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Kapitola 1

Úvod

Teória pravdepodobnosti poskytuje základné modely a matematický aparát pre mnohé oblasti
teoretickej aj aplikovanej informatiky. Napríklad axiomatizácia samotnej teórie informácie a
kódovania je postavená na pravdepodobnosti a na náhodných premenných (pozri [2]). Dôleºi-
tou sú£as´ou teórie zloºitosti algoritmov je ²túdium správania sa algoritmov pre náhodne gene-
rované vstupy. Taktieº, ve©a efektívnych algoritmov na rie²enie deterministických úloh vyuºíva
principiálnym spôsobom náhodnos´, povedzme Millerov-Rabinov test prvo£íselnosti, algorit-
mus na h©adanie najmen²ieho rezu v grafe a iné �znáhodnené� algoritmy ([4]). Zaujímavou
metódou pouºitia teórie pravdepodobnosti v kombinatorike je takzvaná �pravdepodobnostná
metóda�, pomocou ktorej vieme kon²truova´ preh©adné dôkazy niektorých existen£ných tvr-
dení ([1]). V neposlednom rade, po£íta£ová simulácia a optimalizácia skoro v²etkých reálnych
systémov a v²etky pokro£ilej²ie po£íta£ové hry si vyºadujú pouºitie vhodných generátorov
náhodnosti ([5] a mnoho iných u£ebníc).
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Kapitola 2

Axiomatická de�nícia pravdepodobnosti

2.1 Priestor udalostí

σ-algebra je jedným zo základných nástrojov teórie pravdepodobnosti. Neskôr na nej budeme
de�nova´ pravepodobnostnú mieru.

De�nícia 2.1 (σ-algebra). Nech Ω je neprázdna mnoºina a nech S ⊆ 2Ω. Usporiadanú dvojicu
(Ω, S) nazývame σ-algebra, alebo σ-algebra udalostí, ak platí

1. Ω ∈ S

2. A ∈ S⇒ Ω \ A ∈ S

3. Ak (Ai)i∈I je postupnos´ mnoºín patriacich do systému S, tak ∪i∈IAi ∈ S

Poznámka 2.1. Ak pouºijeme v texte pojem �postupnos´�, myslíme tým kone£nú, alebo aj
nekone£nú spo£ítate©nú postupnos´. To znamená, ºe v prechádzajúcej de�nícii je I kone£ná,
alebo nekone£ná spo£ítate©ná usporiadaná mnoºina.

Príklad 2.1. Nech Ω je ©ubovo©ná neprázdna mnoºina a nech ∅ 6= A ( Ω. Potom (Ω, {∅,Ω}),
(Ω, {∅, A,Ω/A,Ω}) aj (Ω, 2Ω) sú σ-algebry. (Symbolom 2Ω zna£íme mnoºinu v²etkých pod-
mnoºín mnoºiny Ω.) Ak Ω = {1, 2, 3}, potom (Ω, {∅, {1}, {2}, {3},Ω}) nie je σ-algebra.

Veta 2.1 (Uzavretos´ σ-algebry vzh©adom k spo£ítate©ným prienikom). Ak (Ω, S) je σ-algebra
a (Ai)i∈I je postupnos´ prvkov systému S, tak ∩i∈IAi ∈ S.

Dôkaz. Ak Ai ∈ S pre v²etky i ∈ I, tak pod©a vlastnosti 2 z de�nície 2.1 platí Ω \Ai ∈ S pre
v²etky i ∈ I; pod©a vlastnosti 3 teda máme ∪i∈I(Ω \ Ai) ∈ S a opä´ pod©a vlastnosti 2 dostá-
vame Ω \ (∪i∈I(Ω \ Ai)) ∈ S. Lenºe Ω \ (∪i∈I(Ω \ Ai)) = ∩i∈IAi na základe De Morganovych
pravidiel.

Axiómy de�nície 2.1 zaru£ujú, ºe systém S je uzavretý nielen vzh©adom na spo£ítate©né
prieniky a zjednotenia, ale aj vzh©adom na akéko©vek mnoºinové operácie, ktoré sú vyjadri-
te©né pomocou spo£ítate©ných zjednotení, prienikov, alebo komplementov. Ukáºme napríklad,
ºe systém S je uzavretý vzh©adom na mnoºinový rozdiel. Ak A,B ∈ S, tak pod©a vlastnosti 2
de�nície 2.1 platí Ω\A ∈ S. Teda pod©a predchádzajúcej vety obsahuje systém S aj mnoºinu
B ∩ (Ω \ A) = B \ A.
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V teórii pravdepodobnosti predstavujú prvky mnoºiny Ω najjednoduch²ie, ¤alej nerozlo-
ºite©né výsledky náhodného experimentu (takzvané elementárne výsledky). Tie mnoºiny ele-
mentárnych výsledkov, ktoré patria do systému S, reprezentujú �udalosti�, ktorým je moºné
pripísa´ pravdepodobnos´ realizácie. Ak je mnoºina Ω spo£ítate©ná, tak v na²om modeli ob-
vykle volíme S = 2Ω. Ukazuje sa v²ak, ºe ak je mnoºina Ω nespo£ítate©ná a zvolili by sme
S = 2Ω, potom by mohlo by´ obtiaºne priradi´ prvkom takto bohatého systému udalostí
pravdepodobnostnú mieru, ktorá by sa nesprávala paradoxne. Napríklad ak je Ω = Rm, býva
vhodným (dostato£ne, ale nie príli² bohatým) systémom udalostí systém Bm borelovských
mnoºín, de�novaný niº²ie (pozri de�níciu 2.4).

De�nícia 2.2 (Elementárne výsledky a udalosti). Nech (Ω, S) je σ-algebra. Prvky mnoºiny
Ω nazveme elementárne výsledky a podmnoºiny Ω patriace do systému S nazveme udalosti.

Príklad 2.2. Ná² experiment pozostáva z jedného hodu kockou. Ak nás na tomto experi-
mente zaujíma jedine to, na ktorú stranu padne kocka (a ak z modelu vylú£ime moºnos´,
ºe kocka zostane stá´ na hrane), potom je zmysluplnou mnoºinou elementárnych výsledkov
Ω = {1, 2, ..., 6}. Systém udalostí môºeme zvoli´ S = 2Ω. Udalos´ {1, 2, 3} zodpovedá výroku
�padne £íslo men²ie neº 4�, udalos´ {2, 4, 6} zodpovedá výroku �padne párne £íslo� a podobne.

Uvedomme si, ºe v modeli danom nejakým pravdepodobnostným priestorom existuje priro-
dzená kore²pondencia medzi udalos´ami a výrokmi týkajúcimi sa elementárnych výsledkov ako
je nazna£ené v predchádzajúcom príklade. Vo v²eobecnosti udalosti A ∈ S zodpovedá výrok
�nastane niektorý elementárny výsledok z A�. V tejto kore²pondencii zodpovedajú mnoºinové
operácie medzi udalos´ami logickým operáciám medzi príslu²nými výrokmi. Mnoºinový kom-
plement takto zodpovedá negácii výroku, zjednotenie logickému �alebo�, prienik logickému �a�,
alebo napríklad symetrická diferencia mnoºín (A∆B = (A\B)∪ (B\A)) zodpovedá logickému
�výlu£né alebo� (známemu aj pod ozna£ením xor).

De�nícia 2.3 (σ-algebra generovaná systémom mnoºín). Nech Ω 6= ∅ a nech F je nejaký
systém podmnoºín mnoºiny Ω. Nech σ(F) je prienik v²etkých takých systémov S podmnoºín
mnoºiny Ω, ºe F ⊆ S a sú£asne (Ω, S) je σ-algebra. Potom σ-algebru (Ω, σ(F)) nazývame
σ-algebra podmnoºín mnoºiny Ω generovaná systémom mnoºín F, alebo tieº minimálna σ-
algebra podmnoºín mnoºiny Ω obsahujúca systém F.

Príklad 2.3. V prípade, ºe je systém F kone£ný, je jednoduché nájs´ σ(F) postupným pri-
dávaním prienikov, zjednotení a komplementov.

Nech napríklad Ω = {1, 2, 3, 4, 5} a F = {{1, 2}, {3, 4}}. Potom

σ(F) = {∅,Ω, {1, 2}, {3, 4}, {1, 2, 3, 4}, {3, 4, 5}, {1, 2, 5}, {5}} .

Zaujímavej²ia je v²ak situácia, ke¤ je systém F nekone£ný, ako v nasledujúcej de�nícii.

Príklad 2.4. Hádºeme mincou (nekone£ne dlho), pri£om akáko©vek pre nás zaujímavá in-
formácia je obsiahnutá v zázname o tom, v ktorých hodoch padla na minci hlava a v kto-
rých hodoch padol znak. Túto situáciu je prirodzené formalizova´ tým spôsobom, ºe priestor
elementárnych výsledkov Ω bude mnoºina v²etkých nula-jednotkových nekone£ných postup-
ností, kde nula reprezentuje padnutie hlavy a jednotka reprezentuje padnutie znaku. De�no-
va´ na tejto mnoºine vhodnú σ-algebru uº v²ak nie je úplne elementárne. Ukazuje sa, ºe v
tomto prípade je vhodnou σ-algebrou udalostí σ(F), kde F = {A(b)

k : k ∈ N ∧ b ∈ {0, 1}}
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a pre kaºdé k ∈ N, b ∈ {0, 1} je A(b)
k mnoºinou v²etkých tých postupností z mnoºiny Ω,

ktorých k-ty £len je rovný hodnote b. Tento systém udalostí je dostato£ne bohatý, ale nie
príli² bohatý. Napríklad o v²etkých nasledovných udalostiach je moºné ©ahko ukáza´, ºe
patria do σ(F): A1 = {(i1, i2, . . .) ∈ Ω : ∀k ∈ N (ik = 0)} (�vo v²etkých hodoch padne
hlava�), A2 = {(i1, i2, . . .) ∈ Ω : ∀k ∈ N (ik 6= ik+1)} (�budú sa strieda´ hlavy a znaky�),
A3 = {(i1, i2, . . .) ∈ Ω : i1 = · · · = im−1 = 0∧ im = 1} (�znak padne prvýkrát v m-tom hode�).

De�nícia 2.4 (σ-algebra borelovských podmnoºín Rm). Nech O je systém v²etkých otvorených
podmnoºín mnoºiny Rm. Potom σ-algebru (Ω,Bm) podmnoºín Rm generovanú systémom O

nazývame σ-algebra borelovských podmnoºín Rm.

Veta 2.2 (Základné borelovské podmnoºiny mnoºiny R). Nech a, b ∈ R, pri£om a < b. Potom
v²etky nasledovné mnoºiny patria do B1: (−∞, a), (a,∞), (−∞, a], [a,∞) (a, b], [a, b), [a, b],
{a}. Do systému B1 tieº patrí akáko©vek spo£ítate©ná podmnoºina R.

Dôkaz. To, ºe otvorené intervaly sú borelovské mnoºiny, plynie priamo z de�nície. Av²ak
interval akéhoko©vek typu (ako aj jednoprvková mnoºina) musí by´ borelovskou mnoºinou,
pretoºe ho je moºné zapísa´ ako prienik spo£ítate©nej postupnosti otvorených intervalov a
σ-algebra je uzavretá vzh©adom na spo£ítate©né prieniky. Spo£ítate©ná mnoºina je borelovská
preto, lebo je spo£ítate©ným zjednotením mnoºín typu {a}, a ∈ R, ktoré patria do systému
B pod©a prvej £asti vety a systém B je uzavretý vzh©adom na spo£ítate©né zjednotenia.

Príklad 2.5. Sledujeme o ko©ko sekúnd zaznamenáme novú poºiadavku na ur£itý systém hro-
madnej obsluhy, napríklad na server. Ak predpokladáme, ºe £as vieme odmera´ úplne presne,
potom je vhodným priestorom elementárnych výsledkov Ω = (0,∞) a príslu²ným systémom
udalostí je S = {B ∩ (0,∞) : B ∈ B1}, t.j. tie borelovské mnoºiny, ktoré sú podmnoºinou
(0,∞). Udalos´ (0, 60) zodpovedá výroku �novú poºiadavku zaznamenáme skôr ako uply-
nie minúta�, udalos´ [3600,∞) zodpovedá výroku �uplynie aspo¬ hodina, kým zaznamenáme
novú poºiadavku� a tak ¤alej. Samozrejme, rôzne udalosti môºu ma´ rôznu pravdepodobnos´
nastatia, ktorú môºeme stanovi´ na základe dlhodobých skúseností, fyzikálnych princípov a
podobne. (�o chápeme pod pojmom �pravdepodobnos´� je vysvetlené v nasledujúcej £asti.)

2.2 Pravdepodobnostná miera

De�nícia 2.5 (Pravdepodobnostná miera). Pravdepodobnostná miera na σ-algebre udalostí
(Ω, S) je zobrazenie P : S→ R sp¨¬ajúce nasledovné podmienky:

1. Pre v²etky A ∈ S platí 0 ≤ P (A) ≤ 1

2. P (Ω) = 1, P (∅) = 0

3. Ak (Ai)i∈I je postupnos´ disjunktných udalostí, tak P (∪i∈IAi) =
∑

i∈I P (Ai)

Vlastnos´ 3 z de�nície 2.5 nazývame aditivita pravdepodobnosti ak je I kone£ná mnoºina,
alebo σ-aditivita ak je I nekone£ná spo£ítate©ná mnoºina.

De�nícia 2.6 (Pravdepodobnostný priestor). Nech (Ω, S) je σ-algebra udalostí a nech P je
pravdepodobnostná miera na (Ω, S). Potom trojicu (Ω, S, P ) nazveme pravdepodobnostný
priestor.
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Príklad 2.6. Nech Ω = {1, . . . , 6} a S = 2Ω. Nech P : S → [0, 1] je zobrazenie de�nované
nasledovne: Pre kaºdé A ∈ S platí P (A) = |A| /6, kde |A| znamená po£et prvkov mnoºiny A.
Potom (Ω, S, P ) je pravdepodobnostný priestor. Tento pravdepodobnostný priestor môºeme
povaºova´ za model hádzania hracou kockou, ak nás zaujíma výlu£ne £íselný výsledok hodu.
(Pozri príklad 2.2.)

Existencia rovnomernej miery na jednotkovom intervale. Nech S je mnoºina v²etkých bo-
relovských podmnoºín kocky [0, 1]m. Pod©a úlohy 2.5 je ([0, 1]m, S) σ-algebra. Moºno ukáza´,
ºe na ([0, 1]m, S) existuje pravdepodobnos´ P , ktorá sp¨¬a nasledovnú podmienku: Pre kaºdý
kváder A = [a1, b1]× · · · × [am, bm], kde 0 ≤ ai < bi ≤ 1, platí

P (A) =
m∏
i=1

(bi − ai).

Pre m = 1 môºeme pravdepodobnostný priestor (Ω, S, P ) povaºova´ za model �rovnomer-
ného náhodného výberu reálneho £ísla na úse£ke [0, 1]�. Podobne, prem = 2 je (Ω, S, P ) model
�rovnomerného náhodného výberu bodu na ²tvorci [0, 1]× [0, 1]�. Pravdepodobnos´ P moºno
povaºova´ za de�níciu úhrnnej d¨ºky (plochy, objemu) borelovských podmnoºín jednotkového
intervalu (²tvorca, kocky).

2.3 Základné vlastnosti pravdepodobnosti

Z de�nície pravdepodobnostnej miery 2.5 sa dajú odvodi´ mnohé uºito£né vlastnosti pravde-
podobnosti.

Veta 2.3 (Rozdielovos´ a monotónnos´). Nech A,B sú udalosti pravdepodobnostného pries-
toru (Ω, S, P ), pri£om A ⊆ B. Potom P (B \ A) = P (B)− P (A) a P (A) ≤ P (B).

Dôkaz. Ke¤ºe udalosti A a B \A sú disjunktné, máme P (A) +P (B \A) = P (A∪ (B \A)) =
P (B) (pouºili sme aditivitu pravdepodobnosti), £iºe P (B \ A) = P (B) − P (A). Nerovnos´
P (A) ≤ P (B) plynie z predchádzajúcej rovnosti a vlastnosti P (B \ A) ≥ 0.

Veta 2.4 (Pravdepodobnos´ komplementu). Nech (Ω, S, P ) je pravdepodobnostný priestor a
nech A je udalos´. Potom

P (Ω \ A) = 1− P (A).

Dôkaz. Veta je ²peciálny prípad predchádzajúcej vety pre B = Ω.

Veta 2.5 (Pravdepodobnos´ zjednotenia dvoch udalostí). Nech A, B sú udalosti pravdepodob-
nostného priestoru (Ω, S, P ). Potom platí

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Dôkaz. Zrejme udalosti A a B\A sú disjunktné a ich zjednotenie je A∪B, takºe P (A∪B) =
P (A) + P (B\A). Sú£asne sú A ∩ B a B\A disjunktné, pri£om ich zjednotenie je udalos´ B,
takºe máme P (B\A) = P (B)−P (A∩B). Spojením týchto dvoch rovností dostávame rovnos´
zo znenia vety.
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Veta 2.6 (Princíp inklúzie-exklúzie (zapojenia-vypojenia)). Nech A1, A2, . . . , An sú udalosti
na pravdepodobnostnom priestore (Ω, S, P ). Potom platí

P (∪ni=1Ai) =
n∑
k=1

(−1)k−1
∑

1≤i1<i2<...<ik≤n

P (Ai1 ∩ . . . ∩ Aik)

Dôkaz. Pre n = 2 je tvrdenie tejto vety také isté ako vo vete 2.5. Pre v²eobecné n je moºné po-
uºi´ matematickú indukciu. Na pochopenie princípu dôkazu sta£í, ak si ako cvi£enie dokáºete
túto vetu pre n = 3.

Príklad 2.7. Za okrúhlym stolom je rozostavených n ≥ 3 stoli£iek. Náhodne za tento stôl
rozsadíme troch ©udí. Aká je pravdepodobnos´ pn, ºe niektorí dvaja ©udia budú sedie´ ved©a
seba?

Rie²enie: Zrejme p3 = 1; v ¤al²om budeme predpoklada´, ºe n ≥ 4. Ozna£me ©udí ako
1,2,3 a de�nujme udalos´ A (B, C) ako udalos´, ºe budú ve©a seba sedie´ £lovek 1 a 2 (2 a 3,
resp. 1 a 3). Zaujíma nás P (A ∪B ∪ C). Pod©a princípu zapojenia-vypojenia máme:

P (A∪B ∪C) = P (A) + P (B) + P (C)− P (A∩B)− P (B ∩C)− P (A∩C) + P (A∩B ∩C).

Zrejme v²ak

P (A) = P (B) = P (C) =
2

n− 1
a P (A ∩B) = P (B ∩ C) = P (A ∩ C) =

2

(n− 1)(n− 2)
.

Pre n ≥ 4 udalos´ A ∩B ∩ C nemôºe nasta´, preto P (A ∩B ∩ C) = 0. Takºe

P (A ∪B ∪ C) = 3 · 2

n− 1
− 3 · 2

(n− 1)(n− 2)
=

6(n− 3)

(n− 1)(n− 2)
.

�peciálne, p4 = p5 = 1 a p6 = 9/10.
Príklad moºno rie²i´ aj tak, ºe si de�nujme m udalostí B1, B2, ..., Bm, ºe budú obsadené

susedné stoli£ky 1, 2; 2, 3; ...;resp. m, 1. H©adaná pravdepodobnos´ je P (∪iBi), £o sa dá opä´
vypo£íta´ pomocou princípu zapojenia-vypojenia.

Poznámka 2.2. V predchádzajúcom príklade sme formálne nede�novali model na úrovni
komponentov Ω, S a P , hoci by to bolo moºné. (Vedeli by ste to?) To v²ak ani nebolo
potrebné, pretoºe sme pouºívali úvahy platné pri akejko©vek zmysluplnej formalizácii. Takto
budeme rie²i´ príklady £asto.

Príklad 2.8. Postupnos´ £ísiel (1, 2, . . . , n) dokonale náhodne premie²ame. (T.j. kaºdá spo-
medzi n! permutácií má rovnakú pravdepodobnos´.) Nájdite pravdepodobnos´ pn, ºe aspo¬
jedno z £ísiel 1, 2, . . . , n bude po premie²aní na svojom pôvodnom mieste. Ur£te limn→∞ pn.

Rie²enie. Nech n je pevné. Nech A je udalos´, ºe aspo¬ jedno z £ísiel 1, 2, . . . , n bude po
premie²aní na svojom pôvodnom mieste. Potom zrejme A = ∪ni=1Ai, kde Ai ozna£uje udalos´,
ºe £íslo i zostane na svojom pôvodnom mieste. Ke¤ºe moºností výberu rôznych indexov
1 ≤ i1 < i2 < . . . < ik ≤ n je

(
n
k

)
a pre kaºdý takýto výber je P (Ai1 ∩ . . . ∩ Aik) = (n−k)!

n!
, tak

pod©a vety 2.6 dostávame

pn = P (A) =
n∑
k=1

(−1)k−1

(
n

k

)
(n− k)!

n!
=

n∑
k=1

(−1)k−1

k!
.
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Zrejme tieº

lim
n→∞

pn =
∞∑
k=1

(−1)k−1

k!
= 1−

∞∑
k=0

(−1)k

k!
= 1− e−1

£o plynie zo známeho vzorca ex =
∑∞

k=0
xk

k!
pre v²etky reálne £ísla x.

Poznámka 2.3. Vlastnos´ pravdepodobnosti z predchádzajúcej úlohy nazývame subaditivita
ak je I kone£ná mnoºina, alebo σ-subaditivita ak je I nekone£ná spo£ítate©ná mnoºina.

Príklad 2.9. Presne 30 percent (nie nutne súvislých) d¨ºky jednotkovej kruºnice v rovine je
zafarbených na zeleno a zvy²ných 70 percent je zafarbených na modro. Formálne presnej²ie:
máme danú funkciu f : S → {Z,M}, pri£om

P{x ∈ [0, 1) : f(cos(2πx), sin(2πx)) = Z} = 0,3,

P{x ∈ [0, 1) : f(cos(2πx), sin(2πx)) = M} = 0,7,

kde P je rovnomerná pravdepodobnos´ na intervale [0, 1] z príkladu 2.2. Dokáºte, ºe do tejto
kruºnice je moºné vpísa´ rovnostranný trojuholník tak, aby v²etky jeho vrcholy leºali na
modrej farbe.

Rie²enie. Rovnomerne náhodne zvolíme bod X na jednotkovej kruºnici S. Symbolom A
ozna£íme udalos´, ºe X padne do zelenej £asti kruºnice, symbolom B ozna£me udalos´, ºe X
po oto£ení o uhol 2π/3 v smere hodinových ru£i£iek padne do zelenej farby a symbolom C
ozna£me udalos´, ºe X po oto£ení o uhol 4π/3 v smere hodinových ru£i£iek padne do zelenej
farby. Zrejme P (A) = P (B) = P (C) = 0,3, teda z Booleovej nerovnosti máme P (A∪B∪C) ≤
P (A)+P (B)+P (C) = 0,9. Takºe pravdepodobnos´, ºe ani jeden z trojice vytvorených bodov
nepadne do zelenej farby je aspo¬ 0,1. To znamená, ºe nutne musí existova´ aspo¬ jedna taká
trojica bodov, £iºe rovnostranný trojuholník, ktorého v²etky tri vrcholy leºia na modrej £asti
kruºnice.

