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Motivation

o Example about airline passengers
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o Similarly e.g. monthly unemplyoment data, quartely
GDP, ...— we have seen SARIMA models

e But not always we can deduce a clear period
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Motivation

e Sunspots:

http://www.dailymail.co.uk/sciencetech/article-2@28/Best-auroras-seen-Britain-

thanks-huge-solar-flares.html
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Motivation

e Sunspots:

Sunspot Numbers

In 1610, shortly after viewing the
SUNSPOT HUMBER sun with his new telescope,
300 Galileo Galilei (or was it Thomas
Harriot?) made the first
European observations of
] Sunspots. Continuous daily
AJ observations were started at the
0 ? Zurich Observatory in 1849 and
1990 1995 2000 2005 2010 2015|| earlier observations have been
HALE used to extend the records back
to 1610. The sunspot number is
S R S calculated by first counting the
number of sunspot groups and
then the number of individual
sunspots.
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http://solarscience.msfc.nasa.gov/SunspotCyclelshtm
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Motivation

e Sunspots - a longer time series:
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Data from the websitéttp://solarscience.msfc.nasa.gov/SunspotCyclelshtm

e QuestionHow to determine the period?
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Spectrum

o Sequencg~;}° ___ — generating function

j=—0c

9(z) = Z 757!

j=—00

o Stationary process with autocovariancesy; 12
— Spectrum

1 1 —
(@) = gl ) = £ 3 e,
J=—00

wherei Is Imaginary unit.
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Properties of spectrum

o Spectrunky (w):
& can be written as:

©.@)
sy(w) = 5= [10+2) 7 cos(w))
j=1

o has real values
& 1S an even function
o has a periodr
— 1t Is sufficient to know the values betweemandnr

e It can be proved thaty (w) > 0 [Fuller, 1976]
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Spectrum and variance

o Calculation of autocovariances from the spectrum:

7
Ws:/ sy (w)e™Fdw

—7r

o Fork =0wegety = ["_sy(w)dw, and since the
spectrum is an even function:

Yo = 2/ sy (w)dw,
0

S0 the variancey Is twice the area below the graph of
the spectrum on the interval, r|

e So from the behaviour of the spectrum we can see
which frequencies add the most to the variance of the
process those for which the spectrum has a high
value Spectral analysis — p.8/??



Estimation: sample periodogram

o We have data;, ...yr — and we want to estimate the
spectrum of the time serie

o Firstidea:we replace the autocovariances in the
definition with their estimatesn this way we get
sample periodogram

1 T—1 1 T—1 ]
§y(w) _ % Z ﬁ/je—zw] - % Yo + QZ”%' COS(wj)
j=—T+1

e Problems:
o estimates have a high variance

o accuracy does not get better whe we have more
data (because we are estimating more
autocovariances)

— we need another estimation of the spectrum

. 7=1 _
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Estimation: sample periodogram

e Problems - in more detail:

o [Fuller 1976] for a large sample size, the ratio
2;@( has approximately?(2) dispribution and

these ratios re for different approximately
Independent

o E[x?*(2)] = 2, and hence

Elsy(w)] ~ sy (w)

- that 1Is OK

> But 95 percent confidence interval fot(2) is
(0.05,7.4) and hence CI for the spectrum is

(0.0255,(w), 3.75,(w))

= tOO Wlde Spectral analysis — p.10/77



Estimating spectrum - a better estimate

o ldea: if the frequencies are close, also the spectrum
values are close; as an estimate of the spectrum
corresponding to a given frequency we take a weighted
average of sample periodogram valugsfor
neighbouring frequencies

h

(1) Sy(wi) = > KlWjm, @)y (W 1m)

where
& Wi — 27Tj/T
o constant: gives the number of neighbouring

frequencies which we take into account when
computing the estimate (calldchndwidtl)

o functionx determinesveights for these
frequencies (they sum to 1)
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Example 1. simulated data

o Recall AR(2) process with periodic character:
Tt — 1.433t_1 — O.85th_2 -+ Uy

o We know:
o correlation satisfy the difference equation
p(t) — 1.4p(t — 1) + 0.85p(t — 2) = 0,
which has a general solution
p(t) = 0.922%(¢1 cos(0.709t) + c2 sin(0.709¢))
o sine and cosine in a general soluti@n(kt), sin(kt)
— period 2T = 8.862 ~ 9
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Example 1: simulated data

o Sample trajectory:

