e.,

ut ∼ N(0, σ2t )

• ARCH model(autoregressive conditional
heteroskedasticity) - equation for varianceσ2t :

σ2t = ω + α1u
2

t−1 + . . . αqu
2

t−q

• Constraints on parameters:
⋄ variance has to be positive:

ω > 0, α1, . . . , αq−1 ≥ 0, αq > 0

⋄ stationarity:
α1 + . . . + αq < 1
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ARCH and GARCH models

• Disadvantages of ARCH models:
⋄ a small number of termsu2t−i is often not sufficient

- squares of residuals are still often correlated
⋄ for a larger number of terms, these are often not

significant or the constraints on paramters are not
satisfied

• Generalization:GARCH models- solve these
problems
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ARCH and GARCH models

• GARCH(p,q) model(generalized autoregressive
conditional heteroskedasticity) - equation for variance
σ2t :

σ2t = ω + α1u
2

t−1 + . . .+ αqu
2

t−q

+β1σ
2

t−1 + . . . + βpσ
2

t−p

• Constraints on parameters:
⋄ variance has to be positive:

ω > 0, α1, . . . , αq−1 ≥ 0, αq > 0

β1, . . . , βp−1 ≥ 0, βp > 0

⋄ stationarity:
(α1 + . . .+ αq) + (β1 + . . . βp) < 1

• A popular model is GARCH(1,1).Modelling volatility - ARCH and GARCH models – p.10/33



GARCH models in R

• Modelling YHOO returns - continued

• In R:
⋄ library fGarch
⋄ functiongarchFit, model is writen for example like

arma(1,1)+garch(1,1)
⋄ parametertrace=FALSE- we do not want the

details about optimization process

• We have a modelconstant + noise; we try to model the
noise byARCH/GARCH models
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ARCH(1)

• Estimation of ARCH(1) model:

• We check
1. ACF of standardized residuals
2. ACF of squared standardized residuals
3. summarywith tests about standardized residuals

and their squares
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GARCH models in v R

• Useful values:
⋄ @fitted- fitted values
⋄ @residuals- residuals
⋄ @h.t- estimated variance
⋄ @sigma.t- estimated standard deviation

• Standardized residuals- residuals divided by their
standard deviation rezíduá vydelené ich štadardnou -
should be a white noise

• Also their squares should be a white noise
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ARCH(1)

• Residuals:
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ARCH(1)

• Squares:
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Tests about residuals

• Tests:

• We have: normality test, Ljung-Box for standardized
residuals and their sqaures

• What is new:testing homoskedasticity for the residuals
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ARCH(2)

• We try ARCH(2) - results of the tests:
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ARCH(3)

• ARCH(3) - results of the tests:
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ARCH(4)

• ARCH(4) - results of the tests:

• No autocorrelation in residuals and their squares.
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ARCH(4)

• ACF of squared residuals:

→ without significant correlation
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ARCH(4)

• But ARCH coefficientsαi are not significant:
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GARCH(1,1)

• We try GARCH(1,1)

• Tests:
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GARCH(1,1)

• Estimates:
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Estimated standard deviation

• We obtain it using@sigma.t:
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Estimated standard deviation

• Another access to the graphs -plot(model11):
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Predictions

• We use the functionpredictwith parametern.ahead
(number of observations)
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Predictions

• Parameternx - we can change the number of
observations from the data which are shown in the plot
(herenx=100:
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Predictions

• Predicted standard deviation:plot(ts(predictions[3]))
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Predictions

• For a longer time (exercise: compute its limit):
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Application: Value at risk (VaR)

• Value at risk (VaR)is basicly aquantile

• Let X be a portfolio value, then

P(X ≤ V aR) = α,

for example forα = 0.05

• A standard GARCH assumesnormal distribution- we
can compute quantiles

• Shortcomings:
⋄ normality assumptions
⋄ there are also better risk measures than VaR
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Apication: Value at risk (VaR)

• WHAT WE WILL DO :
⋄ Start with N observations of returns
⋄ Estimate the GARCH model.
⋄ Make a prediction for standard deviation and using

the prediction we constructVaR for returns for the
following day

⋄ Every day move the window with data (we have a
new observation), estimate GARCH again and
compute thes newVaR
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Not required - for those interested

• https://systematicinvestor.wordpress.com/2012/01/06/
trading-using-garch-volatility-forecast/

• "... Now, let’s create a strategy that switches between
mean-reversion and trend-following strategies based
on GARCH(1,1) volatility forecast." + R code

• From the website:
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Other models for volatility

• Threshold GARCH:
⋄ ut > 0 - "good news", ut < 0 - "bad news"
⋄ TARCH can model their different effect on

volatility
⋄ leverage effect: bad news have a higher impact

• We do not model variance (as in ARCH/GARCH
models), but
⋄ its logarithm→ exponential GARCH
⋄ any power of standard deviation→ power GARCH

• and others...
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