Veta 2.7 (Spojitos´ pravdepodobnosti zdola). Nech (Ai)
∞
i=1 je nekone£ná postupnos´ udalostí

pravdepodobnostného priestoru (Ω, S, P ), ktorá je neklesajúca v zmysle A1 ⊆ A2 ⊆ A3 ⊆ . . ..
Potom

P (∪∞i=1Ai) = lim
i→∞

P (Ai).

Dôkaz. Poloºme A0 = ∅ a Bi = Ai\Ai−1 pre kaºdé i ∈ N. V²imneme si, ºe ∪∞i=1Bi = ∪∞i=1Ai,
¤alej ºe udalosti Bi sú disjunktné a naviac P (Bi) = P (Ai) − P (Ai−1). Taktieº ©ahko ove-
ríme, ºe

∑n
i=1 (P (Ai)− P (Ai−1)) = P (An). Postupne dostávame P (∪∞i=1Ai) = P (∪∞i=1Bi) =∑∞

i=1 P (Bi) = limn→∞
∑n

i=1 P (Bi) = limn→∞
∑n

i=1 (P (Ai)− P (Ai−1)) = limn→∞ P (An).

2.4 Cvi£enia

Úloha 2.1 (Prienik σ-algebier je σ-algebra). Nech J je neprázdna indexová mnoºina (nemusí
by´ spo£ítate©ná) a nech (Ω, Sj) je σ-algebra pre kaºdé j ∈ J . Potom (Ω,∩j∈JSj) je tieº
σ-algebra.

Úloha 2.2. Uvaºujme mnoºinovú operáciu ↑ de�novanú nasledovne: ↑i∈I Ai = Ω \ (∩i∈IAi),
kde I je spo£ítate©ná mnoºina a Ai ⊆ Ω 6= ∅. (Logický ekvivalent operácie ↑ sa zvykne nazýva´
nand.) Ukáºte, ºe (Ω, S) je σ-algebra vtedy a len vtedy, ke¤ sú splnené nasledovné podmienky:
1) Ω ∈ S a 2) Ak je I spo£ítate©ná mnoºina a Ai ∈ S pre v²etky i ∈ I, tak ↑i∈I Ai ∈ S.
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Úloha 2.3. Nech a, b, c, d ∈ R, pri£om a < b a c < d. Zdôvodnite, pre£o v²etky nasledovné
mnoºiny patria do B2: (a, b)× (c, d), [a, b) × (c, d), [a, b] × [c, d], bod (a, b), akáko©vek spo£í-
tate©ná podmnoºina R2. Rozmyslite si, pre£o B2 obsahuje akýko©vek n-uholník, alebo kruh
(nezávisle na tom, £i hranicu povaºujeme za sú£as´ týchto mnoºín, alebo nie).

Úloha 2.4. Sami si de�nujte nejakú podmnoºinu R2 a dokáºte o nej, ºe je borelovská. (Prak-
ticky akáko©vek mnoºina, ktorú sme schopní popísa´ priamou kon²trukciou, je borelovská.
Existujú v²ak aj mnoºiny, ktoré nie sú borelovské; dokonca ich je z h©adiska mnoºinovej
mohutnosti �viac�.)

Úloha 2.5. Nech (Ω, S) je σ-algebra a nech ∅ 6= A ∈ S. De�nujme nasledovný systém mnoºín:
R = {A ∩B : B ∈ S}. Potom (A,R) je tieº σ-algebra. Dokáºte!

Úloha 2.6. Nech Ω = {1, 2, 3}. Nájdite v²etky také systémy S ⊆ 2Ω, ºe (Ω, S) je σ-algebra.

Úloha 2.7 (Booleova nerovnos´). Ukáºte, ºe ak (Ai)i∈I je postupnos´ udalostí pravdepodob-
nostného priestoru (Ω, S, P ), tak

P (∪i∈IAi) ≤
∑
i∈I

P (Ai).

Úloha 2.8 (Spojitos´ pravdepodobnosti zhora). Ukáºte nasledovné tvrdenie: Nech (Ai)
∞
i=1 je

nekone£ná postupnos´ udalostí pravdepodobnostného priestoru (Ω, S, P ), ktorá je nerastúca
v zmysle A1 ⊇ A2 ⊇ A3 ⊇ . . .. Potom, rovnako ako vo vete 2.7, P (∩∞i=1Ai) = limi→∞ P (Ai).



Kapitola 3

Podmie¬ovanie a nezávislos´ udalostí

3.1 Podmienená pravdepodobnos´

V tejto kapitole budeme rie²i´ otázku, aký vplyv má na pravdepodobnos´ udalosti A nastanie
nejakej inej udalosti B.

De�nícia 3.1 (Podmienená pravdepodobnos´). Nech A a B sú udalosti, pri£om P (B) > 0.
Potom hodnotu

P (A|B) = P (A ∩B)/P (B)

budeme nazýva´ pravdepodobnos´ udalosti A za podmienky B.

Príklad 3.1. Máme dve neprieh©adné vrecká, pri£om v jednom vrecku sú dve biele gu©ô£ky
a v druhom vrecku je jedna gu©ô£ka biela a druhá £ierna. Náhodne sme zvolili jedno vrecko
(kaºdé s pravdepodobnos´ou 1/2) a z tohoto vrecka sme náhodne vybrali jednu gu©ô£ku,
o ktorej sme sa presved£ili, ºe je biela. Aká je pravdepodobnos´, ºe aj druhá gu©ô£ka vo
vybratom vrecku je biela?

Takéto zadania chápeme nasledovne: Z h©adiska pred výberom vrecka a gu©ô£ky, aká je
pravdepodobnos´ udalosti A = �vyberieme vrecko s dvomi bielymi gu©ô£kami� za podmienky
udalosti B = �vybratá gu©ô£ka bude biela�? Alebo iná formulácia: Predpokladajme, ºe priestor
(Ω, S, P ) zodpovedá pravdepodobnostnému modelu danej situácie z h©adiska pred za£iatkom
celého experimentu. Dodato£ná informácia, ºe nastala udalos´ B, mení ná² pôvodný model
na pravdepodobnostný priestor (Ω, S, PB) z úlohy 3.7. Aká je pravdepodobnos´ udalosti A v
tomto novom priestore?

Takºe rie²enie (nezávisle na tom, ktorú interpretáciu úlohy prijmeme) je nasledovné: Máme
P (A|B) = P (A ∩ B)/P (B). Zrejme v²ak P (A ∩ B) = 1/2 a P (B) = 1/2.1/2 + 1/2 = 3/4.
Preto P (A|B) = 2/3.

De�nícia 3.2 (Rozklad mnoºiny elementárnych výsledkov). Budeme hovori´, ºe udalosti
A1, . . . , An tvoria rozklad mnoºiny Ω elementárnych výsledkov, ak sú tieto udalosti disjunktné,
kaºdá z nich má nenulovú pravdepodobnos´ a sú£asne platí ∪ni=1Ai = Ω.

Veta 3.1 (Veta o úplnej pravdepodobnosti). Nech A1, . . . , An tvoria rozklad mnoºiny elemen-
tárnych výsledkov. Nech B je akáko©vek udalos´. Potom platí:

P (B) =
n∑
i=1

P (B|Ai)P (Ai)

13
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Obr. 3.1: Hádºeme naraz dvomi kockami. Ak ozna£íme B = {max(U, V ) = 5} udalos´, ºe
vä£²ie z padnutých £ísel je 5 a A = {min(U, V ) = 2} udalos´, ºe men²ie z padnutých £ísel je
2, potom podmienená pravdepodobnos´ P (A|B) = 2/9.

Obr. 3.2

Dôkaz. P (B) = P (B ∩ (A1 ∪ . . .∪An)) = P ((B ∩A1)∪ . . .∪ (B ∩An)) =
∑n

i=1 P (B ∩ Ai) =∑n
i=1 P (B|Ai)P (Ai).

Príklad 3.2. Udalosti A1, A2, a A3 na nasledujúcom obrázku tvoria rozklad mnoºiny Ω
v²etkých elementárnych udalostí, a teda udalos´ B môºeme rozloºi´ na disjunktné podmnoºiny
typu Ai∩B, i− 1, 2, 3. To ale znamená, ºe B = (A1∩B)∪ (A2∩B)∪ (A3∩B) a z aditivity a
de�nície podmienenej pravdepodobnosti je P (B) =

∑3
i=1 P (Ai ∩B) =

∑3
i=1 P (Ai)P (B|Ai).

Veta 3.2 (Bayesov vzorec). Nech udalosti A1, A2, . . . , An tvoria rozklad mnoºiny elemen-
tárnych výsledkov. Nech B je akáko©vek udalos´ nenulovej pravdepodobnosti a nech k ∈
{1, . . . , n}. Potom platí:

P (Ak|B) =
P (B|Ak)P (Ak)∑n
i=1 P (B|Ai)P (Ai)

.

Dôkaz. Pre kaºdé k ∈ {1, . . . , n} máme P (B∩Ak) = P (B|Ak)P (Ak), preto P (Ak|B) = P (B∩
Ak)/P (B) = P (B|Ak)P (Ak)/P (B). Pouºitím vzorca pre úplnú pravdepodobnos´ dostávame
dokazovanú rovnos´.

Príklad 3.3. Majme systém, ktorý sa môºe nachádza´ v stavoch S,A1, A2, A3, B1, B2, B3,
pri£om sú moºné nasledovné prechody medzi stavmi: S → A1, S → A2, S → A3, A1→ B1,
A1 → B2, A2 → B1, A2 → B2, A2 → B3, A3 → B2, A3 → B3. Ak má systém viacero
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moºností prechodu, tak prejde do kaºdého nového prípustného stavu s rovnakou pravdepo-
dobnos´ou.

Vieme len to, ºe na za£iatku sa systém nachádzal v stave S a na konci sa nachádzal v
stave B2. Ur£te pravdepodobnos´ (v zmysle ná²ho subjektívneho hodnotenia), ºe systém pre-
²iel stavom A2.

Rie²enie: Pozrieme sa na situáciu z h©adiska pred experimentom (t.j. z poh©adu pozorova-
te©a, ktorý vidí, ºe systém je v po£iato£nom stave S). Ozna£me ako A1 (A2, A3,...,B3) udalos´,
ºe sa systém vyskytne v stave A1 (A2,A3, ..., B3). Zaujíma nás podmienená pravdepodobnos´
P (A2|B2). Pod©a Bayesovej vety je

P (A2|B2) =
P (B2|A2)P (A2)∑3
i=1 P (B2|Ai)P (Ai)

.

Av²ak P (A1) = P (A2) = P (A3) a P (B2|A2) = 1/3, P (B2|A1) = P (B2|A3) = 1/2. Dosadením
dostávame rie²enie P (A2|B2) = 1/4.

Príklad 3.4. Na vstupe do laboratória sú 2 nezávisle pracujúce biometrické autoriza£né zaria-
denia (typ A: snímanie prstu a typ B: snímanie o£nej dúhovky.) Typ A vykazuje 0, 6% mylných
odmietnutí a 0, 1% mylných prijatí. Typ B vykazuje 2% mylných odmietnutí a 0, 01% myl-
ných prijatí. Systém nám ohlási pokus o neautorizovaný vstup, ak aspo¬ jeden typ autorizácie
ohlási odmietnutie. (Systém ale neoznámi, ktorý typ testu zlyhal). Ur£te pravdepodobnos´,
ºe systém ohlási pokus o neautorizovaný vstup pre neautorizovanú osobu. Z dlhodobých skú-
seností vieme, ºe v 99, 9 percentách prípadov sa o vstup pokú²a osoba, ktorá má autorizáciu
na vstup a len v 0, 1 percentách prípadov ide o pokus o neautorizovaný vstup. Aká je prav-
depodobnos´, ºe sa naozaj jedná o pokus o neautorizovaný vstup za podmienky, ºe systém
ohlásil pokus o neautorizovaný vstup?

Rie²enie: Ozna£me ako N udalos´, ºe dôjde k neautorizovanému pokusu o vstup a ako H
udalos´, ºe systém ohlási neautorizovaný vstup. Ozna£me si tieº ako HA a HB udalosti, ºe
zariadenie A, resp. zariadenie B ohlási pokus o neautorizovaný vstup. Tieº si uvedomíme, ºe
pravdepodobnosti 0, 6%, 0, 1%, 2%, 0, 01%, 99, 9% a 0, 1% v zadaní sú postupne P (HA|N c),
P (Hc

A|N), P (HB|N c), P (Hc
B|N), P (N c) a P (N).

V prvej otázke nás zaujíma P (H|N). Ke¤ºe H = HA∪HB a zariadenia sa správajú navzá-
jom nezávisle, máme P (H|N) = P (HA∪HB|N) = 1−P (Hc

A∩Hc
B|N) = 1−P (Hc

A|N)P (Hc
B|N) =

1− 10−3 · 10−4 = 1− 10−7.
V druhej otázke potrebujeme vypo£íta´ P (N |H). Pod©a Bayesovho vzorca máme

P (N |H) =
P (H|N)P (N)

P (H|N)P (N) + P (H|N c)P (N c)
.

V tomto vzorci musíme dopo£íta´ uº len P (H|N c), £o je podobné ako P (H|N). Máme
P (H|N c) = P (HA ∪ HB|N c) = P (HA|N c) + P (HB|N c) − P (HA|N c)P (HB|N c) = 0, 006 +
0, 02− 0, 006 · 0, 02 = 0, 02588.

Celkovo teda máme

P (N |H) =
(1− 10−7)0, 001

(1− 10−7)0, 001 + 0, 02588 · 0, 999
≈ 0, 037.
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3.2 Nezávislos´ udalostí

De�nícia 3.3 (Nezávislos´ dvoch udalostí). Nech pre udalosti A a B platí P (A ∩ B) =
P (A)P (B). Potom hovoríme, ºe udalosti A a B sú nezávislé. Ak P (A∩B) 6= P (A)P (B), tak
hovoríme, ºe udalosti A a B sú závislé.

V²imnime si, ºe pre nezávislé udalosti A a B (P (B) > 0) platí P (A|B) = P (A), £iºe,
vo©ne povedané, znalos´ toho, ºe nastala udalos´ B, neovplyvní na²u mieru o£akávania, ºe
nastane aj udalos´ A.

Naopak, ak platí P (A|B) = P (A) (a P (B) > 0), tak sú udalosti A a B nezávislé. Inými
slovami: ak vieme, ºe znalos´ výsledku udalosti B nijak nemení na²e pravdepodobnostné
o£akávanie, ºe nastane A, potom sú udalosti A a B nezávislé.

De�nícia 3.4 (Zdruºená nezávislos´ n-tice udalostí). A1, . . . , An nech sú udalosti, pri£om pre
kaºdú mnoºinu indexov {i1, . . . , ik} ⊆ {1, . . . , n} platí

P (Ai1 ∩ Ai2 ∩ . . . ∩ Aik) = P (Ai1)P (Ai2) . . . P (Aik)

Potom hovoríme, ºe udalosti A1, . . . , An sú zdruºene nezávislé. V opa£nom prípade hovoríme,
ºe sú tieto udalosti zdruºene závislé.

Príklad 3.5. Majme priestor (Ω, S, P ), kde Ω = {1, 2, . . . , 8}, S = 2Ω, P (A) = |A| /8 pre
kaºdé A ⊆ Ω. (Tento model zodpovedá rovnomernému náhodnému výberu jedného z £ísiel
1, 2, . . . , 8, alebo modelu hádzania tromi mincami, ak kaºdú z ôsmich rôznych kombinácií
výsledkov na jednotlivých minciach ozna£íme jedným z £ísiel 1, 2, . . . , 8.)

De�nujme nasledovné udalosti: A = {1, 2, 3, 4}, B = {1, 2, 5, 6}, C = {1, 3, 5, 7}, D =
{1, 2, 7, 8} a E = {1, 3, 4, 8}. �ahko sa presved£íme, ºe a) Udalosti A, B, C sú zdruºene
nezávislé. b) Udalosti A, B, D sú po dvojiciach nezávislé, ale zdruºene nezávislé nie sú,
pretoºe P (A ∩ B ∩ D) 6= P (A)P (B)P (D). c) Udalosti A, B, E nie sú v²etky po dvojiciach
nezávislé, napriek tomu, ºe P (A ∩B ∩ E) = P (A)P (B)P (E).

Veta 3.3 (Nezávislos´ komplementov). Ak sú udalosti A a B nezávislé, tak sú nezávislé aj
udalosti A a Ω \ B, ako aj udalosti Ω \ A a Ω \ B. V²eobecne, nech A1, . . . , An sú zdruºene
nezávislé udalosti. Pre kaºdé i = 1, . . . , n zvo©me za A′i bu¤ Ai, alebo Ω\Ai. Potom aj udalosti
A′1, . . . , A

′
n sú zdruºene nezávislé.

Dôkaz. Urobme dôkaz pre dvojicu udalostí; pre v²eobecný po£et udalostí je dôkaz analogický.
Ak sú udalosti A a B nezávislé, tak s vyuºitím základných vlastností pravdepodobnosti

dostávame P (A ∩ (Ω \ B)) = P (A \ (A ∩ B)) = P (A) − P (A ∩ B) = P (A) − P (A)P (B) =
P (A)(1− P (B)) = P (A)P (Ω \ B). Tým sme ukázali, ºe A a Ω \ B sú nezávislé. Nezávislos´
udalostí Ω \ A a Ω \B plynie opakovaným pouºitím uº dokázanej £asti vety.

Nezávislos´ po skupinách: Predpokladajme, ºe máme zdruºene nezávislé udalostiA1, . . . , An.
Nech n0 = 0 < n1 < n2 < . . . < nk−1 < nk = n. Pre kaºdé j = 1, . . . , k vytvorme Bj

z Anj−1+1, . . . , Anj akoko©vek, pomocou operácií komplementu, zjednotenia, alebo prieniku.
Potom sú aj udalosti B1, . . . , Bk zdruºene nezávislé.

Veta 3.4 (Binomická formula). Nech A1, A2, . . . , An sú nezávislé udalosti, pri£om kaºdá má
pravdepodobnos´ p. Nech A je udalos´, ºe nastane práve k spomedzi udalostí A1, A2, . . . , An,
kde k ∈ {0, . . . , n}, t.j.

A = {ω ∈ Ω; |{i ∈ {1, . . . , n} ;ω ∈ Ai}| = k}



Pravdepodobnos´ a ²tatistika, FMFI UK, predbeºná verzia 6.10.2017

Potom platí

P (A) =

(
n

k

)
pk(1− p)n−k

Dôkaz. Pre kaºdú k-prvkovú mnoºinu indexov {i1, . . . , ik} ⊆ {1, . . . , n} ozna£me ako Bi1,...,ik

udalos´, ºe nastanú v²etky Ai pre i ∈ {i1, . . . , ik} a sú£asne nenastane ºiadna udalos´ Aj pre
j /∈ {i1, . . . , ik}, t.j.

Bi1,...,ik =
⋂

i∈{i1,...,ik}

Ai
⋂

j /∈{i1,...,ik}

(Ω \ Aj)

V²imnime si, ºe zjednotením
(
n
k

)
udalostí Bi1,...,ik je udalos´ A, tieto udalosti sú navzájom

disjunktné a kaºdá z nich má pravdepodobnos´ pk(1− p)n−k. Preto

P (A) = P
(
∪{i1,...,ik}Bi1,...,ik

)
=

∑
{i1,...,ik}

P (Bi1,...,ik) =

(
n

k

)
pk(1− p)n−k

Príklad 3.6. Komunika£ný kanál sa skladá zo série uzlov, pri£om vºdy i-ty uzol predáva
jednobitovú informáciu na vstup i+ 1-vému uzlu. Na kaºdom uzle v²ak s pravdepodobnos´ou
p dochádza k chybe, ktorá sa prejaví tým, ºe na výstupe tohoto uzla bude opa£ný bit ako na
jeho vstupe. Naviac, chyby na jednotlivých uzloch sa vyskytujú navzájom nezávisle. Napí²te
vzorec udávajúci pravdepodobnos´, ºe bit na vstupe prvého uzla bude rovnaký ako bit na
výstupe n-tého uzla.

Rie²enie: Je zrejmé, ºe bit na vstupe prvého uzla bude rovnaký ako bit na výstupe n-tého
uzla práve vtedy, ak dôjde k chybe prenosu na párnom po£te uzlov. Pre jednoduchos´ zápisu
predpokladajme, ºe n je párne. Ak ozna£íme A(k) udalos´, ºe dôjde k chybe práve na k uzloch
(k = 0, ..., n), tak pod©a binomickej formule je h©adaná pravdepodobnos´

P (A(0) ∪ A(2) ∪ ... ∪ A(n)) =
∑

0≤j≤n/2

(
n

2j

)
p2j(1− p)n−2j =

(1− 2p)n

2
+

1

2
.

Príklad 3.7. Vo vrecku máme dve na poh©ad nerozlí²ite©né mince; vieme v²ak, ºe sú obe
falo²né. Dokonca vieme, ºe na jednej z týchto mincí padá znak s pravdepodobnos´ou 1/3
a hlava s pravdepodobnos´ou 2/3 a na druhej minci presne naopak, t.j. znak na nej padá s
pravdepodobnos´ou 2/3 a hlava s pravdepodobnos´ou 1/3. Náhodne sme zvolili z tejto dvojice
jednu mincu a hodili sme ¬ou ²es´krát, z £oho nám ²tyrikrát padol znak a dvakrát hlava. S
akou pravdepodobnos´ou nám padne znak pri siedmom hode zvolenou mincou?

Rie²enie. Pozrieme sa na situáciu z h©adiska pred za£atím celého experimentu a vypo£í-
tajme pravdepodobnos´, ºe nám v siedmom hode náhodne zvolenou mincou padne znak (uda-
los´ A) za podmienky, ºe z prvých ²iestich hodov touto mincou padne znak ²tyrikrát (udalos´
B). Pre oba indexy i = 1, 2 de�nujme e²te udalos´ Ci, ktorá znamená, ºe na hádzanie náhodne
vyberieme mincu i. Ke¤ºe udalosti C1, C2 tvoria rozklad priestoru elementárnych výsledkov
a pravdepodobnos´ kaºdej z nich je 1/2, dostávame pod©a vety o úplnej pravdepodobnosti a
binomickej formule nasledovné rovnosti:

P (B) =
2∑
i=1

P (B ∩ Ci)P (Ci) =
1

2

(
2

(
6

4

)(
1

3

)4(
2

3

)2

+

(
6

4

)(
2

3

)4(
1

3

)2
)
,
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P (A ∩B) =
2∑
i=1

P (Ci)P (A ∩B ∩ Ci) =
1

2

(
2

(
6

4

)(
1

3

)4(
2

3

)2
1

3
+

(
6

4

)(
2

3

)4(
1

3

)2
2

3

)
.