J |
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Example 1: simulated data

o Simulated frajectory - a shorter time interval (we can
see the period better):
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Example 1: simulated data

o Estimating the spectrum in R:

o sample periodogram:
spectrum(X, log="no")
o smoothed:

spectrum(x, kernel("daniell"), log="no")
spectrum(x, kernel("modified.daniell"), log="no")

o differentscaling of x-axisfrom 0 to 1/2, soperiod
= 1/frequency)
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Example 1: simulated data

o Sample periodograns:

Series: x
Raw Periodogram
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Example 1: simulated data

o Smoothed sample periodogram:

Series: X
Smoothed Periodogram
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Example 1: simulated data

o Smoothed sample periodogram:
spectrum(x, kernel("modified.daniell), log="no")

Series: x
Smoothed Periodogram
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Example 1: simulated data

Recall:

Series: x
Smoothed Periodogram
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We find maximum and corresponding period:

> sp=spectrum(x, kernel("modified.daniell"), log="no")
> max (ss$spec)

[1] 287.7513

= sp$freq[which.max (sp$spec) ]

> 1/sp$freqlwhich.max (sp$spec)]
[1] 9.090909
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Example 2: sunspots

e Data:
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Example 2: sunspots

o Estimate of the spectrum:
spectrum(sun, kernel("modified.daniell"), log="no")

Series: x
Smoothed Periodogram
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Example 2: sunspots

e ZOOM:
plot(sp$freq[1:100], sp$spec[1:100], type="1")
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Example 2: sunspots

o We find the maximum and corresponding period:

> 1/sp$freq[which.max (sp$spec)]
[1] 128

> 1/sp$freqlwhich.max (sp$spec)]/12
[1] 10.66667

o From the website:

The "sunspot number" is then given by the sum of the number of
individual sunspots and ten times the number of groups. Since
most sunspot groups have, on average, about ten spots, this
formula for counting sunspots gives reliable numbers even when
the observing conditions are less than ideal and small spots are
hard to see. Monthly averages (updated monthly) of the sunspot
numbers (181 kb JPEG imaqge), (307 kb pdi-file), (62 kb text file)

show that the number of sunspots visible on the sun waxes and
wanes| with an approximate 11-year cycle,

http://solarscience.msfc.nasa.gov/SunspotCyclelshtm
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Example 3: estimation using AR models

o« We model data as an AR process

e Spectrum is then estimated as the spectrum of that AR
process

e Sunspots datas

Series: x
AR (29) spectrum
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R models

Example 3. estimation using Al

e ZOOM:
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Example 3: estimation using AR models

Finding maximum:

> sp2=spectrum(ts(sun),method="ar", log="no")

> 1/sp2%$freq[which.max (sp2$spec) ]

[1] 142.5714

= 1/sp2$freqlwhich.max (sp2$spec)]/12
[1] 11.88095
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Notes on R

o In the first approach (smoothed sample periodogram):
o Data are detrended (linear trend).
o If the data have a time structure, it is kept when
computing frequencies and periods.
o EXAMPLE: alirline passengers
o N R:

o time structure: unit of time = year, frequency of the
data =12
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Notes on R

(-]
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frequency

bandwidth = 0.105

data(AirPassengers)
x=AirPassengers

sp=spectrum(x,kernel("modified.daniell"), log="no")
1/sp$freqlwhich.max (sp$spec) ]
1] 1
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Notes on R

For a comparison, without the time structure:

Series: x
Smoothed Periodogram

15000
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spectrum
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frequency
bandwidth = 0.00874

> sp=spectrum(ts(x, frequency=1),kernel("modified.daniell"), log="no")

> 1/sp$freqlwhich.max (sp$spec)]
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