Po mechanických úpravách zis´ujeme, ºe

P (A|B) =
P (A ∩B)

P (B)
=

3

5
= 0, 6.

Veta 3.5 (Multinomická formula). Uvaºujme udalosti A(j)
i , i = 1, . . . , n a j = 1, . . . ,m. Nech

pre kaºdé i tvoria udalosti A(1)
i , . . . , A

(m)
i rozklad mnoºiny elementárnych výsledkov, pri£om

P (A
(1)
i ) = p1, . . . , P (A

(m)
i ) = pm. (Pravdepodobnosti p1, . . . , pm nezávisia na i.) �alej nech pre

kaºdý výber indexov j1, j2, . . . , jn ∈ {1, . . . ,m} sú udalosti A(j1)
1 , . . . , A

(jn)
n zdruºene nezávislé.

Nech k1, . . . , km sú £ísla z mnoºiny {0, . . . , n}, ktorých sú£et je n. Nech Ak1,...,km je udalos´,
ºe spomedzi udalostí A(j)

1 , . . . , A
(j)
n nastane práve kj a to pre kaºdé j. Potom platí

P (Ak1,...,km) =
n!

k1!k2! . . . km!
pk11 p

k2
2 . . . pkmm

Príklad 3.8. V urne máme 10 guli£iek, z ktorých je 5 bielych, 3 sú modré a 2 sú £ervené.
Z urny 7-krát vyberieme guli£ku, pri£om kaºdú vybranú guli£ku vrátime naspä´ do urny e²te
pred výberom ¤al²ej guli£ky. Vypo£ítajte pravdepodobnos´, ºe takto vyberieme spolu 3 biele
guli£ky, 2 modré guli£ky a 2 £ervené guli£ky (nezávisle na tom, v ktorom ´ahu).

Rie²enie: Ak udalos´ A(j)
i , i = 1, . . . , 7, j = 1, 2, 3 zodpovedá tomu, ºe v i-tom ´ahu

vyberieme guli£ku j-tej farby (farba 1 je biela, farba 2 modrá a farba 3 £ervená), tak máme
situáciu z predchádzajúcej vety. Dostávame

P (A3,2,2) =
7!

3!2!2!
0.530.320.22 = 0.0945

3.3 Cvi£enia

Úloha 3.1. Hádºeme 100-krát mincou. Aká je pravdepodobnos´, ºe padne rovnaký po£et
hláv a znakov?

Úloha 3.2. Vykonáme dva nezávislé hody kockou. Aká je pravdepodobnos´, ºe sú£et bodiek
na oboch kockách je párne £íslo, ak vieme, ºe v prvom hode padlo £íslo 2?

Úloha 3.3. Uvaºujme systém zloºený z troch nezávislých komponentov, ktorý je funk£ný,
ak aspo¬ dva z týchto troch komponentov pracujú bez poruchy. Aká je pravdepodobnos´, ºe
systém je funk£ný, ak kaºdý z komponentov funguje s pravdepodobnos´ou 0,98?

Úloha 3.4. Máme dve vrecká: v prvom je a1 £iernych a b1 bielych guli£iek a v druhom je a2

£iernych a b2 bielych guli£iek. Z kaºdéhé vrecka vyberieme po jednej guli£ke a z týchto dvoch
potom jednu guli£ku. Aká je pravdepodobnos´, ºe vybratá guli£ka bude biela?

Úloha 3.5. V urne je 12 lopti£iek, po troch lopti£kách z kaºdej zo ²tyroch farieb. Postupne
vyberieme ²tyri lopti£ky (s vracaním, t.j. vybratú lopti£ku vrátime naspä´ do urny e²te pred
výberom nasledujúcej lopti£ky). Aká je pravdepodobnos´, ºe v²etky ²tyri vybraté lopti£ky
budú ma´ rôznu farbu?
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Úloha 3.6. �portovec 3 krát nezávisle vystrelil na cie©. Pravdepodobnosti zásahov sú po-
stupne 0.5, 0.6 a 0.7. Nájdite pravdepodobnos´ toho, ºe
a) v cieli bude aspo¬ jeden zásah,
b) v cieli bude práve jeden zásah,
c) v cieli budú práve dva zásahy.

Úloha 3.7. Nech (Ω, S, P ) je pravdepodobnostný priestor a nech B ∈ S, P (B) > 0. De�nujme
funkciu PB : S → R nasledovne: PB(A) = P (A|B). Potom PB je pravdepodobnostná miera
na (Ω, S).

Úloha 3.8. Uvaºujme pravdepodobnostný priestor (Ω, S, P ) modelujúci hod dvomi kockami,
£iºe Ω = {1, ..., 6}2, S = 2Ω a P (M) = |M |/36, kde |M | je po£et prvkov mnoºinyM . Formálne
zapí²te udalos´ A zodpovedajúcu výroku, ºe na prvej kocke padne párne £íslo a udalos´ B
zodpovedajúcu výroku, ºe na druhej kocke padne nepárne £íslo. Presved£te sa, ºe udalosti
A,B sú nezávislé. Uvaºujme udalos´ C, ºe na prvej kockej padne £íslo men²ie ako 5 a sú£asne
na druhej kocke padne £íslo men²ie ako 4. Uvaºujme tieº udalos´ D, ºe na prvej kocke padne
jedno z £ísiel 3, 4, 5 a sú£asne na druhej kocke padne jedno z £ísiel 2, 3, 4, 5. Formálne zapí²te
udalosti C,D ako podmnoºiny mnoºiny Ω. Sú udalosti C,D nezávislé?

Úloha 3.9 (Vo©ne prevzaté z [3]). Predpokladajme, ºe sme napísali (klasický, �determinis-
tický�) algoritmus na overovanie nasledovnej rovnosti dvoch polynómov:

d∏
i=1

(aix− bi) = cdx
d + ...c1x+ c0. (3.1)

(Vstupom algoritmu sú koe�cienty a1, ..., ad, b1, ..., bd, c0, ..., cd a výstupom je logická hodnota
true, alebo false, pod©a toho, £i (3.1) platí alebo nie.) V²imnite si, ºe tento algoritmus
potrebuje Θ(d2) násobení.

Uvaºujme tieº nasledovný �znáhodnený� algoritmus: rovnomerne náhodne vygenerujeme
prirodzené £ísla X1, ..., Xk z mnoºiny {1, 2, ..., 100d}. Nech Q je polynóm na ©avej strane
rovnosti (3.1) a R nech je polynóm na pravej strane rovnosti (3.1). Pokia© bude plati´
Q(Xi) = R(Xi) pre kaºdú hodnotu X1, ..., Xk, znáhodnený algoritmus vráti hodnotu true,
v opa£nom prípade (t.j. ak Q(Xi) 6= R(Xi) pre £o i len jednu hodnotu X1, ..., Xk), znáhod-
nený algoritmus vráti hodnotu false. Aká je pravdepodobnos´, ºe sa znáhodnený algoritmus
�pomýli� v prípade, ºe rovnos´ (3.1) platí a aká je táto pravdepodobnos´ v prípade, ºe (3.1)
neplatí? Aký po£et násobení vyºaduje ná² znáhodnený algoritmus?



Kapitola 4

V²eobecné náhodné premenné

V mnohých situáciách je výsledkom experimentu nejaká numerická hodnota. Napríklad ak ná-
hodne vyberáme ²portovca z druºstva, môºe nás zaujíma´ jeho výkon. V takýchto prípadoch je
uºito£né daným hodnotám priradi´ príslu²né pravdepodobnosti. Toto priradenie budeme robi´
pomocou reálnych funkcií de�novaných na priestore Ω, ktoré nazveme náhodné premenné.

4.1 Základné vlastnosti náhodných premenných

De�nícia 4.1 (Náhodná premenná). Nech (Ω, S, P ) je pravdepodobnostný priestor. Budeme
hovori´, ºe funkcia X : Ω→ R je náhodná premenná, ak pre kaºdé x ∈ R platí

{ω ∈ Ω : X(ω) < x} ∈ S.

Príklad 4.1. Príklady náhodných premenných:

• Hádºeme naraz piatimi kockami. Sú£et bodiek na v²etkých kockách, najvä£²í po£et
bodiek na kocke, aj po£et kociek, na ktorých padla ²estka, sú náhodné premenné.

• Hráme nasledovnú hru: hádºeme mincou a vyhráme 1 euro, ak padne znak a prehráme
2 eurá, ak padne hlava. Vý²ka výhry v tejto hre je náhodná premenná.

• Hádºeme dvakrát mincou. Po£et znakov v týchto dvoch hodoch je náhodná premenná.

Pre jednoduchos´ budeme mnoºinu B1 borelovských podmnoºín mnoºiny R ozna£ova´
symbolom B.

20
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Veta 4.1. Nech (Ω, S, P ) je pravdepodobnostný priestor. Potom funkcia X : Ω → R je
náhodná premenná vtedy a len vtedy, ak pre kaºdé B ∈ B platí

{ω ∈ Ω : X(ω) ∈ B} ∈ S.

Dôkaz. Dôkaz implikácie �⇒�: NechX : Ω→ R je náhodná premenná. Pre akúko©vek mnoºinu
A ⊆ R ozna£íme symbolom X−1(A) vzor mnoºiny A v zobrazení X. Uvaºujme systém H tých
podmnoºín H ⊆ R, pre ktoré platí X−1(H) ∈ S. �ahko overíme, ºe (R,H) je σ-algebra, ktorá
obsahuje v²etky otvorené intervaly. (Uvedomíme si, ºe pre kaºdú mnoºinu A ⊆ R platíX−1(R\
A) = Ω \ X−1(A) a tieº pre akýko©vek systém mnoºín Ai ⊆ R, i ∈ I platí X−1(∪i∈IAi) =
∪i∈IX−1(Ai).) Ke¤ºe (R,B) je najmen²ia σ-algebra obsahujúca v²etky otvorené intervaly,
tak musí plati´ B ⊆ H, £ím je dôkaz priamej implikácie ukon£ený. Implikácia �⇐� je zrejmá,
pretoºe kaºdý interval typu (−∞, a) patrí do systému B.

Poznámka 4.1. Pre B ∈ B budeme udalos´ {ω ∈ Ω : X(ω) ∈ B} zapisova´ skrátene [X ∈ B].
Teda {ω ∈ Ω : X(ω) ∈ (a, b)} = [X ∈ (a, b)] = [a < X < b], alebo {ω ∈ Ω : X(ω) = a} =
[X = a] a podobne.

De�nícia 4.2. Funkciu g : Rn → R nazveme borelovskou, ak pre kaºdé B ∈ B platí g−1(B) ∈
Bn, £iºe ak vzor kaºdej (jednorozmernej) borelovskej mnoºiny je (n-rozmerná) borelovská
mnoºina.

Nasledovné vety majú predov²etkým teoretický význam a ich dôkazy sú technicky pomerne
zd¨havé, preto ich dokazova´ nebudeme.

Veta 4.2. Nech B1, B2, ... ∈ Bn sú navzájom disjunktné a také, ºe ∪∞i=1Bi = Rn. Nech g1, g2, ...
sú spojité funkcie na Rn. Potom funkcia g : Rn → R sp¨¬ajúca g(x) = gi(x) pre v²etky x ∈ Bi,
je borelovská (funkcia g je �po £astiach spojitá�).

Veta 4.3. Nech X1, ..., Xn sú náhodné premenné na priestore udalostí (Ω, S) a nech g je
borelovská funkcia. Potom aj zobrazenie g(X1, ..., Xn) : Ω→ R de�nované

g(X1, ..., Xn)(ω) = g(X1(ω), ..., Xn(ω)); ω ∈ Ω

je náhodnou premennou na (Ω, S).

Dôleºité je uvedomi´ si to, ºe prakticky kaºdá �slu²ná� funkcia z Rn do R sa dá napísa´ v
tvare po £astiach spojitej funkcie g, a preto prakticky akáko©vek funkcia jednej, alebo viacerých
náhodných premenných je tieº náhodnou premennou. Povedzme, ak je X náhodná premenná,
tak aj X2 je náhodná premenná (lebo transforma£ná funkcia g(x) = x2 je spojitá), ak X1, X2

sú náhodné premenné, tak aj X1 + X2 je náhodná premenná (lebo transforma£ná funkcia
g(x1, x2) = x1 + x2 je spojitá na R2), ale aj napríklad Xd|X2|e

1 je náhodná premenná (pretoºe
príslu²ná transforma£ná funkcia g(x1, x2) = x

d|x2|e
1 sa dá napísa´ v tvare zo znenia vety ako

funkcia po £astiach spojitá na spo£ítate©nom systéme dvojrozmerných borelovských mnoºín).

De�nícia 4.3 (Nezávislos´ náhodných premenných). Nezávislými nazývame náhodné pre-
menné X1, ..., Xn vtedy, ke¤ pre akéko©vek B1, ..., Bn ∈ B platí

P [X1 ∈ B1, ..., Xn ∈ Bn] =
n∏
i=1

P [Xi ∈ Bi]. (4.1)
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Veta 4.4. Nech X1, . . . , Xn sú náhodné premenné a nech systém mnoºín F ⊆ B generuje na
R σ-algebru (R,B). Potom X1, . . . , Xn sú nezávislé vtedy a len vtedy, ke¤ rovnos´ (4.1) platí
pre akéko©vek B1, ..., Bn ∈ F.

Veta 4.5 (Nezávislos´ náhodných premenných po skupinách). Predpokladajme, ºeX1, X2, . . . , Xn

sú nezávislé náhodné premenné. Nech n0 = 0 < n1 < n2 < . . . < nk−1 < nk = n. Pre kaºdé
j = 1, . . . , k nech gj : Rnj−nj−1 → R je borelovská funkcia a

Yj = gj(Xnj−1+1, Xnj−1+2, . . . , Xnj).

Potom sú náhodné premenné Y1, Y2, ..., Yk nezávislé.

Teda napríklad, ak X1, X2, X3 sú nezávislé náhodné premenné, potom aj náhodné pre-
menné Y1 = X1 a Y2 = X2

2 −X3 sú nezávislé.

4.2 Distribu£ná funkcia náhodnej premennej

De�nícia 4.4 (Distribu£ná funkcia). Distribu£nou funkciou náhodnej premennej X nazý-
vame funkciu F : R→ R, ktorá je v bode x ∈ R de�novaná

F (x) = P [X < x].

Príklad 4.2. Hádºeme dvakrát mincou. Nech náhodná premenná X po£et znakov v týchto
dvoch hodoch. Potom distribu£ná funkcia náhodnej premennej X je

F (x) =


0 ak x ≤ 0

1/4 ak 0 < x ≤ 1

3/4 ak 1 < x ≤ 2

1 ak x > 2

Veta 4.6 (Základné vlastnosti distribu£nej funkcie). Nech F je distribu£ná funkcia akejko©vek
náhodnej premennej X. Potom platí:

1. 0 ≤ F (x) ≤ 1 pre v²etky x ∈ R,

2. F je neklesajúca a spojitá z©ava,

3. limx→∞ F (x) = 1 a limx→−∞ F (x) = 0.

Dôkaz. Vlastnos´ 0 ≤ F (x) ≤ 1 pre kaºdé x ∈ R je zrejmá. Neklesajúcos´ F je tieº jedno-
duchá: ak x ≤ y sú dve reálne £ísla, tak F (x) = P [X < x] ≤ P [X < y] = F (y), pretoºe
[X < x] ⊆ [X < y].

Dokáºeme spojitos´ z©ava. Nech a ∈ R. Pre kaºdé prirodzené £íslo n platí [X < a −
1/n] ⊆ [X < a− 1/(n+ 1)], takºe z neklesajúcosti distribu£nej funkcie a vety 2.7 o spojitosti
pravdepodobnosti zdola: limx→a− F (x) = limn→∞ F (a − 1/n) = limn→∞ P [X < a − 1/n] =
P (∪∞n=1[X < a− 1/n]) = P [X < a] = F (a).

Podobne odvodíme: limx→∞ F (x) = limn→∞ F (n) = limn→∞ P [X < n] = P (∪∞n=1[X <
n]) = P (Ω) = 1. Rovnos´ limx→−∞ F (x) = 0 môºeme dokáza´ analogicky.
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Veta 4.7 (Pravdepodobnosti intervalov vyjadrené pomocou F ). Nech F je distribu£ná funkcia
náhodnej premennej X. Nech a, b ∈ R, pri£om a < b. Potom platí

1. P [a ≤ X < b] = F (b)− F (a), P [a ≤ X] = 1− F (a)

2. P [a ≤ X ≤ b] = lim
x→b+

F (x)− F (a), P [X = a] = lim
x→a+

F (x)− F (a)

3. P [a < X < b] = F (b)− lim
x→a+

F (x), P [a < X] = 1− lim
x→a+

F (x)

4. P [a < X ≤ b] = lim
x→b+

F (x)− lim
x→a+

F (x), P [X ≤ b] = lim
x→b+

F (x)

Dôkaz. Priamo z de�nície máme P [a ≤ X < b] = P [X < b] − P [X < a] = F (b) − F (a).
Ukáºeme e²te napríklad P [X = a] = limx→a+ F (x)−F (a); ostatné rovnosti je moºné dokáza´
bu¤ z tejto rovnosti, alebo analogicky. P [X = a] = P (∩∞n=1[a − 1/n ≤ X < a + 1/n]) =
limn→∞ P [a−1/n ≤ X < a+1/n] = limn→∞(F (a+1/n)−F (a−1/n)) = limx→a+ F (x)−F (a).
Druhá rovnos´ plynie zo spojitosti pravdepodobnosti, posledná rovnos´ plynie z toho, ºe F je
spojitá z©ava.

4.3 Cvi£enia

Úloha 4.1. Nech (Ω, S) je priestor udalostí (σ-algebra) a nech A ⊆ Ω. De�nujme zobrazenie
IA : Ω → R nasledovne: IA(ω) = 1 pre v²etky ω ∈ A a IA(ω) = 0 pre v²etky ω ∈ Ω/A.
(Zobrazenie IA nazývame identi�kátorom mnoºiny A.) Potom IA je náhodná premenná na
tomto priestore vtedy a len vtedy, ke¤ A ∈ S. Dokáºte!

Úloha 4.2. Presved£te sa, ºe na priestore (Ω, 2Ω) je kaºdé zobrazenie X : Ω→ R náhodnou
premennou a na priestore (Ω, {Ω, ∅}) sú náhodnými premennými len kon²tantné zobrazenia.
Popí²te mnoºinu v²etkých náhodných premenných na σ-algebre (Ω, {Ω, {0, 1}, {2}, ∅}), kde
Ω = {0, 1, 2}.

Úloha 4.3. Uvaºujme pravdepodobnostný priestor (Ω, 2Ω, P ), kde Ω = {1, ..., 6} a P (A) =
|A|/6 pre A ⊆ Ω. Nájdite distribu£nú funkciu náhodných premenných X : Ω → R de�nova-
ných
a) X(ω) = ω;
b) X(ω) = ω mod 4 pre v²etky ω ∈ Ω.

Úloha 4.4. Uvaºujme pravdepodobnostný priestor (Ω, S, P ), kde Ω = {a, b, c}, S = 2Ω a pre
kaºdé A ∈ S platí P (A) = |A|/3. (|A| je po£et prvkov mnoºiny A.) Na£rtnite distribu£nú
funkciu náhodnej veli£iny X, nájdite E(X) a D(X), ak
a) X(a) = X(b) = X(c) = 0;
b) X(a) = X(b) = 0, X(c) = 1;
c) X(a) = 0, X(b) = 1, X(c) = 2.



Kapitola 5

Diskrétne náhodné premenné

5.1 Základné vlastnosti diskrétnych náhodných premen-
ných

De�nícia 5.1 (Diskrétna náhodná premenná). Náhodnú premennú X na pravdepodobnost-
nom priestore (Ω, S, P ) nazývame diskrétna, ak jej obor hodnôt X(Ω) ⊂ R je spo£ítate©ná
mnoºina.

Niekedy hovoríme, ºe diskrétna náhodná premenná X �nadobúda� spo£ítate©ne ve©a hod-
nôt. Hovoríme tieº, ºe diskrétna náhodná premenná X nadobúda £íslo x �s pravdepodobnos-
´ou� P [X = x].

Poznámka 5.1. V²imnite si, ºe ak je X1, ..., Xn sú diskrétne náhodné premenné a g : Rn → R
je akáko©vek borelovská funkcia, tak g(X1, ..., Xn) je tieº diskrétna náhodná premenná, pretoºe
jej obor hodnôt musí by´ spo£ítate©ný.

Veta 5.1 (Nezávislos´ diskrétnych náhodných premenných). Diskrétne náhodné premenné
X1, X2, ..., Xn sú nezávislé vtedy a len vtedy, ke¤ platí

P [X1 = x1, X2 = x2, ..., Xn = xn] =
n∏
i=1

P [Xi = xi] (5.1)

pre v²etky x1, x2, ..., xn ∈ R.

Dôkaz. Dôkaz implikácie ⇒ plynie priamo z de�nície nezávislosti a z toho, ºe jednoprvkové
mnoºiny B1 = {x1},...,Bn = {xn} sú borelovské.

Ukáºme opa£nú implikáciu. Nech B1, ..., Bn sú akéko©vek borelovské mnoºiny. Pre kaºdé
i = 1, ..., n ozna£íme Ci = Xi(Ω) ∩ Bi mnoºinu tých £ísiel z oboru hodnôt náhodnej premen-
nej Xi, ktoré patria do Bi. Ke¤ºe náhodné premenné Xi sú diskrétne, tak mnoºiny Ci sú

24
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spo£ítate©né. Z aditivity (prípadne σ-aditivity) pravdepodobnosti a rovnosti (5.1) dostávame:

P [X1 ∈ B1, ..., Xn ∈ Bn] =
∑
x1∈C1

· · ·
∑
xn∈Cn

P [X1 = x1, ..., Xn = xn]

=
∑
x1∈C1

· · ·
∑
xn∈Cn

P [X1 = x1]...P [Xn = xn]

=

(∑
x1∈C1

P [X1 = x1]

)
· · ·

( ∑
xn∈Cn

P [Xn = xn]

)
= P [X1 ∈ B1] · · ·P [Xn ∈ Bn].

5.2 �íselné charakteristiky diskrétnych náhodných pre-
menných

De�nícia 5.2 (Stredná hodnota diskrétnej náhodnej premennej ). Nech X je diskrétna ná-
hodná premenná a nech rad

∑
x∈X(Ω) xP [X = x] absolútne konverguje. Potom hovoríme, ºe

náhodná premenná X má kone£nú strednú hodnotu E(X) a kladieme:

E(X) =
∑

x∈X(Ω)

xP [X = x].

Ak rad na pravej strane absolútne nekonverguje, hovoríme, ºe náhodná premenná X nemá
kone£nú strednú hodnotu.1

Poznámka 5.2. Pod absolútnou konvergenciou radu
∑

x∈X r(x), kde X je spo£ítate©ná mno-
ºina, myslíme to, ºe

∑
i |r(xi)| <∞, pri£om x1, x2, ... je (akéko©vek) o£íslovanie prvkov mno-

ºiny X. Absolútna konvergencia zaru£uje, ºe hodnota
∑

x∈X r(x) je kone£ná a rovnaká nezávislé
na tom, v akom poradí s£itujeme £leny tohoto radu.

Veta 5.2 (Linearita strednej hodnoty). Nech X a Y sú diskrétne náhodné premenné, ktoré
majú kone£nú strednú hodnotu. Nech a, b sú reálne £ísla. Potom aj diskrétna náhodná pre-
menná aX + bY má kone£nú strednú hodnotu a platí

E(aX + bY ) = aE(X) + bE(Y ).

�peciálne, E(aX) = aE(X) a E(X + Y ) = E(X) + E(Y ).

Dôkaz. Obor hodnôt náhodnej premennej aX + bY je ur£ite podmnoºinou mnoºiny aX(Ω) +
bY (Ω), kde X(Ω) a Y (Ω) sú obory hodnôt náhodných premenných X a Y . Z de�nície strednej

1Ak je X nezáporná náhodná premenná a
∑

x∈X(Ω) xP [X = x] = ∞, tak sa niekedy hovorí, ºe náhodná

premenná X má nekone£nú strednú hodnotu.
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hodnoty a aditivity (prípade σ-aditivity) pravdepodobnosti dostávame:

E(aX + bY ) =
∑

z∈aX(Ω)+bY (Ω)

zP [aX + bY = z]

=
∑

x∈X(Ω)

∑
y∈Y (Ω)

(ax+ by)P [X = x, Y = y]

= a
∑

x∈X(Ω)

x
∑

y∈X(Ω)

P [X = x, Y = y] + b
∑

y∈Y (Ω)

y
∑

x∈X(Ω)

P [X = x, Y = y]

= a
∑

x∈X(Ω)

xP [X = x] + b
∑

y∈Y (Ω)

yP [Y = y] = aE(X) + bE(Y ).

(V prípade, ºe by predchádzajúce rovnosti súm boli nejasné, je in²truktívne si ich platnos´
premyslie´ pre ²peciálny prípad, napríklad taký, ºe X(Ω) = Y (Ω) = {0, 1}, a = b = 1.)

Veta 5.3 (Stredná hodnota funkcie diskrétnej náhodnej premennej ). Nech X je diskrétna
náhodná premenná a nech g : R→ R je funkcia. Potom g(X) je diskrétna náhodná premenná
a jej stredná hodnota je kone£ná, ak rad

∑
x∈X(Ω) g(x)P [X = x] absolútne konverguje. V

takom prípade platí:
E(g(X)) =

∑
x∈X(Ω)

g(x)P [X = x].

De�nícia 5.3 (Disperzia diskrétnej náhodnej premennej ). Nech X je diskrétna náhodná
premenná a nech náhodná premenná X2 má kone£nú strednú hodnotu. Potom hovoríme, ºe
náhodná premenná X má kone£nú disperziu D(X) a kladieme:

D(X) = E
(
(X − E(X))2

)
.

Ak náhodná premenná X2 nemá kone£nú strednú hodnotu, tak hovoríme, ºe X má nekone£nú
disperziu.

Veta 5.4 (Základné vlastnosti disperzie diskrétnej náhodnej premennej ). Nech X je náhodná
premenná, ktorá má kone£nú disperziu a nech a, b sú reálne £ísla. Potom aj diskrétna náhodná
premenná aX + b má kone£nú disperziu a platí:

D(X) = E(X2)− E(X)2,

D(aX + b) = a2D(X).

Dôkaz. Z de�nície disperzie a linearity strednej hodnoty máme: D(X) = E((X −E(X))2) =
E(X2 − 2(E(X))X + (E(X))2) = E(X2)− 2(E(X))(E(X)) + (E(X))2 = E(X2)− (E(X))2.
Dôkaz druhej £asti vety je podobne jednoduché cvi£enie.

Ak diskrétna náhodná premenná X nadobúda hodnoty (xi)i∈I s nenulovou pravdepodob-
nos´ou a ak má kone£nú strednú hodnotu, tak z vety 5.3 a predchádzajúcej vety plynie, ºe
disperziu X môºeme vypo£íta´ pod©a ktoréhoko©vek z nasledujúcich dvoch vzorcov

• D(X) =
∑

i∈I(xi − E(X))2P [X = xi]

• D(X) =
∑

i∈I x
2
iP [X = xi]− (E(X))2
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5.3 Základné typy diskrétnych náhodných premenných

5.3.1 Alternatívne rozdelenie

De�nícia 5.4 (Alternatívne rozdelenie). Hovoríme, ºe diskrétna náhodná premenná X má
alternatívne rozdelenie s parametrom p ∈ (0, 1), ak P [X = 0] = 1− p a P [X = 1] = p. Túto
skuto£nos´ zna£íme X ∼ Alt(p).

Príklad 5.1. Hádºeme mincou, na ktorej padne znak s pravdepodobnos´ou p. Potom náhodná
premenná

X =

{
1 ak padne znak
0 ak padne hlava

má alternatívne rozdelenie X ∼ Alt(p).

Veta 5.5. Nech X ∼ Alt(p). Potom E(X) = p a D(X) = p(1− p).

Dôkaz. Dôkaz je elementárne cvi£enie.

5.3.2 Binomické rozdelenie

De�nícia 5.5 (Binomické rozdelenie). Hovoríme, ºe diskrétna náhodná premenná X má
binomické rozdelenie s parametrami p ∈ (0, 1) a n ∈ N, ak pre kaºdé k = 0, 1, . . . , n platí

P [X = k] =

(
n

k

)
pk(1− p)n−k

Túto skuto£nos´ zna£íme X ∼ Bin(n, p).

Príklad 5.2. Hádºeme mincou z predchádzajúceho príkladu n krát. De�nujme náhodnú pre-
mennúX ako po£et znakov, ktorý padne v týchto n hodoch. PotomX má binomické rozdelenie
X ∼ Bin(n, p).

Veta 5.6. Nech X ∼ Bin(n, p). Potom E(X) = np a D(X) = np(1− p).

Dôkaz. Nech X ∼ Bin(n, p), q = 1− p. Platí:

E(X) =
n∑
k=0

k

(
n

k

)
pkqn−k =

n∑
k=1

k
n!

(n− k)!k!
pkqn−k =

np
n∑
k=1

(n− 1)!

(n− k)!(k − 1)!
pk−1qn−k = np

n−1∑
i=0

(n− 1)!

((n− 1)− i)!i!
piq(n−1)−i =

np

n−1∑
i=0

(
n− 1

i

)
piq(n−1)−i = np(p+ q)n−1 = np

Posledná rovnos´ plynie z binomického rozvoja sú£tu (p+q)n−1. Podobne odvodíme E(X(X−
1)) =

∑n
k=2 k(k− 1)

(
n
k

)
pkqn−k = n(n− 1)p2 a preto D(X) = E((X)2)− (E(X))2 = E(X(X−

1)) + E(X)− (E(X))2 = n(n− 1)p2 + np− n2p2 = np(1− p).
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Obr. 5.1: Rozdelenie pravdepodobnosti a distribu£ná funkcia náhodnej premennej X ∼
Bin(8, 0.3)

Poznámka 5.3. Náhodná premenná X s rozdelením Bin(n, p) zodpovedá po£tu úspechov,
ak robíme n nezávislých experimentov a pravdepodobnos´ úspechu v kaºdom experimente je
p. V²imnite si tieº, ºe X ∼ Alt(p) vtedy a len vtedy, ke¤ X ∼ Bin(1, p).

Príklad 5.3. Pre potreby genetického algoritmu modelujeme �chromozóm d¨ºky n� postup-
nos´ou n binárnych hodnôt 0 alebo 1. Nech x je chromozóm pozostávajúci z k jednotiek a
n− k núl. Chromozóm y vytvoríme z chromozómu x náhodnou �mutáciou�, t.j. tak, ºe kaºdý
bit preklopíme na opa£ný s pravdepodobnos´ou p. Nájdite strednú hodnotu po£tu jednotiek,
ktoré bude obsahova´ chromozóm y.

Rie²enie: Ak za �úspech� budeme povaºova´ to, ºe dôjde k preklopeniu bitu, tak je zrejmé,
ºe po£et N0→1 nulových bitov chromozómu x, ktoré sa zmenia na jednotku, má rozdelenie
Bin(n−k, p) a po£et N1→1 jednotkových bitov chromozómu x, ktoré sa pri mutácii nezmenia,
má rozdelenie Bin(k, 1− p). Vidíme, ºe pre po£et N jednotkových bitov chromozómu y platí
N = N0→1 +N1→1 a teda na základe linearity strednej hodnoty a vety 5.6 dostávame:

E(N) = E(N0→1) + E(N1→1) = (n− k)p+ k(1− p).

Príklad 5.4. Hráme hru, v ktorej sa ´ahajú 4 £ísla zo 40. Vyhráme, ak uhádneme v²etky ²tyri
£ísla. Ur£te pravdepodobnos´, ºe ak sa hry zú£astníme 500 krát, vyhráme raz alebo dvakrát.
Ak pravdepodobnos´ výhry v jednej hre ozna£íme p, máme

p =

(
4
4

)(
36
0

)(
40
4

) ≈ 1.1× 10−5

Potom náhodná premenná X, ktorá ozna£uje po£et výhier v 500 hrách, má binomické rozde-
lenie s parametrami 500 a p a

P [X = 1 ∨X = 2] =

(
500

1

)
p(1− p)499 +

(
500

2

)
p2(1− p)498 ≈ 0.00546.
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V takomto prípade, ke¤ je n 've©ké' a p 've©mi malé', je výhodnej²ie aproximova´ binomické
rozdelenie nasledovným spôsobom.

Veta 5.7. Majme postupnos´ náhodných premennýchXn1 , Xn1+1, . . . pri£omXn ∼ Bin(n, λ/n),
kde 0 < λ ≤ n1. Potom pre kaºdé k ∈ {0, 1, 2, . . .} platí

lim
n→∞

P [Xn = k] = e−λ
λk

k!

Dôkaz.

lim
n→∞

P [Xn = k] = lim
n→∞

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
=

λk

k!
lim
n→∞

(n
n

)(n− 1

n

)
. . .

(
n− k + 1

n

)(
1− λ

n

)−k (
1− λ

n

)n
Av²ak zrejme platí

lim
n→∞

(n
n

)(n− 1

n

)
. . .

(
n− k + 1

n

)(
1− λ

n

)−k
= 1

lim
n→∞

(
1− λ

n

)n
= e−λ

z predchádzajúcich rovností dostávame poºadované tvrdenie.

5.3.3 Poissonovo rozdelenie

De�nícia 5.6 (Poissonovo rozdelenie). Hovoríme, ºe diskrétna náhodná premenná X má
Poissonovo rozdelenie s parametrom λ > 0, ak pre kaºdé k = 0, 1, 2, . . . platí

P [X = k] = e−λ
λk

k!
.

Túto skuto£nos´ zna£íme X ∼ Po(λ).

Príklad 5.5. V predchádzajúcom príklade môºeme binomické rozdelenie aproximova´ Poisso-
novým rozdelením s parametrom λ = 500p ≈ 0.00547 a dostávame Potom náhodná premenná
X, ktorá ozna£uje po£et výhier v 500 hrách, má binomické rozdelenie s parametrami 500 a p
a

P [X = 1 ∨X = 2] = e−λ
(
λ

1
+
λ2

2

)
≈ 0.00547.

Veta 5.8. Nech X ∼ Po(λ). Potom E(X) = λ a DX = λ.

Dôkaz.

E(X) =
∞∑
k=0

ke−λ
λk

k!
= e−λλ

∞∑
k=1

λk−1

(k − 1)!
= e−λλeλ = λ

Podobne máme

E(X(X − 1)) =
∞∑
k=0

k(k − 1)e−λ
λk

k!
= e−λλ2

∞∑
k=2

λk−2

(k − 2)!
= e−λλ2eλ = λ2

Preto D(X) = E((X)2)− (E(X))2 = E(X(X−1)) +E(X)− (E(X))2 = λ2 +λ−λ2 = λ.
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Obr. 5.2: Rozdelenie pravdepodobnosti a distribu£ná funkcia náhodnej premennej X ∼
Po(0.5)

Obr. 5.3: Rozdelenie pravdepodobnosti a distribu£ná funkcia náhodnej premennej X ∼
Po(2.5)



Pravdepodobnos´ a ²tatistika, FMFI UK, predbeºná verzia 6.10.2017

Poissonovo rozdelenie sa pouºíva napríklad na modelovanie po£tu rozpadov atómov rá-
dioaktívnej látky za ur£itý £as, volaní na telefónnu ústred¬u, impulzov prichádzajúcich na
neurónovú bunku a podobne. Poissonovo rozdelenie je tieº limitným rozdelením niektorých
postupností náhodných premenných (pozri vetu 5.7 a príklad 5.6).

Príklad 5.6. Nech n ∈ N a nech Xn znamená po£et prvkov, ktoré zostanú na svojom pô-
vodnom mieste po dokonalej náhodnej permutácii postupnosti (1, ..., n). Dokáºte, ºe limitné
rozdelenie náhodných premenných Xn je Po(1), t.j. ºe limn→∞ P [Xn = k] = e−1/k! pre kaºdé
nezáporné celé £íslo k.

Rie²enie: Najprv si uvedomme, ºe pn = P [Xn > 0] sme uº ur£ili v príklade 2.8. Poloºme
qn = P [Xn = 0] = 1− pn, t.j. qn je pravdepodobnos´, ºe po náhodnej permutácii n £ísiel ne-
zostane ani jedno z nich na svojom pôvodnom mieste. Dode�nujme tieº q0 = 1. Pre v²eobecné
k ≥ 1 máme

P [Xn = k] = P

( ⋃
1≤i1<...<ik≤n

Bi1,...,ik

)
,

kde Bi1,...,ik znamená udalos´, ºe £ísla i1, ..., ik zostanú na svojom pôvodnom mieste a ºiadne
iné £íslo nezostane na svojom pôvodnom mieste. Je zrejmé, ºe takýchto udalostí je

(
n
k

)
, ºe sú

navzájom disjkunktné a pravdepodobnos´ kaºdej takejto udalosti je

P (Bi1,...,ik) =
qn−k

n(n− 1)...(n− k + 1)

Spojením týchto výsledkov dostávame

P [Xn = k] =

(
n

k

)
qn−k

n(n− 1)...(n− k + 1)
=
qn−k
k!

.

Pouºitím rie²enia príkladu 2.8 máme

lim
n→∞

P [Xn = k] = lim
n→∞

qn−k
k!

= lim
n→∞

1− pn−k
k!

= e−1/k!.

5.3.4 Geometrické rozdelenie

De�nícia 5.7 (Geometrické rozdelenie). Hovoríme, ºe diskrétna náhodná premenná X má
geometrické rozdelenie s parametrom p ∈ [0, 1], ak pre kaºdé k = 0, 1, 2, . . . platí

P [X = k] = p(1− p)k.

Túto skuto£nos´ zna£íme X ∼ Geo(p).

Príklad 5.7. Hádºeme mincou, na ktorej padne znak s pravdepodobnos´ou p. Potom náhodná
premenná, ktorá reprezentuje po£et hodov, kým nepadne prvý krát znak, má geometrické
rozdelenie s parametrom p.

Veta 5.9. Nech X ∼ Geo(p). Potom platí E(X) = (1− p)/p a D(X) = (1− p)/p2.
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Obr. 5.4: Rozdelenie pravdepodobnosti a distribu£ná funkcia náhodnej premennej X ∼
Geo(0.4)

Dôkaz. Pre kaºdé q ∈ (0, 1) platí f(q) =
∑∞

k=0 q
k = (1− q)−1. Derivovaním funkcie f dostá-

vame jednak f ′(q) =
∑∞

k=0 kq
k−1 ako aj f ′(q) = (1− q)−2. Preto

∞∑
k=0

kqk−1 = (1− q)−2

Takºe

E(X) =
∞∑
k=0

kp(1− p)k = p(1− p)
∞∑
k=0

k(1− p)k−1 = p(1− p)p−2 = (1− p)/p

Dvojnásobným derivovaním funkcie f dostaneme vzorec pre sú£et nekone£ného radu, pomocou
ktorého odvodíme disperziu ve©mi podobne, ako sme vypo£ítali strednú hodnotu.

Náhodná premenná X s rozdelením Geo(p) zodpovedá po£tu neúspe²ných experimentov
predchádzajúcich prvý úspe²ný experiment, ak pravdepodobnos´ úspechu v jednotlivom expe-
rimente je p.

Príklad 5.8. Kódom PIN môºe by´ akáko©vek postupnos´ ²tyroch ci�er od 0000 po 9999.
Predpokladajme, ºe systém akceptuje kód PIN, ak správne zadáme aspo¬ 3 zo ²tyroch ci�er
(na zodpovedajúcich miestach). Budeme náhodne voli´ kódy PIN, aº kým ná² kód nebude
akceptovaný. (Vo©bu vykonávame tak, ºe kaºdú cifru volíme s pravdepodobnos´ou 1/10 bez
oh©adu na to, £o sme volili predtým.) Aká je stredná hodnota po£tu pokusov?

Rie²enie: Pravdepodobnos´, ºe zo ²tyroch náhodne zadaných ci�er uhádneme aspo¬ tri je
pod©a binomickej formule

p =

(
4

3

)
(0, 1)3 (0, 9)1 +

(
4

4

)
(0, 1)4 (0, 9)0 = 0, 0037.
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Po£et �neúspe²ných experimentov� X, t.j. odmietnutých kódov PIN, má rozdelenie Geo(p).
Preto stredná hodnota po£tu N = X + 1 zadaní kódu PIN, so zapo£ítaním aj posledného,
úspe²ného, je pod©a vety 5.9:

E(N) = E(X) + 1 =
1− p
p

+ 1 =
1

p
= 10000/37 ≈ 270.

Príklad 5.9. Predpokladajme, ºe ve©kos´ N vstupu algoritmu má rozdelenie Geo(p) + 1 a
£as T výpo£tu algoritmu závisí od ve©kosti vstupu pod©a vz´ahu T = αN2 + βN + γ, kde
p ∈ (0, 1), α, β, γ > 0 sú známe kon²tanty. Ur£te strednú hodnotu £asu výpo£tu T .

5.3.5 Hypergeometrické rozdelenie

De�nícia 5.8 (Hypergeometrické rozdelenie). Hovoríme, ºe diskrétna náhodná premenná X
má hypergeometrické rozdelenie s parametrami M,N, n ∈ N, sp¨¬ajúcimi N < M a n < M ,
ak

P [X = k] =

(
N
k

)(
M−N
n−k

)(
M
n

)
pre kaºdé k = max(0, n+N−M), . . . ,min(n,N). Túto skuto£nos´ zna£ímeX ∼ Hyp(M,N, n).

Poznámka 5.4. Predpokladajme, ºe máme urnu s M guli£kami, z ktorých je N £iernych.
Z urny (sú£asne alebo, ekvivalentne, bez vrátenia) vyberieme n guli£iek. Ak X znamená
po£et £iernych guli£iek v tomto výbere, takX má rozdelenieHyp(M,N, n). Hypergeometrické
rozdelenie sa pouºíva napríklad pri pravdepodobnostnej analýze lotérií a v ²tatistickej kontrole
kvality.

Veta 5.10. Nech X ∼ Hyp(M,N, n). Potom E(X) = nN
M
.

Dôkaz. Pozri príklad 5.10.

5.4 Vyuºitie indikátorov udalostí a linearity strednej hod-
noty

Príklad 5.10. Nech X ∼ Hyp(M,N, n). Ur£te EX.
Rie²enie: Ak sa chceme vyhnú´ výpo£tu komplikovaných súm, môºeme urobi´ dôkaz s vy-

uºitím linearity strednej hodnoty a to nasledovne: Uvaºujme urnovú schému z poznámky 5.4.
Ozna£me pre i = 1, ..., n ako Ui náhodnú premennú, ktorá nadobúda hodnotu 1 v prípade, ºe
i-ta vybratá gu©ô£ka je £ierna a hodnotu 0 ak je biela. Zo symetrie plynie, ºe Ui ∼ Alt(N/M),
preto E(Ui) = N/M . Ke¤ºe X =

∑n
i=1 Ui tak máme:

E(X) = E

(
n∑
i=1

Ui

)
=

n∑
i=1

E(Ui) = n(N/M).

Takto by bolo moºné odvodi´ aj disperziu; výpo£et je v²ak zd¨havej²í.
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Príklad 5.11. Nech n ∈ N, n ≥ 2 a nech Xn znamená po£et prvkov, ktoré zostanú na
svojom pôvodnom mieste po dokonalej náhodnej permutácii postupnosti (1, ..., n), rovnako
ako v príklade 5.6. Ur£te E(Xn) a D(Xn)!

Rie²enie: Nech U1, ..., Un sú náhodné premenné, pri£om Ui je indikátor udalosti, ºe £íslo
i zostane na svojom pôvodnom mieste. To znamená, ºe Ui je 1 ak £íslo i zostane na svojom
mieste a Ui je 0 ak £íslo i nezostane na svojom pôvodnom mieste. Zrejme Ui ∼ Alt(1/n), t.j.
E(Ui) = 1/n pod©a vety 5.5. Ke¤ºe X = U1 + ... + Un, dostávame z tvrdenia 5.2 E(X) =∑n

i=1E(Ui) = 1.
Podobne, pouºitím linearity strednej hodnoty máme

E(X2
n) = E

(
n∑
i=1

Ui

n∑
j=1

Uj

)
=

n∑
i=1

n∑
j=1

E(UiUj).

Zrejme UiUj ∼ Alt(p), kde p je pravdepodobnos´, ºe zárove¬ £íslo i aj £íslo j zostane na
svojom mieste. Ak i = j, tak p = 1

n
a ak i 6= j, tak p = 1

n
1

n−1
. Preto

E(X2
n) =

∑
i

E(UiUi) +
∑∑

i 6=j
E(UiUj) = n

1

n
+ n(n− 1)

1

n

1

n− 1
= 2.

Z odvodených rovností a vety 5.4 dostávame

D(Xn) = E(X2
n)− (E(Xn))2 = 2− 1 = 1.

Z príkladu 5.6 (a vety 5.8) vieme, ºe limitné rozdelenie náhodných premenných Xn má
strednú hodnotu aj disperziu 1. Práve sme sa v²ak presved£ili, ºe E(Xn) = D(Xn) = 1 pre
kaºdé n.

Príklad 5.12. Nech σ = (σ1, ..., σn) je permutácia postupnosti (1, ..., n). Index i ∈ {1, ..., n}
nazveme rekordom v permutácii σ, ak bu¤ i = 1, alebo ak i > 1 a σi > σj pre v²etky
j ∈ {1, ..., i − 1}. Nech Xn ozna£uje po£et rekordov v dokonalej náhodnej permutácii σ po-
stupnosti (1, ..., n). (Pozn.: Kvôli jednoduchosti zna£íme v tomto príklade aj pevnú aj náhodnú
permutáciu symbolom σ.) Nájdite E(Xn) a D(Xn).

Rie²enie: Pre v²etky i = 1, ..., n ozna£me ako Ui náhodnú premennú, ktorá nadobúda
hodnotu 1 práve vtedy, ke¤ v náhodnej permutácii £ísiel (1, ..., n) bude i rekordom a hodnotu 0
inak. ZjavneXn = U1+...+Un. Tieº je zrejmé, ºe pre kaºdé i ∈ {1, ..., n} je udalos´ [i je rekord]
ekvivalentná udalosti [σi = max(σ1, ..., σi)], ktorej pravdepodobnos´ je 1/i, pretoºe z dôvodov
symetrie má kaºdá z i hodnôt σ1, ..., σi rovnakú pravdepodobnos´, ºe bude najvä£²ia v mnoºine
{σ1, ..., σi}. Na základe linearity strednej hodnoty dostávame:

E(Xn) =
n∑
i=1

E(Ui) =
n∑
i=1

1

i
.

Poznamenajme, ºe sú£et prvých n £lenov harmonického radu je
∑n

i=1
1
i
≈ ln(n) + γ, kde γ ≈

0, 577 je Eulerova-Mascheroniho kon²tanta. Aby sme vypo£ítali varianciu, overte si najprv2,
ºe pre v²etky i, j ∈ {1, ..., n}; i < j sú udalosti [i je rekord] a [j je rekord] nezávislé a teda
E(UiUj) = P [UiUj = 1] = P [Ui = 1, Uj = 1] = P [Ui = 1]P [Uj = 1] = 1

ij
. Máme preto

E(X2
n) =

n∑
i=1

n∑
j=1

E(UiUj) =
n∑
i=1

E(Ui) + 2
∑
i<j

E(UiUj) =
n∑
i=1

1

i
+ 2

∑
i<j

1

ij
,

2ako cvi£enie
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z £oho dostávame

D(Xn) = E(X2
n)− (E(Xn))2 =

n∑
i=1

1

i
+ 2

∑
i<j

1

ij
−

(
n∑
i=1

1

i

)2

=
n∑
i=1

1

i
−

n∑
i=1

1

i2
.

Pre ve©ké n je
∑n

i=1
1
i2
≈ π2

6
, £iºe D(Xn) ≈ ln(n) + γ − π2

6
.

Príklad 5.13. Za okrúhlym stolom je rozostavených 17 stoli£iek o£íslovaných 0, ..., 16, na
ktoré sa posadilo 12 muºov a 5 ºien. Ukáºte, ºe existuje sedmica susedných stoli£iek, na
ktorých sedia aspo¬ tri ºeny.

Rie²enie: Najprv si de�nujeme (nenáhodné) kon²tanty Rk a Vk pre k = 0, ..., 16 a to
nasledovne: Rk ozna£uje po£et ºien, ktoré sedia na stoli£kách s £íslami k, k + 1, ..., k + 6
modulo 17. Vk je 1 ak na stoli£ke s £íslom k sedí ºena a v opa£nom prípade Vk de�nujeme ako
0.

�alej náhodne zvo©me jednu stoli£ku (kaºdú s pravdepodobnos´ou 1/17). Nech K je £íslo
tejto stoli£ky, t.j. K je náhodná premennú s rovnomerným rozdelením na mnoºine {0, ..., 16}.
Pre náhodnú premennú RK platí

RK = VK + VK+1 + ...+ VK+6,

kde indexy stále berieme modulo 17. V²imnime si, ºe E(VK+i) = 5/17 pre v²etky i = 0, ..., 6,
lebo E(VK+i) = P [VK+i = 1], £o je pravdepodobnos´, ºe na stoli£ke K + i (modulo 17) je
ºena. Máme:

E(RK) = E(VK) + E(VK+1) + ...+ E(VK+6) = 7× (5/17) = 35/17 > 2

Aby mohlo plati´ E(RK) > 2, musí by´ splnené P [RK > 2] > 0, t.j. náhodná premenná
RK nadobúda s nenulovou pravdepodobnos´ou jednu z hodnôt 3, 4, .... Z toho ale plynie, ºe
nutne musí existova´ aspo¬ jedna sedmica susedných stoli£iek, na ktorých sedia aspo¬ 3 ºeny.

Poznámka 5.5. Predchádzajúci príklad ukazuje, ºe pravdepodobnostné metódy môºeme po-
uºi´ aj na rie²enie niektorých deterministických úloh (napríklad kombinatorických, alebo gra-
fových). Súhrnne sa takéto techniky nazývajú �probabilistic method�.

5.5 Cvi£enia

Úloha 5.1. Ukáºte: Nech B je borelovská mnoºina reálnych £ísiel a nech X je diskrétna
náhodná premenná so (spo£ítate©ným) oborom hodnôt H. Potom

P [X ∈ B] =
∑

x∈B∩H

P [X = x].

Úloha 5.2. Nech X je diskrétna náhodná premenná s oborom hodnôt {x1, ..., xn}, pri£om
x1 < ... < xn. Na£rtnite distribu£nú funkciu náhodnej premennej X.

Úloha 5.3. Hodíme n-krát mincou. Sériou nazveme postupnos´ za sebou idúcich rovnakých
výsledkov, pred a za ktorými je výsledok opa£ný, alebo ºiadny (t.j. za£iatok, alebo koniec).
Napríklad pri n = 8 obsahuje výsledok �HZZZHHHH� tri série, výsledok �HZHZZHZH� 7
sérií. Nech X znamená výsledný po£et sérií. Nájdite rozdelenie náhodnej premennej X, t.j.
hodnoty P [X = k] pre k = 1, . . . , 8. Nájdite E(X) a D(X).
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Úloha 5.4. Na za£iatku hry SCRABBLE hrá£ náhodne volí 7 rôznych písmeniek spomedzi
100. Z týchto 100 písmeniek je 44 samohlások. Nech X znamená po£et samohlások, ktoré si
vyberieme. Nájdite rozdelenie (t.j. pravdepodobnosti P [X = k] pre k = 0, ..., 7) a strednú
hodnotu náhodnej premennej X.
Rie²enie: P [X = k] =

(
44
k

)(
56

7−k

)
/
(

100
7

)
; E(X) = 7.44

100
.

Úloha 5.5. Vo vrecku máme v²etkých 2n podmnoºín mnoºiny {1, 2, ..., n} (vrátane prázdnej
mnoºiny). Z vrecka najprv náhodne vyberieme mnoºinu E, vrátime ju spä´ a po chví©ke
vyberieme ¤al²iu mnoºinu F . Nech náhodná premenná X znamená po£et prvkov zjednotenia
E a F ; Y nech znamená po£et prvkov prieniku E a F . Nájdite rozdelenie a strednú hodnotu
a) náhodnej veli£iny X;
b) náhodnej veli£iny Y .

Úloha 5.6. Z interpretácie binomického rozdelenia (pozri poznámku 5.3) je zrejmé, ºe ak
X ∼ Bin(n, p), tak X má rovnaké rozdelenie ako náhodná premenná X ′ = U1 + ...+Un, kde
Ui ∼ Alt(p) nadobudne hodnotou 0 v prípade neúspechu v i-tom experimente a 1 v prípade
úspechu v i-tom experimente. Pomocou tohoto vyjadrenia odvo¤te E(X) a D(X).



Kapitola 6

Markovovské re´azce

Roz²írením pojmu náhodnej premennej je náhodný proces, ktorý je tvorený postupnos´ou
náhodných premenných X1, X2, X3, . . .. Majme postupnos´ náhodných premenných {Xt}∞t=1.
Hodnoty náhodných premennýchXt, t ≥ 0 budeme nazýva´ stavmi systému v £ase t a mnoºinu
moºných stavov systému ozna£íme S. Ak mnoºina v²etkých stavov je kone£ná alebo spo£íta-
te©ná, postupnos´ {Xt}∞t=1 sa nazýva re´azec. �alej budeme uvaºova´ len re´azce s kone£nou
mnoºinou stavov S = {1, 2, . . . ,m}.

De�nícia 6.1 (Markovovský re´azec). Hovoríme, ºe re´azec {Xt}∞t=1 s mnoºinou stavov S =
{1, 2, . . . ,m} má Markovovu vlastnos´, ak pre v²etky n ∈ N a pre ©ubovo©né stavy i1, . . . , in ∈
S platí

P (Xn+1 = in+1|, Xn = in, Xn−1 = in−1, . . . , X1 = i1) = P (Xn+1 = in+1|, Xn = in)

V tomto prípade sa {Xt}∞t=1 nazýva markovovský re´azec.

Podmienené pravdepodobnosti

P (Xn+1 = i|, Xn = j) =: pij(n), n ∈ N

nazývame pravdepodobnosti prechodu zo stavu j v £ase n do stavu i v £ase n+ 1.
Ak pravdepodobnosti prechodu nezávisia od £asu, t.j. ak pre ©ubovo©né n je P (Xn+1 =

i|, Xn = j) = P (Xn = i|, Xn−1 = j) =: pij, hovoríme o stacionárnom re´azci.
Pravdepodobnosti prechodu stacionárneho markovovského re´azca môºeme zapísa´ do tzv.

matice pravdepodobností prechodu

P =


p11 p12 . . . p1m

p21 p22 . . . p2m
...

... . . . ...
pm1 pm2 . . . pmm


Z de�nície pravdepodobností prechodu vyplýva, ºe

∑
j pij = 1 pre v²etky i.

Pravdepodobnos´ prechodu zo stavu i do stavu j po t krokoch de�nujeme ako

pij(t) = P (Xm+t = j|Xt = i)

Dá sa ©ahko ukáza´, ºe
p

(
ijt) =

∑
u

piup
t−1
uj
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Odtia© vyplýva, ºe ak ozna£íme P(t) maticu pravdepodobností prechodu po t krokoch, potom

P(t) = Pt.

Tento výsledok zov²obec¬uje nasledovná veta:

Veta 6.1. (Chapmanova-Kolmogorovova rovnos´): Ozna£me pij(t) prvky matice prechodu
P (t). Potom pre v²etky t, s ≥ 0 a pre kaºdé dva stavy i, j ∈ S platí: pij(t+s) =

∑
k∈S pik(s)pkj(t),

a teda P (t+ s) = P (t)P (s).

Rozdelenie pravdepodobnosti p(0) = (p1(0), p2(0), . . . , pm(0)) také, ºe pi(0) = P [X0 = i]
pre i = 1, . . . ,m sa nazýva po£iato£né rozdelenie re´azca. Dá sa ukáza´, ºe matice pre-
chodu P (t), t = 1, 2, 3, . . . a po£iato£né rozdelenie p(0) jednozna£ne ur£ujú rozdelenia re´azca
{Xt}∞t=1.

Markovovský re´azec môºeme znázorni´ pomocou orientovaného váºeného grafu (V,E,w),
kde mnoºina vrcholov V reprezentuje stavy re´azca. Medzi vrcholmi i, j existuje hrana (i, j) ∈
E práve vtedy, ke¤ pij > 0, a potom w(i, j) = pij.

Príklad 6.1. Mucha sa pohybuje po priamke. V kaºdej sekunde sa pohne s pravdepodobnos-
´ou 0.3 o centimeter do©ava, s pravdepodobnos´ou 0.3 o centimeter doprava, a s pravdepo-
dobnos´ou 0.4 ostane na mieste. Na pozíciách 1 a m na ¬u striehne pavúk: ak mucha pristane
na jednom z týchto dvoch miest, pavúk ju zoºerie.

Zostrojme markovovský re´azec pre túto situáciu za predpokladu, ºe mucha je na za£iatku
v niektorej z pozícií 2, . . . ,m. Nech stavy 1, . . . ,m reprezentujú moºné pozície muchy. Prav-
depodobnosti prechodu potom sú

p11 = 1, pmm = 1,

pij =

{
0.4 ak i = j

0.3 ak j = ±i, i = 2, . . . ,m− 1.

Matica pravdepodobností prechodu je

P =


1 0 0 0

0.3 0.4 0.3 0
0 0.3 0.4 0.3
0 0 0 1.


6.1 Klasi�kácia stavov markovovského re´azca

De�nícia 6.2 (Ireducibilný markovovský re´azec). Hovoríme, ºe stav j je dosiahnute©ný zo
stavu i, ak pre systém v stave i je nenulová pravdepodobnos´, ºe niekedy dosiahne stav j.
Markovovský re´azec, pre ktorý platí ºe ©ubovo©ný stav je dosiahnute©ný z ©ubovo©ného iného
stavu v kone£nom £ase, sa nazýva ireducibilný. Formálne

∀i, j ∈ S ∃m ∈ N,m <∞ : P (Xn+m = i|Xn = j) > 0

De�nícia 6.3. Mnoºina stavov C sa nazýva uzavretá, ak pre ©ubovo©né i ∈ C a j /∈ C je
pij = 0, teda ak zo stavov v C nie je dosiahnute©ný ºiadny stav mimo C.
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De�nícia 6.4 (Absorbujúci stav). Stav i sa nazýva absorbujúci, ak pii = 1.

Poznámka 6.1. Vidíme teda, ºe absorbujúci stav je jednoprvková uzavretá mnoºina stavov. V
ireducibilnom markovovskom re´azci je jedinou uzavretou mnoºinou mnoºina v²etkých stavov.

Príklad 6.2.

Ozna£me f (t)
ij pravdepodobnos´ toho, ºe prvý prechod do stavu j, ak sme za£ali v stave i,

nastáva po k krokoch v £ase t, t.j.

f
(t)
ij = P (Xt = j a pre v²etky 1 ≤ s ≤ t− 1 : Xs 6= j|X0 = i)

De�nícia 6.5 (Trvalé a prechodné stavy). Stav i sa nazýva trvalý, ak
∑

t≥1 f
(t)
ii = 1. Ak∑

t≥1 f
(t)
ii < 1, stav sa nazýva prechodný.

�alej ozna£me hij o£akávaný £as, za ktorý sa re´azec dostane zo stavu i do stavu j:

hij =
∑
t≥1

tf
(t)
ij

De�nícia 6.6. Trvalý stav sa nazýva kladný, ak hii <∞.

De�nícia 6.7 (Periodické stavy). Hovoríme, ºe stav i má periódu d > 1, ak p(m)
ii = 0 pre

kaºdé m, ktoré nie je násobkom £ísla d a d je najvä£²ie £íslo s touto vlastnos´ou.

De�nícia 6.8 (Ergodické stavy). Neperiodický, kladný, trvalý stav sa nazýva ergodický. Mar-
kovovský re´azec sa nazýva ergodický, ak sú v²etky jeho stavy ergodické.

Príklad 6.3.

6.2 Stacionárne rozdelenia

Ozna£me pi(t) pravdepodobnos´, ºe re´azec je v £ase t v stave i. Potom

pi(t) =
∑
j≥0

pj(t− 1)pji,

a teda p̄(t) = p̄(t− 1)P, kde p̄(t) = (p0(t), p1(t), p2(t), . . .).

De�nícia 6.9 (Stacionárne rozdelenie). Stacionárne rozdelenie markovovského re´azca je
také pravdepodobnostné rozdelenie π, pre ktoré platí π = πP.

Ak sa re´azec dostane do stacionárneho rozdelenia, uº v ¬om zotrvá v kaºdom ¤al²om
£ase. Nasledovná veta popisuje re´azce, ktoré konvergujú ku stacionárnemu rozdeleniu.

Veta 6.2. �ubovo©ný kone£ný, ireducibilný a ergodický markovovský re´azec má nasledovné
vlastnosti:
1. Existuje práve jedno stacionárne rozdelenie π = (π0, . . . , πn)

2. Pre ©ubovo©né i, j existuje limita limt→∞ p
(t)
ji a táto limita nezávisí na j

3. πi = limt→∞ p
(t)
ji = h−1

ii



Pravdepodobnos´ a ²tatistika, FMFI UK, predbeºná verzia 6.10.2017

Poznámka 6.2. Poºiadavka na neperiodickos´ re´azca nie je nutnou k existencii stacionár-
neho rozdelenia. Kaºdý kone£ný markovovský re´azec má stacionárne rozdelenie, ale v prípade
periodického stavu i stacionárna pravdepodobnos´ πi nie je limitnou pravdepodobnos´ou.

Stacionárne rozdelenie re´azca je rie²ením sústavy rovníc πP = π.

Príklad 6.4. Uvaºujme markovovský re´azec s dvoma stavmi 0 a 1 a s maticou prechodu

P =

(
1− p p
q 1− q

)
Tento re´azec môºe predstavova´ model prenosu bitov, pri ktorom stav 0 v £ase t znamená, ºe
bit bol prenesený bezchybne a stav 1 znamená, ºe bit bol preklopený na opa£ný. Stacionárne
rozdelenie nájdeme rie²ením nasledovnej sústavy rovníc:

π0(1− p) + π1q = π0

π0p+ π1(1− q) = π1

π0 + π1 = 0,

teda π0 = q
p+q

a π1 = p
p+q

.

V niektorých prípadoch vieme stacionárne rozdelenie re´azca vypo£íta´ pouºitím nasle-
dovnej vety.

Veta 6.3. Uvaºujme kone£ný, ireducibilný a ergodický markovovský re´azec s maticou prav-
depodobností prechodu P. Ak existujú nezáporné £ísla π = (π0, . . . , πn) také, ºe

∑n
i=0 πi = 1

a ak pre ©ubovo©né stavy i,j platí πipij = πjpji, potom π je stacionárne rozdelenie re´azca s
maticou P.

Dôkaz. j-ty prvok vektora πP sa dá napísa´ ako
n∑
i=0

πipij =
n∑
i=0

πjpji = πj,

a teda π = πP. Ke¤ºe
∑n

i=0 πi = 1, z Vety 6.2 vyplýva, ºe π je jednozna£ne ur£ené stacionárne
rozdelenie re´azca.

Príklad 6.5. (Algoritmus Google Page Rank) Reprezentujme systém webových stránok ako
graf s mnoºinou vrcholov V , kde vrcholy predstavujú jednotlivé webové stránky. Ak zo stránky
i vedie odkaz na stránku j, v grafe bude orientovaná hrana vedúca z i do j. Ozna£me N(i)
mnoºinu stránok, na ktoré odkazuje stránka i a de�nujme pravdepodobnosti prechodu pre
re´azec s mnoºinou stavov V nasledovne:

pij =


|N(i)|−1, ak j ∈ N(i),

|V |−1, ak N(i) = ∅,
0 inak.

Ak {Xn} je markovovský re´azec s maticou prechodu P = (pij), nemusí by´ nerozloºite©ný a
neperiodický. Preto uvaºujeme re´azec s pravdepodobnos´ami prechodu

rij = (1− α)pij +
α

|V |
,
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kde α je malé nenulové £íslo, teda pouºívate© si vä£²inou vyberá rovnomerne jeden z odkazov
na stránke, ale niekedy vyberie rovnomerne náhodne zo v²etkých moºných webových stránok.
Takýto re´azec má jednozna£ne ur£ené stacionárne rozdelenie π a vyh©adáva£ priradí stránke
i vy²²ie poradie ako stránke j, ak πi > πj.

Príklad 6.6 (�akanie na obsluhu). Uvaºujme model zákazníkov £akajúcich v rade, pri£om v
kaºdom kroku nastane jedna z troch moºností:
1. ak je v rade menej ako n zákazníkov, nový zákazník príde do rady s pravdepodobnos´ou λ
2. ak rad nie je prázdny, bude s pravdepodobnos´ou µ obslúºený prvý zákazník
3. s pravdepodobnos´ou 1− λ− µ ostane rad nezmenený.

Ak ozna£íme Xt po£et zákazníkov v rade v £ase t, potom Xt je markovovský re´azec s
nasledovnými pravdepodobnos´ami prechodu:

pi,i+1 = λ ak i < n

pi,i−1 = µ ak i > 0

pii =


1− λ ak i = 0

1− λ− µ ak 1 ≤ i ≤ n− 1
1− µ ak i = n

Tento markovovský re´azec je kone£ný, ireducibilný a neperiodický, teda existuje jeho staci-
onárne rozdelenie π, ktoré nájdeme rie²ením sústavy

π0 = (1− λ)π0 + µπ1

πi = λπi−1 + (1− λ− µ)πi + µπi+1, pre 1 ≤ i ≤ n− 1

pin = λπn−1 + (1− µ)πn
n∑
i=0

πi = 1

�ahko overíme, ºe

πi =
(λ/µ)i∑

j = 0n(λ/µ)j
.

6.3 Cvi£enia

Úloha 6.1. �aba ská£e po priamke spôsobom, ºe v kaºdej sekunde sko£í s pravdepodobnos´ou
b napravo a s pravdepodobnos´ou 1− b na©avo. Za£ne v jednej z pozícií 1, . . . ,m, ale z 0 môºe
sko£i´ len do 1 a z m+ 1 len do m. Modelujte tento proces ako markovovský re´azec a nájdite
jeho stacionárne rozdelenie.

Úloha 6.2. Roztrºitý profesor má dva dáºdniky, ktoré pouºíva na cestu do práce a z práce.
Ak pr²í a tam, kde sa nachádza, má k dispozícii dáºdnik, vezme si ho. Ak nepr²í, dáºdnik
si nikdy nevezme. Predpokladajme, ºe v kaºdom £ase pr²í s pravdepodobnos´ou p. Aká je
stacionárna pravdepodobnos´, ºe profesor zmokne?



Pravdepodobnos´ a ²tatistika, FMFI UK, predbeºná verzia 6.10.2017

Úloha 6.3. Z dlhodobých pozorovaní po£asia vieme, ºe ak v nejaký de¬ pr²í, na ¤al²í de¬
bude pr²a´ s pravdepodobnos´ou 0.4. Naopak, slne£ný de¬ je nasledovaný ¤al²ím slne£ným
d¬om s pravdepodobnos´ou 0.7. Urobte 'predpove¤ po£asia' na utorok a stredu, ak viete, ºe
v pondelok pr²alo.

Úloha 6.4. Na daný po£íta£ pristupujú vzdialene navzájom nezávisle dvaja pouºívatelia.
Po£as konkrétneho £asového úseku sa momentálne prihlásený pouºívate© odhlási s pravde-
podobnos´ou 0.5 a neprihlásený pouºívate© sa prihlási s pravdepodobnos´ou 0.2. Vypo£ítajte
pravdepodobnosti prechodu re´azca Xt, ktorý reprezentuje po£et prihlásených pouºívate©ov
v £ase t a nájdite jeho stacionárne rozdelenie.



Kapitola 7

Spojité náhodné premenné

7.1 Základné vlastnosti spojitých náhodných premenných

De�nícia 7.1 (Spojitá náhodná premenná). Nech X je náhodná premenná a nech existuje
integrovate©ná funkcia f : R→ [0,∞) taká, ºe pre kaºdé x ∈ R platí

F (x) =

∫ x

−∞
f(t)dt.

Potom hovoríme, ºe X je spojitá náhodná premenná s hustotou f .

Veta 7.1. Nech X je spojitá náhodná premenná s hustotou f . Potom∫ ∞
−∞

f(t)dt = 1

. Naviac, pre akéko©vek a, b ∈ R, a < b, platí P [X = a] = 0, P [a ≤ X < b] = P [a < X ≤ b] =

P [a < X < b] = P [a ≤ X ≤ b] =
∫ b
a
f(t)dt.

Dôkaz. Zrejme
∫∞
−∞ f(t)dt = limx→∞

∫ x
−∞ f(t)dt = limx→∞ F (x) = 1 pod©a vety 4.6. Rovnos´

P [X = a] = 0 plynie zo základných vlastností integrálu. Ak je F distribu£ná funkcia náhodnej
premennej X, tak platí P [a ≤ X < b] = P [X < b]−P [X < a] = F (b)−F (a) =

∫ b
−∞ f(t)dt−∫ a

−∞ f(t)dt =
∫ b
a
f(t)dt. Ke¤ºe P [X = a] = P [X = b] = 0, tak P [a ≤ X < b] = P [a < X <

b] = P [a < X ≤ b] = P [a ≤ X ≤ b].

Vz´ah medzi distribu£nou funkciou a hustotou: Nech X je spojitá náhodná pre-
menná s hustotou f , pri£om funkcia f je spojitá s výnimkou maximálne kone£ného po£tu
bodov. Potom distribu£ná funkcia náhodnej premennej X je spojitá na celom R a spojite
diferencovate©ná maximálne s výnimkou kone£ného po£tu bodov (tých, v ktorých je funkcia
f nespojitá).

Naopak, nech distribu£ná funkcia F náhodnej premennej X je spojitá na celom R a spojite
diferencovate©ná v²ade, maximálne s výnimkou kone£nej mnoºiny bodov H. Potom X je
spojitá náhodná premenná a akáko©vek nezáporná funkcia sp¨¬ajúca f(x) = dF (x)/dx pre
v²etky x /∈ H je hustotou X.

Veta 7.2 (Lineárna transformácia spojitej náhodnej premennej ). Nech X je spojitá náhodná
premenná s distribu£nou funkciou FX a hustotou fX . Nech a, b ∈ R, a 6= 0. Potom náhodná
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premenná Y = aX + b je tieº spojitá s distribu£nou funkciou FY (y) = FX((y − b)/a) pre
v²etky y ∈ R ak a > 0 a FY (y) = 1 − FX((y − b)/a) pre v²etky y ∈ R ak a < 0. Hustota
náhodnej premennej Y je daná predpisom

fY (y) =
1

|a|
fX

(
y − b
a

)
pre kaºdé y ∈ R.

Dôkaz. Nech a > 0 a y ∈ R. Platí FY (y) = P [aX + b < y] = P [X < (y − b)/a] = FX((y −
b)/a). Hustotu fY dostaneme derivovaním FY (v²ade tam, kde derivácia existuje). Podobne
odvodíme vz´ah pre FY a následne aj pre fY pre prípad a < 0.

Príklad 7.1. Nech X je spojitá náhodná premenná so spojitou hustotou fX . Ukáºme, ºe
náhodná premenná Y = X2 je tieº spojitá a nájdime jej hustotu fY .

Najprv pomocou distribu£nej funkcie FX náhodnej premennej X ur£ime distribu£nú fun-
kciu FY náhodnej premennej Y . Pre kaºdé y ≥ 0 platí: FY (y) = P [Y < y] = P [X2 < y] =
P [−√y < X <

√
y] = P [−√y ≤ X <

√
y] = FX(

√
y) − FX(−√y). Pre y < 0 zrejme platí:

FY (y) = P [Y < y] = P [X2 < y] = 0.
Ke¤ºe fX je spojitá, je FX spojite diferencovate©ná a teda z odvodeného vz´ahu medzi

FX a FY vidíme, ºe aj FY je spojite diferencovate©ná v²ade, s prípadnou výnimkou bodu 0.
To znamená, ºe Y je spojitá náhodná premenná s hustotou fY , ktorú získame derivovaním
FY v²ade tam, kde derivácia existuje a inde (t.j. v bode 0) zvolíme hustotu ©ubovo©ne. Teda
fY (y) = 0 pre y ≤ 0 a, ke¤ºe fX je deriváciou funkcie FX , pre y > 0 dostávame

fY (y) =
1

2
√
y

(fX(
√
y) + fX(−√y)) .

Vieme, ºe funkcia diskrétnej náhodnej premennej je opä´ diskrétna náhodná premenná
(Poznámka 5.1). Av²ak ak je X spojitá náhodná premenná, tak náhodná premenná Y = g(X)
môºe by´ ako spojitá, tak aj diskrétna (napr. ak g(x) = bxc, t.j. dolná celá £as´ x), ale aj
taká náhodná premenná, ktorá nie je ani spojitá, ani diskrétna!

7.2 �íselné charakteristiky spojitých náhodných premen-
ných

De�nícia 7.2. Nech X je spojitá náhodná premenná s hustotou f a nech existuje kone£ný
integrál

∫∞
−∞ |x|f(x)dx. Potom hovoríme, ºe náhodná premenná X má kone£nú strednú hod-

notu
E(X) =

∫ ∞
−∞

xf(x)dx.

Veta 7.3 (Linearita strednej hodnoty). Nech X a Y sú spojité náhodné premenné, ktoré majú
kone£nú strednú hodnotu. Nech a, b sú akéko©vek reálne £ísla také, ºe náhodná premenná
aX + bY je spojitá, alebo diskrétna. Potom aX + bY má kone£nú strednú hodnotu a platí

E(aX + bY ) = aE(X) + bE(Y ).

Veta 7.4 (Veta o transformácii). Nech X je spojitá náhodná premenná s hustotou f . Nech
g je po £astiach spojitá funkcia taká, ºe g(X) je spojitá, alebo diskrétna náhodná premenná.



Pravdepodobnos´ a ²tatistika, FMFI UK, predbeºná verzia 6.10.2017

Nech naviac existuje kone£ný integrál
∫∞
−∞ |g(x)|f(x)dx. Potom náhodná premenná g(X) má

kone£nú strednú hodnotu a platí:

E(g(X)) =

∫ ∞
−∞

g(x)f(x)dx.

Pre spojitú náhodnú premennúX de�nujeme disperziu rovnako ako pre diskrétnu náhodnú
premennú (de�nícia 5.3). Platia pre ¬u rovnaké vz´ahy ako vo vete 5.4.

Ak spojitá náh. premenná X má hustotu f a kone£nú strednú hodnotu, tak náhodná
premenná (X − E(X))2 je spojitá a platí

• D(X) =
∫∞
−∞(x− E(X))2f(x)dx,

• D(X) =
∫∞
−∞ x

2f(x)dx− (E(X))2,

ak sú príslu²né integrály kone£né.

7.3 Základné typy spojitých náhodných premenných

7.3.1 Rovnomerné rozdelenie

De�nícia 7.3 (Rovnomerné rozdelenie). Hovoríme, ºe náhodná premenná X má rovnomerné
rozdelenie na intervale (a, b), ak je X spojitá náhodná premenná s hustotou

f(x) =
1

b− a
pre x ∈ (a, b)

a f(x) = 0 pre x /∈ (a, b). Túto skuto£nos´ zna£íme X ∼ R(a, b). Ak X ∼ R(0, 1), tak
hovoríme, ºe X má ²tandardizované rovnomerné rozdelenie.

Veta 7.5. Nech X ∼ R(a, b). Potom pre distribu£nú funkciu F náhodnej premennej X platí

F (x) =


0 pre x ≤ a

(x− a)/(b− a) pre x ∈ (a, b)

1 pre x ≥ b.

Naviac, ak c, d ∈ R, c > 0, tak cX + d ∼ R(ca+ d, cb+ d). �peciálne, X−a
b−a ∼ R(0, 1).

Dôkaz. Dôkaz je jednoduché cvi£enie.

Veta 7.6. Nech X ∼ R(a, b). Potom E(X) = (a+ b)/2 a D(X) = (b− a)2/12.

Dôkaz. Dôkaz je jednoduché cvi£enie.

Rovnomerné rozdelenie sa pouºíva napríklad na generovanie realizácií náhodných premen-
ných z iných typov rozdelení pomocou vhodných transformácií.
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Obr. 7.1: Hustota pravdepodobnosti a distribu£ná funkcia náhodných premenných X1 ∼
Exp(1) (£ervená) a X2 ∼ Exp(2) (modrá).

7.3.2 Exponenciálne rozdelenie

De�nícia 7.4 (Exponenciálne rozdelenie). Hovoríme, ºe náhodná premenná X má exponen-
ciálne rozdelenie s parametrom λ > 0, ak je X spojitá náhodná premenná s hustotou

f(x) =
1

λ
e−x/λ pre x ≥ 0

a f(x) = 0 pre x < 0. Túto skuto£nos´ zna£íme X ∼ Exp(λ).

Veta 7.7. Nech X ∼ Exp(λ). Potom pre distrib. funkciu F náhodnej premennej X platí

F (x) =

{
0 pre x ≤ 0

1− e−x/λ pre x > 0.

Naviac, ak c > 0, tak cX ∼ Exp(cλ).

Dôkaz. Dôkaz je jednoduché cvi£enie.

Veta 7.8. Nech X ∼ Exp(λ). Potom E(X) = λ a D(X) = λ2.

Dôkaz. Najprv odvodíme strednú hodnotu a disperziu pre X1 ∼ Exp(1). Pouºijúc metódu
per-partes dostávame

E(X1) =

∫ ∞
−∞

xf(x)dx =

∫ ∞
0

xe−xdx =
[
−xe−x

]∞
0

+

∫ ∞
0

e−xdx = 1.

E(X2
1 ) =

∫ ∞
−∞

x2f(x)dx =

∫ ∞
0

x2e−xdx =
[
−x2e−x

]∞
0

+

∫ ∞
0

2xe−xdx = 2.

Takºe D(X1) = E(X2
1 )− (E(X1))2 = 2− 1 = 1.
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Ak Xλ ∼ Exp(λ) pre λ > 0, potom Xλ/λ ∼ Exp(1), pod©a vety 7.7. Z vlastností disperzie
a strednej hodnoty, s pouºitím vz´ahov E(X1) = 1 a D(X1) = 1 dostávame

E(Xλ) = λE(Xλ/λ) = λ a D(Xλ) = λ2D(Xλ/λ) = λ2.

Veta 7.9. Nech kladná náhodná premenná U má rozdelenie R(0, 1) a nech λ > 0. Potom
−λ ln(U) ∼ Exp(λ).

Dôkaz. Ukáºeme, ºe ak X = − ln(U), tak X ∼ Exp(1). Nech FX je distribu£ná funkcia X a
nech FU je distribu£ná funkcia U . Ke¤ºe FU(u) = u pre u ∈ [0, 1], máme pre kaºdé x > 0:
FX(x) = P [X < x] = P [− ln(U) < x] = P [U > e−x] = 1− FU(e−x) = 1− e−x. Pouºijúc vetu
7.7, môºeme dôkaz uzavrie´.

Exponenciálne rozdelenie sa pouºíva v teórii spo©ahlivosti na modelovanie doby bezporu-
chovej £innosti zariadení, v teórii hromadnej obsluhy na modelovanie doby medzi príchodmi
zákazníkov do systému obsluhy, v neurofyziológii na modelovanie doby medzi príchodmi im-
pulzov na neurónovú bunku a podobne.

7.3.3 Paretovo rozdelenie

De�nícia 7.5 (Paretovo rozdelenie). Hovoríme, ºe náhodná premenná X má Paretovo roz-
delenie s parametrami α, k > 0, ak je X spojitá náhodná premenná s hustotou

f(x) =
α

k

(
k

x

)α+1

pre x ≥ k

a f(x) = 0 pre x < k. Túto skuto£nos´ zna£íme X ∼ Par(α, k).

Veta 7.10. Nech X ∼ Par(α, k). Potom pre distribu£nú funkciu F náhodnej premennej X
platí

F (x) =

{
0 pre x ≤ k

1− (k/x)α pre x > k.

Dôkaz. Dôkaz je jednoduché cvi£enie.

Veta 7.11. Nech X ∼ Par(α, k), pri£om α > 1. Potom E(X) = α·k
α−1

. (Pre α ∈ (0, 1] má
náhodná premenná s rozdelením Par(α, k) nekone£nú strednú hodnotu.)

Dôkaz. Dôkaz je jednoduché cvi£enie.

Paretovo rozdelenie sa niekedy pouºíva na modelovanie doby, za ktorú vykoná CPU ur£itý
proces, na modelovanie ve©kosti súborov na internetových serveroch a podobne.
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Obr. 7.2: Hustota pravdepodobnosti a distribu£ná funkcia náhodných premenných X1 ∼
N(0, 1) (£ervená) a X2 ∼ N(0, 4) (modrá).

7.3.4 Normálne rozdelenie

De�nícia 7.6 (Normálne rozdelenie). Nech µ ∈ R a σ > 0. Hovoríme, ºe náhodná premenná
X má normálne rozdelenie s parametrami µ a σ2, ak je X spojitá náhodná premenná s
hustotou

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2

pre v²etky x ∈ R. Túto skuto£nos´ zna£íme X ∼ N(µ, σ2). Ak X ∼ N(0, 1), tak hovoríme, ºe
X má ²tandardizované (alebo tieº normalizované) normálne rozdelenie. Distribu£nú funkciu
náhodnej premennej X s rozdelením N(0, 1) budeme ozna£ova´ symbolom Φ.

Poznámka 7.1. Pre hustotu f normálneho rozdelenia je moºné ukáza´ platnos´
∫∞
−∞ f(x)dx =

1 pomocou takzvaného Poissonovho integrálu∫ ∞
−∞

e−x
2

dx =
√
π.

Pomocou tohoto výsledku a základných metód integrovania je moºné ukáza´, ºe pre akéko©vek
párne m ≥ 2 platí ∫ ∞

−∞
xme−x

2/2dx =
√

2π(m− 1)!!.

Pre nepárne m je funkcia xme−x
2/2 nepárna, preto∫ ∞

−∞
xme−x

2/2dx = 0.

Pomocou predchádzajúcich vz´ahov ur£íme strednú hodnotu a disperziu normálneho rozdele-
nia (pozri vetu 7.13).
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Normálne rozdelenie má ústredné postavenie v teoretickej aj aplikovanej teórii pravdepo-
dobnosti a matematickej ²tatistike (budeme sa s ním £asto stretáva´ aº do konca predná²ky).

Distribu£nú funkciu normálneho rozdelenia s akýmiko©vek parametrami vieme jednoducho
vyjadri´ pomocou Φ - distribu£nej funkcie rozdelenia N(0, 1), ako ukazuje nasledovná veta.
Samotná Φ je ²peciálna funkcia, ktorá je �príjemná analyticky� (je hladká, rastúca, symetrická
v zmysle Φ(−x) = 1 − Φ(x)). Hodnoty Φ(x) je moºné získa´ z tabuliek, alebo vypo£íta´
numericky, napríklad ako £iasto£né sú£ty vhodných nekone£ných radov. Viac podrobností
moºno nájs´ na stránkach www.mathworld.com pod heslom �Normal Distribution Function�.

Veta 7.12 (Lineárna transformácia a ²tandardizácia normálneho rozdelenia). Nech X ∼
N(µ, σ2) a nech a, b ∈ R, a 6= 0. Potom aX + b ∼ N(aµ+ b, a2σ2). �peciálne

X − µ
σ

∼ N(0, 1).

Ak je F distribu£ná funkcia náhodnej premennej X, tak

F (x) = Φ

(
x− µ
σ

)
pre kaºdé x ∈ R.

Dôkaz. Priamo z vety 7.2 dostávame, ºe hustota fY náhodnej premennej Y = aX + b je v
kaºdom y ∈ R:

fY (y) =
1√

2π|a|σ
exp

(
−(y − b− aµ)2

2a2σ2
.

)
Z de�nície normálneho rozdelenia teda máme Y ∼ N(aµ + b, a2σ2). Druhú £as´ tvrdenia
dostaneme vo©bou a = 1/σ a b = −µ/σ a ke¤ºe (X − µ)/σ ∼ N(0, 1), tak

F (x) = P [X < x] = P [(X − µ)/σ < (x− µ)/σ] = Φ((x− µ)/σ).

Tým sme ukázali aj poslednú £as´ tvrdenia.

Príklad 7.2. Z dlhodobých ²tatistík o konkrétnom uºívate©ovi vieme, ºe pri vzdialenom pri-
hlásení sa na server má po£et sektorov na disku, na ktoré zapisuje alebo ktoré pre£íta, pribliºne
normálne rozdelenie so strednou hodnotou 500 a disperziou 152. Monitorovací program nám
oznámil, ºe pri poslednom prihlásení do²lo k zápisu alebo £ítaniu na 535 sektoroch. Aká je
pravdepodobnos´, ºe do²lo k zneuºitiu tohto konta?

H©adajme pravdepodobnos´ P [X ≥ 535], kde náhodná premenná X ozna£uje po£et sek-
torov na disku.

P [X ≥ 535] = P

[
U ≥ 535− 500

15

]
= 1− Φ(35/15) ≈ 0.01,

kde U je náhodná premenná so ²tandardizovaným normálnym rozdelením.

Veta 7.13. Nech X ∼ N(µ, σ2). Potom E(X) = µ a D(X) = σ2.

Dôkaz. Najprv ur£íme E(X0,1) a D(X0,1) pre náhodnú premennú X0,1 ∼ N(0, 1). Pod©a
výsledkov uvedených v poznámke 7.1 máme

E(X0,1) =
1√
2π

∫ ∞
−∞

xe−x
2/2dx = 0,
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E(X2
0,1) =

1√
2π

∫ ∞
−∞

x2e−x
2/2dx = 1.

Preto D(X0,1) = E(X2
0,1)− (E(X0,1))2 = 1.

Ak X ∼ N(µ, σ2), tak (X − µ)/σ ∼ N(0, 1), pod©a vety 7.12. Preto

0 = E((X − µ)/σ) = (E(X)− µ)/σ,

1 = D((X − µ)/σ) = D(X)/σ2.

Z týchto rovností dostávame poºadované vz´ahy pre E(X) a D(X).

Príklad 7.3. (Detekcia signálu.) Prená²ame binárny signál S, ktorý môºe by´ bu¤ -1 alebo 1.
Komunika£ný kanál tento signál za²umí aditívnym normálnym ²umom X s nulovou strednou
hodnotou a disperziou σ2. Prijíma£ usúdi, ºe bol prenesený signál +1 (alebo -1), ak sa do¬ho
dostane hodnota vä£²ia ako 0 (alebo men²ia ako 0). Aká je pravdepodobnos´ chyby?

Rie²enie: K chybe dochádza, akje S = −1 a ²um je aspo¬ 1, vtedy S + X = X − 1 ≥ 0
alebo ak S = 1 a ²um je men²í ako -1, vtedy S + X < 0. Pravdepodobnos´ chyby v prvom
prípade je

P (X ≥ 1) = 1− P (X < 1) = 1− P
(
X − µ
σ

<
1− µ
σ

)
= 1− Φ

(
1− µ
σ

)
= 1− Φ

(
1

σ

)
.

V druhom prípade je pravdepodobnos´ v¤aka symetrii rovnaká.

Praktický význam normálneho rozdelenia ukazujú takzvané centrálne limitné vety, ktoré
hovoria, ºe za istých podmienok postupnosti sú£tov náhodných premenných konvergujú k
normálnemu rozdeleniu.

Veta 7.14 (Integrálna Moivrova-Laplaceova veta). Nech p ∈ (0, 1) a nech X1, X2, . . . sú
náhodné premenné, Xn ∼ Bin(n, p) pre kaºdé n ∈ N. Nech x ∈ R. Potom

lim
n→∞

P

[
Xn − np√
np(1− p)

< x

]
= Φ(x).

Predchádzajúca veta sa pouºíva na aproximáciu pravdepodobností týkajúcich sa bino-
mického rozdelenia v tom zmysle, ºe rozdelenie Bin(n, p) je moºné aproximova´ rozdelením
N(np, np(1− p)) v prípade, ºe n je �ve©ké� a p nie je �blízko� nuly ani jednotky.

7.4 Cvi£enia

Úloha 7.1. Náhodná premenná X má distribu£nú funkciu tvaru

F (x) =


0 ak x ≤ 0

cx2 ak 0 < x ≤ 1

1 ak x > 1

Ur£te:
a) kon²tantu c tak, aby F (x) bola distribu£nou funkciou,
b) hustotu pravdepodobnosti náhodnej premennej X,
c) pravdepodobnos´ P [X ∈ (1/3, 1/2)].
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Úloha 7.2. Pre distribu£nú funkciu F náhodnej premennej X platí: F (x) = x2/2 + x+ 1/2
ak x ∈ (−1, 0) a F (x) = −x2/2 + x + 1/2 ak x ∈ (0, 1). Nájdite hustotu, strednú hodnotu a
disperziu náhodnej premennej X.

Úloha 7.3. Náhodná premenná má hustotu

f(x) =


cx ak 0 ≤ x < 1

2− x ak 1 ≤ x ≤ 2

0 ak x /∈ [0, 2]

Ur£te:
a) kon²tantu c tak, aby f(x) bola hustotou pravdepodobnosti,
b) distribu£nú funkciu F (x),
c) pravdepodobnos´ P [1 < X < 2].

Úloha 7.4. Nech a, b ∈ R, pri£om a > 1, b > 0. Náhodná premenná X má distribu£nú funkciu
F (x) = 0 pre x ≤ b a F (x) = 1 − (b/x)a pre x > b. Ur£te hodnoty a, b. Nájdite hustotu a
strednú hodnotu náhodnej premennej X.

Úloha 7.5. Nech µ,∆ ∈ R, kde ∆ > 0 a nech spojitá náhodná premenná X má hustotu
f(x) = (∆− |x−µ|)/∆2 pre x ∈ [µ−∆, µ+ ∆] a f(x) = 0 inak. Nájdite distribu£nú funkciu,
strednú hodnotu a disperziu X.

Úloha 7.6. Bod B volíme rovnomerne náhodne na kruºnici so stredom v (0, 0) a polomerom
1. (T.j. B volíme na hranici kruhu so stredom v (0, 0) a polomerom 1 a to tak, ºe uhol ur£ený
bodmi (1, 0), (0, 0), B má rovnomerné rozdelenie na intervale [0, 2π].) Nech S znamená obsah a
trojuholníka ur£eného bodmi (−1, 0), (1, 0), B. Nájdite distribu£nú funkciu, hustotu a strednú
hodnotu náhodnej premennej S.

Úloha 7.7. Bod B volíme rovnomerne náhodne na jednotkovej kruºnici v rovine. Nech L
znamená vzdialenos´ bodu B od bodu (1, 0). Nájdite distribu£nú funkciu, hustotu a strednú
hodnotu náhodnej premennej L.

Úloha 7.8. Nech X ∼ Exp(λ), kde λ > 0. a) Ukáºte, ºe náhodná premenná bXc (dolná celá
£as´ X) má geometrické rozdelenie. b)[dú] Nájdite distribu£nú funkciu, hustotu a strednú
hodnotu náhodnej premennej Y = e−X .

Úloha 7.9. Nech náhodná premenná X má normalizované normálne rozdelenie. Nájdite hus-
totu náhodných premenných
a) eX ;
b) X2;
c) |X|;
d)
√
|X|.

Úloha 7.10. Vo ²tvorci náhodne rovnomerne nezávisle vygenerujeme 4000 bodov. Pomocou
aproximácie binomického rozdelenia normálnym odhadnite pravdepodobnos´, ºe menej ako
3000 z týchto bodov padne do kruhu, ktorý je vpísaný danému ²tvorcu. Výsledok zapí²te
pomocou Φ - distribu£nej funkcie rozdelenia N(0, 1).

Úloha 7.11. Ukáºte, ºe exponenciálne rozdelenie �nemá pamä´�, t.j. dokáºte, ºe ak X ∼
Exp(λ) a 0 < a < b, potom P ([X > b]|[X > a]) = P [X > b− a].
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Úloha 7.12. Rozmer vyrábanej sú£iastky má pribliºne normálne rozdelenie so strednou hod-
notou µ = 1000 mm. Výrobok povaºujeme za dobrý, ak sa jeho rozmer nelí²i od 1000 mm o
viac ako 1 mm. Aká musí by´ disperzia rozmeru sú£iastok, aby pomer nepodarkov neprekra-
£oval 1 percento? Výsledok vyjadrite pomocou kvantilovej funkcie Φ−1 rozdelenia N(0, 1).



Kapitola 8

Náhodné vektory

V pravdepodobnostných modeloch nás £asto zaujíma viac náhodných premenných sú£asne.
Tieto náhodné premenné pochádzajú z rovnakého pravdepodobnostného priestoru a to, aké
hodnoty nadobúda jedna z nich, je £asto ovplyvnené hodnotami ostatných. Aby sme mohli s
takýmito skupinami náhodných premenných pohodlne pracova´, zavedieme pojem náhodného
vektora.

8.1 V²eobecné náhodné vektory

De�nícia 8.1 (Náhodný vektor). Nech X1, . . . , Xm sú náhodné premenné na spolo£nom prav-
depodobnostnom priestore. Potom X = (X1, . . . , Xm)T nazývame m-rozmerným náhodným
vektorom.

Príklad 8.1. Hádºeme dvomi kockami. De�nujme nasledujúce náhodné premenné:
U : maximum padnutých £ísel
V : sú£et padnutých £ísel
Rozdelenie náhodného vektora (U, V )′ potom môºeme popísa´ nasledovnou tabu©kou:

U/V 2 3 4 5 6 7 8 9 10 11 12
1 1/36
2 2/36 1/36
3 2/36 2/36 1/36
4 2/36 2/36 2/36 1/36
5 2/36 2/36 2/36 2/36 1/36
6 2/36 2/36 2/36 2/36 2/36 1/36

Riadkové, resp. st¨pcové sú£ty v tejto tabu©ke zodpovedajú marginálnym pravdepodob-
nostiam pre náhodnú premennú U, resp. V.

De�nícia 8.2 (Distribu£ná funkcia náhodného vektora). Distribu£nou funkciou náhodného
vektora X = (X1, . . . , Xm)T nazývame funkciu F : Rm → R, ktorá je de�novaná

F (x) = P [X1 < x1, . . . , Xm < xm] pre v²etky x = (x1, . . . , xm)T ∈ Rm

Je moºné ukáza´, ºe distribu£ná funkcia F m-rozmerného náhodného vektora X jedno-
zna£ne ur£uje pravdepodobnos´ P [X ∈ B] pre akúko©vek m-rozmernú borelovskú mnoºinu
B.

53
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Veta 8.1 (Základné vlastnosti distribu£nej funkcie náhodného vektora). Nech F je distribu£ná
funkcia m-rozmerného náhodného vektora X. Potom platí:

1. 0 ≤ F (x) ≤ 1 pre v²etky x ∈ Rm

2. F je neklesajúca a spojitá z©ava v kaºdej premennej

3. limx1,...,xm→∞ F (x1, . . . , xm) = 1

4. limxi→−∞ F (x1, . . . , xm) = 0 pre kaºdé i = 1, ...,m a x1, ..., xi−1, xi+1, ..., xm ∈ R

Dôkaz. Tieto vlastnosti sa dokáºu analogicky ako základné vlastnosti distribu£nej funkcie
jednorozmernej náhodnej premennej.

Veta 8.2 (Existencia náh. vektora s danou distribu£nou funkciou). Nech funkcia F : Rm → R
sp¨¬a v²etky ²tyri vlastnosti z vety 8.1. Potom existuje pravdepodobnostný priestor a náhodné
premenné X1, . . . Xm na tomto pravdepodobnostnom priestore také, ºe F je distribu£nou
funkciou náhodného vektora X = (X1, . . . , Xm)T .

Distribu£ná funkcia náhodného vektora (X1, . . . , Xm)T jednozna£ne ur£uje distribu£né
funkcie náhodných premenných X1, . . . , Xm (marginálne distribu£né funkcie), ako ukazuje
nasledujúca veta. Distribu£né funkcie náhodných premenných X1, . . . , Xm v²ak nemusia jed-
nozna£ne ur£ova´ distribu£nú funkciu náhodného vektora (X1, . . . , Xm)T .

Veta 8.3 (Marginálna distribu£ná funkcia). Nech FX je distribu£ná funkcia náhodného vek-
tora X = (X1, . . . , Xm)T a nech 1 ≤ i1 < ... < ik ≤ m. Potom pre distribu£nú funkciu FY

náhodného vektora Y = (Xi1 , . . . , Xik)
T platí

FY(xi1 , ..., xik) = limFX(x1, ..., xm)

kde limitu berieme pre xi →∞ pre v²etky i /∈ {i1, ..., ik}.

Dôkaz. Dôkaz je jednoduché cvi£enie.

8.1.1 Diskrétne náhodné vektory

De�nícia 8.3 (Diskrétny náhodný vektor). Náhodný vektor X = (X1, . . . , Xm)T nazývame
diskrétny, ak je spo£ítate©ný jeho obor hodnôt

X(Ω) = {(x1, ..., xm) ∈ Rm : xi ∈ Xi(Ω),∀i = 1, ...,m}.

De�nícia 8.4 (Stredná hodnota diskrétneho náhodného vektora). Nech X = (X1, . . . , Xm)T

je diskrétny náhodný vektor a nech existuje stredná hodnota kaºdej (diskrétnej) náhodnej
premennej Xi pre i = 1, ...,m. Potom povieme, ºe náhodný vektor X má strednú hodnotu

E(X) = (E(X1), . . . , E(Xm))T

Veta 8.4 (Linearita strednej hodnoty náhodného vektora). Nech X1,X2 sú m-rozmerné dis-
krétne náhodné vektory a nech existuje kone£ná stredná hodnota (kaºdej komponenty) ná-
hodných vektorov X1,X2. Nech A,B sú matice typu k × m. Potom Y = AX1 + BX2 je
k-rozmerný diskrétny náhodný vektor, ktorý má kone£nú strednú hodnotu danú vz´ahom

E(Y) = AE(X1) +BE(X2)
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Dôkaz. Nech Xi = (Xi,1, ..., Xi,m)T pre i = 1, 2. Potom j-tu komponentu Yj vektora Y mô-
ºeme pre kaºdé j ∈ {1, ..., k} zapísa´ nasledovne:

Yj = Aj,1X1,1 + ...+ Aj,mX1,m +Bj,1X2,1 + ...+Bj,mX2,m

Z linearity strednej hodnoty diskrétnych náhodných premenných (Veta 5.2) dostávame

E(Yj) = Aj,1E(X1,1) + ...+ Aj,mE(X1,m) +Bj,1E(X2,1) + ...+Bj,mE(X2,m)

Maticový zápis platnosti predchádzajúcej rovnosti pre kaºdé j = 1, ..., k je práve E(Y) =
AE(X1) +BE(X2).

Veta 8.5 (Stredná hodnota funkcie diskrétneho náhodného vektora). Nech m-rozmerný ná-
hodný vektorX nadobúda vektory (xi)i∈I s nenulovou pravdepodobnos´ou a nech g : Rm → R
je spojitá funkcia. Potom stredná hodnota diskrétnej náhodnej premennej g(X) existuje a je
kone£ná vtedy a len vtedy, ke¤ existuje a je kone£ná suma

∑
i∈I g(xi)P [X = xi]. V takomto

prípade platí:
E(g(X)) =

∑
i∈I

g(xi)P [X = xi]

8.1.2 Spojité náhodné vektory

De�nícia 8.5. NechX = (X1, . . . , Xm)T je náhodný vektor s distribu£nou funkciou FX. Nech
existuje integrovate©ná funkcia f : Rm → [0,∞) taká, ºe

FX(x1, ..., xm) =

∫ x1

−∞
. . .

∫ xm

−∞
f(t1, ..., tm)dt1...dtm pre v²etky x1, ..., xm ∈ R

Potom hovoríme, ºe X je spojitý náhodný vektor a f je hustota X.

Veta 8.6. Nech X je m-rozmerný spojitý náhodný vektor s hustotou f . Nech B ⊆ Rm je
borelovská mnoºina. Potom

P [X ∈ B] =

∫
. . .

∫
B

f(t1, ..., tm)dt1...dtm

Príklad 8.2. Nech náhodný vektor X = (X1, X2) je daný hustotou

f(x1, x2) =

{
1 ak (x1, x2) ∈ [0, 1]× [0, 1]

0 inak.

Nájdite pravdepodobnos´, ºe X nadobúda hodnoty zo ²tvorca [0, 1/2]2.

P [X ∈ [0, 1/2]× [0, 1/2]] =

∫ 1/2

0

∫ 1/2

0

f(x1, x2)dx1dx2 =

∫ 1/2

0

∫ 1/2

0

1dx1dx2 =
1

2

1

2
=

1

4
.

Veta 8.7. Nech X = (X1, ..., Xm)T je m-rozmerný spojitý náhodný vektor s hustotou f .
Potom je pre kaºdé i = 1, ...,m náhodná premenná Xi spojitá s hustotou danou v bode
xi ∈ R predpisom

fi(xi) =

∫ ∞
−∞

. . .

∫ ∞
−∞

f(x1, ..., xm)dx1 . . . dxi−1dxi+1 . . . dxm
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De�nícia 8.6 (Stredná hodnota spojitého náhodného vektora). Nech X = (X1, . . . , Xm)T je
spojitý náhodný vektor a nech existuje stredná hodnota kaºdej (spojitej) náhodnej premennej
Xi pre i = 1, ...,m. Potom povieme, ºe náhodný vektor X má strednú hodnotu

E(X) = (E(X1), . . . , E(Xm))T

Veta 8.8 (Linearita strednej hodnoty spojitého náhodného vektora). Nech X1,X2 sú m-
rozmerné spojité náhodné vektory a nech existuje kone£ná stredná hodnota (kaºdej kompo-
nenty) náhodných vektorov X1,X2. Nech A,B sú matice typu k×m, pri£om Y = AX1 +BX2

je spojitý alebo diskrétny náhodný vektor. Potom Y má kone£nú strednú hodnotu danú vz´a-
hom

E(Y) = AE(X1) +BE(X2)

Veta 8.9 (Stredná hodnota funkcie spojitého náhodného vektora). Nech m-rozmerný spojitý
náhodný vektor X má hustotu f . Nech g : Rm → R je spojitá funkcia taká, ºe g(X) je spojitá
náh. premenná. Potom stredná hodnota náhodnej premennej g(X) existuje a je kone£ná vtedy
a len vtedy, ke¤ existuje a je kone£ný integrál

∫∞
−∞ . . .

∫∞
−∞ g(x1, ..., xm)f(x1, ..., xm)dx1...dxm.

V takomto prípade platí:

E(g(X)) =

∫ ∞
−∞

. . .

∫ ∞
−∞

g(x1, ..., xm)f(x1, ..., xm)dx1...dxm

8.2 Nezávislos´ náhodných premenných

De�nícia 8.7. Budeme hovori´, ºe náhodné premenné X1, . . . , Xn sú zdruºene nezávislé, ak
pre v²etky x1, . . . , xn ∈ R platí

P [X1 < x1, . . . , Xn < xn] = P [X1 < x1] . . . P [Xn < xn]

alebo, ekvivalentne, ak
FX(x1, . . . , xn) = FX1(x1) . . . FXn(xn)

kde FX je distribu£ná funkcia náhodného vektora X = (X1, . . . , Xn)T a FXi je distribu£ná
funkcia náhodnej premennej Xi pre i = 1, . . . , n.

Veta 8.10. Náhodné premenné X1, . . . , Xn sú zdruºene nezávislé vtedy a len vtedy, ke¤ pre
akýko©vek výber mnoºín B1, . . . , Bn ∈ B platí

P [X1 ∈ B1, . . . , Xn ∈ Bn] = P [X1 ∈ B1] . . . P [Xn ∈ Bn]

Veta 8.11 (Nezávislos´ diskrétnych náhodných premenných). Nech X1, . . . , Xn sú diskrétne
náhodné premenné. Potom X1, . . . , Xn sú nezávislé vtedy a len vtedy, ke¤ pre akéko©vek
reálne £ísla x1, . . . , xn platí

P [X1 = x1, . . . , Xn = xn] = P [X1 = x1] . . . P [Xn = xn]

Dôkaz. Dôkaz je jednoduché cvi£enie (pozri rie²enie úlohy 8.6, £as´ b).
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Veta 8.12 (Nezávislos´ spojitých náh. premenných). Nech náhodné premenné X1, . . . , Xn

sú spojité s hustotami f1, ..., fn. Ak sú X1, . . . , Xn nezávislé, tak funkcia f : Rn → [0,∞)
de�novaná

f(x1, ..., xn) = f1(x1)...fn(xn) (8.1)

je hustotou náhodného vektora X = (X1, ..., Xn)T . Naopak, ak pre nejakú hustotu f náhod-
ného vektora X a hustoty f1, ..., fn náhodných premenných X1, . . . , Xn platí (8.1), potom sú
náhodné premenné X1, . . . , Xn nezávislé.

Príklad 8.3. Komunika£ný kanál sa skladá zo série uzlov, pri£om vºdy i-ty uzol predáva
jednobitovú informáciu na vstup i+1-vému uzlu. Na i-tom uzle dochádza s pravdepodobnos´ou
pi k chybe, ktorá sa prejaví tým, ºe na výstupe tohoto uzla bude opa£ný bit ako na jeho
vstupe. Naviac, chyby na jednotlivých uzloch sa vyskytujú navzájom nezávisle. Napí²te vzorec
udávajúci pravdepodobnos´, ºe bit na vstupe prvého uzla bude rovnaký ako bit na výstupe
n-tého uzla. (Porovnajte s príkladom 3.6.)

Rie²enie.1 Pre i = 1, ..., n nech Xi je náhodná premenná, ktorá nadobudne hodnotu −1
ak na uzle i dôjde k chybe a hodnotu 1, ak na uzle i nedôjde k chybe, £iºe P [Xi = −1] = pi,
P [Xi = 1] = 1 − pi a E(Xi) = P [Xi = 1] − P [Xi = −1] = 1 − 2pi. V²imnime si tieº, ºe
na²a h©adaná pravdepodobnos´ je P [X = 1], kde X =

∏n
i=1 Xi, pri£om X je tieº náhodná

premenná nadobúdajúca len hodnoty −1 a 1, takºe E(X) = P [X = 1] − P [X = −1], z
£oho dostávame P [X = 1] = E(X)/2 + 1/2. S vyuºitím nezávislosti náhodných premenných
X1, ..., Xn a vety 8.13 teda dostávame

P

[
n∏
i=1

Xi = 1

]
=
E (
∏n

i=1Xi)

2
+

1

2
=

∏n
i=1E (Xi)

2
+

1

2
=

∏n
i=1(1− 2pi)

2
+

1

2
.

Veta 8.13 (Stredná hodnota sú£inu nezávislých náh. premenných). NechX1 aX2 sú nezávislé,
obe diskrétne alebo obe spojité náhodné premenné s kone£nou strednou hodnotou. Potom
X1X2 je diskrétna, resp. spojitá náhodná premenná s kone£nou strednou hodnotou a platí

E(X1X2) = E(X1)E(X2)

Dôkaz. Dôkaz urobíme len pre diskrétne náhodné premenné X1, X2. Pre jednoduchos´ ozna-
£íme ako Ai obor hodnôt Xi, t.j. Ai = Xi(Ω) pre i = 1, 2. Náhodná premenná Z = X1X2

je zrejme diskrétna, lebo jej obor hodnôt Z(Ω) je spo£ítate©ná mnoºina sú£inov z = x1x2,
kde x1 ∈ X1(Ω) a x2 ∈ X2(Ω). Uvedomíme si, ºe pre kaºdé z ∈ Z(Ω) máme P [Z = z] =∑
P [X1 = x1, X2 = x2], kde sú£et berieme pre v²etky dvojice x1 ∈ X1(Ω) a x2 ∈ X2(Ω), pre

ktoré platí x1x2 = z. Naviac, z nezávislosti X1 a X2 vieme, ºe P [X1 = x1, X2 = x2] = P [X1 =
x1]P [X2 = x2]; pozri úlohu 8.6, £as´ b. Máme teda:

E(X1X2) = E(Z) =
∑

z∈Z(Ω)

zP [Z = z] =
∑
x1∈A1

∑
x2∈A2

x1x2P [X1 = x1, X2 = x2] =

∑
x1∈A1

∑
x2∈A2

x1x2P [X1 = x1]P [X2 = x2] =
∑
x1∈A1

x1P [X1 = x1]
∑
x2∈A2

x2P [X2 = x2] =

E(X1)E(X2).

1Toto elegantné rie²enie navrhol ²tudent FMFI UK Stanislav Taká£.
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Z predchádzajúcej vety okamºite plynie, ºe pre n-ticu X1, ..., Xn nezávislých náhodných
premenných, ktoré majú kone£nú strednú hodnotu, platí E(

∏n
i=1Xi) =

∏n
i=1E(Xi). Toto

tvrdenie má zna£ný teoretický význam, av²ak je ho moºné vyuºi´ aj na rie²enie príkladov,
ako ukáºeme v ¤al²om.

Veta 8.14 (Disperzia sú£tu nezávislých náhodných premenných). Nech X1 a X2 sú nezávislé,
obe diskrétne alebo obe spojité náhodné premenné s kone£nou disperziou. Potom X1 +X2 je
diskrétna, resp. spojitá náhodná premenná s kone£nou disperziou a platí

D(X1 +X2) = D(X1) +D(X2)

Dôkaz. Z de�nície disperzie, linearity strednej hodnoty a vety 8.13 máme: D(X1 + X2) =
E((X1+X2)2)−(E(X1+X2))2 = E(X2

1 )+2E(X1X2)+E(X2
2 )−(E(X1))2−2(E(X1)E(X2))−

(E(X2))2 = (E(X2
1 ) − (E(X1))2) + (E(X2

2 ) − (E(X2))2) + 2(E(X1X2) − E(X1)E(X2)) =
D(X1) +D(X2).

Príklad 8.4. �as výpo£tu T znáhodneného algoritmu má distribu£nú funkciu F (t) = tδ,
kde t ∈ (0, 1) a δ je kladná kon²tanta. Nech Y je (náhodná) doba výpo£tu tohoto algoritmu
na dvoch nezávislých procesoroch, t.j. Y = min{T1, T2}, kde T1, T2 sú nezávislé náhodné
premenné s distribu£nou funkciou F . Pre náhodnú premennú Y ur£te distribu£nú funkciu,
hustotu a strednú hodnotu.

Rie²enie: Pre distribu£nú funkciu FY náhodnej premennej Y a pre akéko©vek kladné y ∈
(0, 1) platí

FY (y) = P [min{T1, T2} < y] = P ([T1 < y] ∪ [T2 < y]) = 1− P [T1 ≥ y, T2 ≥ y] =

1− P [T1 ≥ y]P [T2 ≥ y] = 1− (1− F (y))2 = 1− (1− tδ)2.

Hustotu dostaneme derivovaním: fY (y) = 2δ(1 − tδ)tδ−1, opä´ pre y ∈ (0, 1); inde je samoz-
rejme fY (y) = 0. Nakoniec dostávame

E(Y ) =

∫ 1

0

tfY (t)dt = 2δ

∫ 1

0

tδ − t2δdt = 2δ((δ + 1)−1 − (2δ + 1)−1).

Jeden z moºných zápisov je

E(Y ) =
2δ2

(2δ + 1)(δ + 1)
.

De�nícia 8.8 (Kovariancia náhodných premenných). Nech X1, X2 sú náhodné premenné s
kone£nou disperziou, obe diskrétne alebo obe spojité. Kovarianciou náhodných premenných
X1, X2 nazývame hodnotu

cov(X1, X2) = E(X1X2)− E(X1)E(X2)

Ak X1, X2 sú premenné s kone£nou disperziou, tak je moºné dokáza´, ºe aj náhodná
premenná X1X2 má kone£nú strednú hodnotu.

Výpo£et kovariancie v tvare sumy : Nech 2-rozmerný náhodný vektor X = (X1, X2)T nado-
búda hodnoty (xi)i∈I s nenulovou pravdepodobnos´ou. Potom pod©a vety o strednej hodnote
funkcie náhodného vektora môºeme stredné hodnoty a kovarianciu X1, X2 vypo£íta´ pod©a
vz´ahov
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• E(X1) =
∑

i∈I(xi)1P [X = xi]

• E(X2) =
∑

i∈I(xi)2P [X = xi]

• E(X1X2) =
∑

i∈I(xi)1(xi)2P [X = xi]

kde (xi)1 a (xi)2 sú komponenty vektora xi.
Výpo£et kovariancie v tvare integrálu: Majme spojitý 2-rozmerný náhodný vektor X =

(X1, X2)T s hustotou f . Potom pod©a vety o strednej hodnote funkcie spojitého náhodného
vektora môºeme stredné hodnoty a kovarianciu X1, X2 vypo£íta´ pod©a vz´ahov

• E(Xi) =
∫∞
−∞

∫∞
−∞ xif(x1, x2)dx1dx2 pre i = 1, 2

• E(X1X2) =
∫∞
−∞

∫∞
−∞ x1x2f(x1, x2)dx1dx2

Veta 8.15 (Základné vlastnosti kovariancie). Nech X1, X2 sú náhodné premenné s kone£nou
disperziou, obe diskrétne alebo obe spojité. Potom platí

1. cov(X1, X2) = cov(X2, X1)

2. cov(Xi, Xi) = D(Xi) pre i = 1, 2

3. cov(X1, X2) = E((X1 − E(X1))(X2 − E(X2)))

4. cov(aX1 + b, cX2 + d) = a.c.cov(X1, X2) pre kaºdé a, b, c, d ∈ R

5. (cov(X1, X2))2 ≤ D(X1)D(X2)

6. cov(X1, X2) = 0 ak sú X1, X2 nezávislé

Dôkaz. Prvé ²tyri rovnosti plynú priamo z de�nícií a z linearity strednej hodnoty. Dokáºeme
tvrdenie 5). Pripome¬me, ºe pod©a Cauchyho nerovnosti platí pre akéko©vek reálne £ísla ai, bi,
i = 1, ..., n: (

∑n
i=1 aibi)

2 ≤
∑n

i=1 a
2
i

∑n
i=1 b

2
i .

Nech náhodný vektor X = (X1, X2)T nadobúda vektory (xi)i∈I s nenulovou pravdepodob-
nos´ou. Pouºijúc vetu o strednej hodnote transformácie náh. vektora a Cauchyho nerovnos´
máme

(cov(X1, X2))2 =

(∑
i∈I

((xi)1 − E(X1))((xi)2 − E(X2))P [X = xi]

)2

≤∑
i∈I

((xi)1 − E(X1))2P [X = xi]
∑
i∈I

((xi)2 − E(X2))2P [X = xi] = D(X1)D(X2)

Posledné tvrdenie plynie priamo z de�nície kovariancie a vety 8.13.

De�nícia 8.9 (Kovarian£ná matica náhodného vektora). Nech X = (X1, . . . , Xm)T je ná-
hodný vektor a nech existuje kone£ná disperzia kaºdej náhodnej premennejXi pre i = 1, ...,m.
Potom povieme, ºe náhodný vektor X má kone£nú kovarian£nú maticu Cov(X), pri£om i, j-tu
komponentu tejto matice de�nujeme

(Cov(X))i,j = cov(Xi, Xj)
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Veta 8.16 (Kovarian£ná matica lineárnej transformácie náhodného vektora). Nech X =
(X1, . . . , Xm)T je diskrétny náhodný vektor s kone£nou kovarian£nou maticou Cov(X), nech
A je matica typu k ×m a nech b ∈ Rk. Potom Y = AX + b je diskrétny náhodný vektor s
kone£nou kovarian£nou maticou a platí

Cov(Y) = ACov(X)AT

Dôkaz. To, ºe Y = AX + b je diskrétny náhodný vektor, plynie z úlohy 8.3. Naviac, j-tu
komponentu Yj vektora Y môºeme pre kaºdé j ∈ {1, ..., k} zapísa´ nasledovne:

Yj = Aj,1X1 + ...+ Aj,mXm + bj

kde Aj,r je prvok matice A v j-tom riadku a r-tom st¨pci a bj je j-ta komponenta vektora b.
Z de�nície kovariancie, kovarian£nej matice a z linearity strednej hodnoty ©ahko overíme, ºe
pre kaºdé i, j ∈ {1, ..., k} platí:

(Cov(Y))i,j = cov(Yi, Yj) = cov(Ai,1X1 + ...+Ai,mXm + bi, Aj,1X1 + ...+Aj,mXm + bj) =∑m
r,s=1 Ai,rAj,scov(Xr, Xs) = (ACov(X)AT )i,j
Tým je dôkaz dokon£ený.

Veta 8.17 (Základné vlastnosti kovarian£nej matice). X = (X1, . . . , Xm)T nech je náhodný
vektor s kone£nou kovarian£nou maticou Cov(X). Potom matica Cov(X) je symetrická, po-
zitívne semide�nitná, s disperziami náhodných premenných X1, . . . , Xm na diagonále.

Dôkaz. Symetrickos´ Cov(X) a vz´ah (Cov(X))i,i = D(Xi) plynú z de�nície kovar. matice a
prvých dvoch vz´ahov vo vete 8.15. Pozitívnu semide�nitnos´ matice Cov(X) dokáºeme takto:
Nech a ∈ Rm je ©ubovo©ný vektor. Z nezápornosti disperzie náhodnej premennej aTX a z
vety o kovarian£nej matici lineárnej transformácie náhodného vektora máme 0 ≤ D(aTX) =
Cov(aTX) = aTCov(X)a. Tým je pozitívna semide�nitnos´ Cov(X) dokázaná.

De�nícia 8.10 (Korela£ný koe�cient). Nech X1 a X2 sú obe diskrétne, alebo obe spojité
náhodné premenné s kone£nou disperziou. Korela£ným koe�cientom (alebo stru£ne koreláciou)
náhodných premenných X1, X2 nazývame hodnotu

ρ(X1, X2) =
cov(X1, X2)√
D(X1)

√
D(X2)

Ak ρ(X1, X2) = 0, potom hovoríme, ºe X1, X2 sú nekorelované.

Veta 8.18 (Základné vlastnosti korela£ného koe�cientu). Nech X1 a X2 sú obe diskrétne,
alebo obe spojité náhodné premenné s kone£nou a nenulovou disperziou. Potom platí:

1. ρ(X1, X2) = ρ(X2, X1)

2. ρ(aX1 + b, cX2 + d) = ρ(X1, X2) pre kaºdé a > 0, c > 0, b, d ∈ R

3. ρ(X1, X2) ∈ [−1, 1]

4. ρ(X1, X2) = 0 ak sú X1, X2 nezávislé

Dôkaz. Dôkaz v²etkých £astí tvrdenia plynie priamo z de�nície korelácie a základných vlast-
ností kovariancie.
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8.3 Základné typy rozdelení náhodných vektorov

8.3.1 Multinomické rozdelenie

Príklad 8.5. Hádºeme n guli£iek do m krabíc, pri£om pravdepodobnos´, ºe nejaká guli£ka
padne do j-tej krabice je pj, j = 1, . . . ,m a platí pj > 0,

∑m
j=1 pj = 1. Zostrojme náhodný

vektor X = (X1, . . . , Xm) tak, ºe náhodná premenná Xj bude reprezentova´ výsledný po£et
guli£iek v j-tej krabici. Aké rozdelenie pravdepodobnosti má náhodný vektor X?

De�nícia 8.11 (Multinomické rozdelenie). Nech X = (X1, . . . , Xm)T je náhodný vektor.
Nech n ∈ N a nech p1, . . . , pm sú nezáporné reálne £ísla také, ºe

∑m
j=1 pj = 1. Nech platí

P [X1 = k1, . . . , Xm = km] =
n!

k1! . . . km!
pk11 p

k2
2 . . . pkmm

pre v²etky tie k1, . . . , km ∈ {0, 1, . . . , n}, ktoré sp¨¬ajú
∑m

j=1 kj = n. Potom hovoríme, ºe
náhodný vektor X má multinomické rozdelenie s parametrami n, p1, ..., pm. Túto skuto£nos´
zna£íme X ∼Mult(n, p1, . . . , pm).

Veta 8.19 (Vz´ah multinomického a binomického rozdelenia). Nech X = (X1, . . . , Xm)T ∼
Mult(n, p1, . . . , pm). Potom Xj ∼ Bin(n, pj) pre kaºdé j = 1, . . . ,m.

Dôkaz. Nech X = (X1, . . . , Xm)T ∼ Mult(n, p1, . . . , pm). Dokáºeme, ºe X1 ∼ Bin(n, p1). Pre
kaºdé k1 ∈ {0, 1, ..., n} platí

P [X1 = k1] =
∑

P [X1 = k1, . . . , Xm = km] =
∑ n!

k1! . . . km!
pk11 p

k2
2 . . . pkmm

pri£om v²ade v tomto dôkaze sumujeme cez tie k2, . . . , km ∈ {0, 1, . . . , n}, ktoré sp¨¬ajú∑m
j=2 kj = n− k1. Z multinomického rozvoja

(1− p1)n−k1 = (p2 + ...+ pm)n−k1 =
∑ (n− k1)!

k2! . . . km!
pk22 . . . pkmm

dostávame

P [X1 = k1] =
n!pk11

k1!(n− k1)!

∑ (n− k1)!

k2! . . . km!
pk22 . . . pkmm =

(
n

k1

)
pk11 (1− p1)n−k1

Tvrdenie Xj ∼ Bin(n, pj) môºeme dokáza´ analogicky pre kaºdé j = 1, . . . ,m.

Predpokladajme, ºe robíme n nezávislých experimentov, pri£om výsledkom kaºdého z
týchto experimentov je práve jedna z m rôznych moºností a to zakaºdým s pravdepodob-
nos´ami p1, ..., pm. Ak pre j = 1, ...,m bude Xj znamena´ po£et tých experimentov, ktoré
skon£ili j-tym výsledkom, potom X = (X1, . . . , Xm)T ∼Mult(n, p1, . . . , pm).

V²imnite si, ºe ak ozna£íme ako Vij náhodnú premennú, ktorá nadobúda 1, ak skon£il i-ty
experiment výsledkom j a 0 inak, potom pre kaºdý výber indexov j1, j2, . . . , jn ∈ {1, . . . ,m}
sú náhodné premenné V1j1 , . . . , Vnjn nezávislé. Naviac, pre kaºdé j = 1, ...,m platí Xj =
V1j + ...+ Vnj.
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Veta 8.20 (Stredná hodnota a kovarian£ná matica multinomického rozdelenia). Nech X ∼
Mult(n, p1, . . . , pm). Potom pre strednú hodnotu vektora X platí E(X) = (np1, . . . , npm)T a
pre kovarian£nú maticu Cov(X) platí

(Cov(X))j,j = npj(1− pj) pre j = 1, ...,m

(Cov(X))j,k = −npjpk pre j, k ∈ {1, ...,m} , j 6= k.

Dôkaz. Vlastnos´ E(Xj) = npj a (Cov(X))j,j = D(Xj) = −npj(1−pj) pre j = 1, ...,m plynie
z viet 8.19 a 5.6.

Dokáºeme, ºe (Cov(X))j,k = −npjpk pre pevné j 6= k. Nech Xj = V1j + ...+ Vnj pre kaºdé
j = 1, ...,m ako v predchádzajúcej poznámke. Potom

(Cov(X))j,k = cov(Xj, Xk) = cov(V1j + ...+ Vnj, V1k + ...+ Vnk) =

n∑
i,l=1

cov(Vij, Vlk) =
∑
i 6=l

cov(Vij, Vlk) +
n∑
i=1

cov(Vij, Vik) =
n∑
i=1

cov(Vij, Vik),

kde posledná rovnos´ plynie z toho, ºe Vij, Vlk sú nezávislé ak i 6= l, teda
∑

i 6=l cov(Vij, Vlk) = 0.
Av²ak j 6= k, preto VijVik = 0 pre kaºdé i, takºe

cov(Vij, Vik) = E(VijVik)− E(Vij)E(Vik) = −pjpk.

Tým je dôkaz ukon£ený.

8.3.2 Mnohorozmerné normálne rozdelenie

De�nícia 8.12 (Regulárne mnohorozmerné normálne rozdelenie). Nech µ ∈ Rm a nech Σ
je pozitívne de�nitná (t.j. regulárna pozitívne semide�nitná) matica typu m×m. Nech X =
(X1, . . . , Xm)T je spojitý náhodný vektor s hustotou

f(x) = (2π)−m/2(det Σ)−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
Potom hovoríme, ºe X má regulárne m-rozmerné normálne rozdelenie s parametrami µ a

Σ. Túto skuto£nos´ zna£íme X ∼ Nm(µ,Σ).
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Veta 8.21. Nech X ∼ Nm(µ,Σ), kde µ ∈ Rm a Σ je pozitívne de�nitná matica typu m×m.
Nech b ∈ Rk, nech A je matica typu k ×m a hodnosti k. Potom náhodný vektor AX + b má
k-rozmerné regulárne normálne rozdelenie Nk(Aµ + b, AΣAT ). �peciálne, ak volíme k = 1,
A = (0, ..., 0, 1, 0, ..., 0) (jednotka je na i-tej pozícii) a b = 0 tak dostávame: Xi ∼ N(µi, (Σ)ii).

Veta 8.22. Nech X = (X1, ..., Xm)T ∼ Nm(µ,Σ), kde µ ∈ Rm a Σ je pozitívne de�nitná
matica typu m×m. Potom E(X) = µ a Cov(X) = Σ.

Dôkaz. Najprv predpokladajme, ºe Σ je jednotková matica a µ je nulový vektor. Z de�nície
normálneho náhodného vektora a vety 8.21 vidíme, ºe pre hustotu f vektora X a hustoty fi
komponent Xi náhodného vektora X platí:

f(x1, ..., xm) =
1

(2π)m/2
exp(−(x2

1 + ...+ x2
m)/2) =

m∏
i=1

1√
2π

exp(−x2
i /2) =

m∏
i=1

fi(xi)

Na základe vety 8.12 usudzujeme, ºe X1, ..., Xm sú nezávislé a preto cov(Xi, Xj) = 0 ak
i 6= j. Ke¤ºe Xi ∼ N(0, 1), tak E(Xi) = 0 a cov(Xi, Xi) = D(Xi) = 1. Preto E(X) = 0 a
Cov(X) = I. Teraz predpokladajme, ºe µ ∈ Rm a Σ je akáko©vek pozitívne de�nitná matica
typu m×m. Nech Σ−1/2 je odmocnina z matice Σ−1, t.j. taká pozitívne de�nitná matica, ºe
Σ−1/2Σ−1/2 = Σ−1. (Existencia takej matice sa ²tandardne ukazuje v teórii matíc.) Pod©a vety
8.21 má náhodný vektor Σ−1/2(X − µ) rozdelenie N(0, I) a pod©a prvej £asti dôkazu, pod©a
vety o linearite strednej hodnoty a vety o kovarian£nej matici lineárnej transformácie máme
rovnosti:

0 = E(Σ−1/2(X− µ)) = Σ−1/2(E(X)− µ),

I = Cov(Σ−1/2(X− µ)) = Σ−1/2Cov(X)Σ−1/2,

z ktorých dostávame tvrdenie vety.
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Veta 8.23. Platí ekvivalencia nasledovných dvoch výrokov:
A) X1, ..., Xm sú nezávislé náhodné premenné, pri£om Xi ∼ N(µi, σ

2
i );

B) Náhodný vektor X = (X1, ..., Xm)T má rozdelenie Nm(µ,Σ), kde µ = (µ1, ..., µm)T a Σ je
diagonálna matica s prvkami σ2

1, ..., σ
2
m na diagonále.

Dôkaz. Veta sa dá jednoducho ukáza´ pomocou viet 8.21 a 8.12.

8.4 Cvi£enia

Úloha 8.1. Náhodný vektor (X, Y )′ má zdruºenú hustotu tvaru

f(x, y) =

{
k(x+ y) ak (x, y) ∈ S
0 ak (x, y) /∈ S,

kde S je ²tvorec ohrani£ený priamkami x = 0, x = 3, y = 0 a y = 3. Ur£te koe�cient k tak,
aby f(x, y) bola hustota. Vypo£ítajte marginálne hustoty náhodných premenných X a Y a
pravdepodobnos´, ºe náhodný vektor (X, Y )′ padne do ²tvorca S1 ohrani£eného priamkami
x = 1, x = 2, y = 1 a y = 2,

Úloha 8.2. Zdruºená hustota náhodného vektora (X, Y )′ má tvar

f(x, y) =

{
8xy ak 0 < y ≤ x < 1

0 ak inak,

Vypo£ítajte marginálne hustoty náhodných premenných X a Y .

Úloha 8.3. Presved£te sa o platnosti nasledovných tvrdení:
a)X = (X1, . . . , Xm)T je diskrétny náhodný vektor vtedy a len vtedy, ke¤ samotnéX1, . . . , Xm

sú diskrétne náhodné premenné;
b) Ak je X = (X1, . . . , Xm)T diskrétny náhodný vektor a g : Rm → Rk je akáko©vek funkcia,
tak g(X) je tieº diskrétny náhodný vektor. �peciálne Xi+Xj ako aj XiXj pre i, j ∈ {1, ...,m}
sú diskrétne náhodné premenné.

Úloha 8.4. Nech m = 2, X = (X, Y )T a B = [a, b)× [c, d). Ukáºte, ºe platí

P [X ∈ B] = F (b, d)− F (a, d)− F (b, c) + F (a, c).

Úloha 8.5. NechX1, . . . , Xn sú zdruºene nezávislé náhodné premenné (v zmysle horeuvedenej
de�nície). Ukáºte, ºe potom sú zdruºene nezávislé aj náhodné premenné Xi1 , Xi2 , . . . , Xik pre
akéko©vek indexy 1 ≤ i1 < i2 < ... < ik ≤ n.

Úloha 8.6. Dokáºte implikáciu �⇒� vo vete 8.10 pre tieto ²peciálne prípady:
a) n = 2, B1 = [a, b), B2 = [c, d) a X1, X2 sú akéko©vek nezávislé náhodné premenné. (Môºete
pouºi´ tvrdenie z úlohy 8.4.)
b) n = 2, B1 = {x1}, B2 = {x2} a X1, X2 sú diskrétne nezávislé náhodné premenné.

Úloha 8.7. Z interpretácie binomického rozdelenia plynie, ºe náhodná premenná Xn s rozde-
lením Bin(n, p) je sú£et n nezávislých náhodných premenných s rozdelením Alt(p). Pomocou
tohto faktu ukáºte, ºe Veta 7.14 je dôsledkom vety 9.4.
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Úloha 8.8. Budeme po£íta´ sú£et nezávislých náhodných £ísielX1, ..., X1000, ktoré pred spo£í-
taním zaokrúhlime na celé £ísla Y1, ..., Y1000. Diferencie Di = Xi−Yi, pre v²etky i = 1, ..., 1000,
sú nezávislé náhodné premenné s rovnakým rozdelením so strednou hodnotou 0 a disperziou
1/12. Preto pod©a centrálnej limitnej vety moºno celkovú chybu sú£tu Err =

∑1000
i=1 Di, kto-

rej sa dopustíme zaokrúh©ovaním, aproximova´ normálnym rozdelením. Pomocou distribu£nej
funkcie Φ rozdelenia N(0, 1) zapí²te pravdepodobnos´ udalosti [|Err| < 10], t.j., ºe absolútna
hodnota rozdielu sú£tu zaokrúhlených £ísiel sa od sú£tu pôvodných £ísiel nebude lí²i´ o viac
ako 10.

Úloha 8.9. Nech X ∼ N2(µ,Σ), kde

µ =

(
µ1

µ2

)
a Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

pri£om Σ je regulárna. Presved£te sa, ºe potom hustota X je daná vz´ahom:

fX(x1, x2) = c−1 exp

(
− 1

1− ρ2

[
(x1 − µ1)2

2σ2
1

− ρ(x1 − µ1)(x1 − µ1)

σ1σ2

+
(x2 − µ2)2

2σ2
2

])
,

kde c = 2πσ1σ2

√
1− ρ2.



Kapitola 9

Zákony ve©kých £ísiel a centrálna limitná
veta

Veta 9.1 (Markovova nerovnos´). Nech Z je diskrétna alebo spojitá náhodná premenná s
kone£nou strednou hodnotou, ktorá nadobúda nezáporné hodnoty. Potom pre kaºdé c > 0
platí:

P [Z ≥ c] ≤ E(Z)

c
.

Dôkaz. Nech Z je diskrétna náhodná premenná nadobúdajúca hodnoty (zi)i∈I . �alej nech
J = {i ∈ I : zi ≥ c}. Máme

E(Z) =
∑
i∈I

ziP [Z = zi] ≥
∑
i∈J

ziP [Z = zi] ≥ c
∑
i∈J

P [Z = zi] = cP [Z ≥ c]

, z £oho dostávame priamo tvrdenie vety.
Ak Z je spojitá náhodná premenná s hustotou f , máme

E(Z) =

∫ ∞
0

zf(z)dz ≥
∫ ∞
c

zf(z)dz ≥
∫ ∞
c

cf(z)dz = cP [Z ≥ c]

, z £oho dostávame priamo tvrdenie vety.

Príklad 9.1. Po²ta denne spracuje 10000 listov. Aká je pravdepodobnos´, ºe zajtra budú
musie´ spracova´ aspo¬ 15000 listov?

Nech náhodná premenná X ozna£uje po£et listov, ktoré sa na po²te spracujú. Potom zo
zadania príkladu vieme, ºe E(X) = 10000. Pouºitím Markovovej vety dostávame

P [X ≥ 15000] ≤ 10000

15000
=

2

3
.

Veta 9.2 (�eby²evova nerovnos´). Nech X je diskrétna alebo spojitá náhodná premenná s
kone£nou disperziou (t.j. aj s kone£nou strednou hodnotou). Potom pre kaºdé a > 0 platí:

P [|X − E(X)| ≥ a] ≤ D(X)

a2

66
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Dôkaz. Veta je dôsledkom Markovovej nerovnosti 9.1 ak v nej zvolíme Z = (X − E(X))2 a
c = a2.

Príklad 9.2. Pomocou �eby²evovej nerovnosti vypo£ítajme horné ohrani£enie pre po£et lis-
tov, ktoré bude musie´ po²ta spracova´, ak navy²e vieme, ºe D(X) = 10000:

P [X ≥ 15000] = P [X − 10000 ≥ 5000] ≤ P [(X − 10000 ≥ 5000) ∪ (X − 10000 ≤ −5000)] =

= P [|X − 10000| ≥ 5000] ≤ 10000

50002
=

1

2500
.

Príklad 9.3. Nech p je percento voli£ov podporujúcich nejakého kandidáta vo vo©bách. Spý-
tame sa n náhodne (rovnomerne nezávisle z celej populácie) vybraných respondentov, £i by
daného kandidáta volili a zaznamenáme Kn kladných odpovedí. Nako©ko presne vieme odhad-
nú´ p? Odpove¤ kaºdého respondenta môºeme chápa´ ako náhodnú premennú Xi ∼ Alt(p).
Z �eby²evovej nerovnosti máme

P [|Kn − p| ≥ ε] ≤ p(1− p)
nε

≤ 1

4nε2
.

V²eobecnej²ou formou �eby²evovej nerovnosti je tzv. slabý zákon ve©kých £ísel.

Veta 9.3 (Slabý zákon ve©kých £ísiel). Nech X1, X2, ... sú nezávislé (diskrétne alebo spojité)
náhodné premenné, pri£om D(Xn) ≤ σ2 pre nejaké σ2 < ∞ a kaºdé n ∈ N. Nech X̄n =
1
n

∑n
i=1Xi. Potom pre akéko©vek ε > 0 platí:

lim
n→∞

P [|X̄n − E(X̄n)| ≥ ε] = 0

Dôkaz. Z predpokladov tvrdenia, vety 5.4 (resp. ekvivalentu tejto vety pre spojité premenné)
a vety 8.14 dostávame

D(X̄n) = D

(
1

n

n∑
i=1

Xi

)
=

1

n2
D

(
n∑
i=1

Xi

)
=

1

n2

n∑
i=1

D(Xi) ≤ σ2/n

. Dôkaz môºeme ukon£i´ pouºitím �eby²evovej nerovnosti (Veta 9.2).

Veta 9.4 (Centrálna limitná veta). Nech X1, X2, ... sú nezávislé náhodné premenné s rov-
nakým rozdelením (t.j. s rovnakou distribu£nou funkciou), kone£nou strednou hodnotou a
nenulovou a kone£nou disperziou. Nech Sn =

∑n
i=1 Xi a nech

Yn =
Sn − E(Sn)√

D(Sn)

pre kaºdé n ∈ N. Nech FYn je distribu£ná funkcia náhodnej premennej Yn a Φ nech je distri-
bu£ná funkcia rozdelenia N(0, 1). Potom platí

lim
n→∞

FYn(x) = Φ(x) pre v²etky x ∈ R
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Dôkaz. Dôkaz tejto vety presahuje rámec predná²ky.

V²imnite si, ºe predchádzajúcu vetu môºeme formulova´ aj nasledovne: NechX1, X2, X3, ...
sú nezávislé náhodné premenné s rovnakým rozdelením, kone£nou strednou hodnotou µ a
kone£nou disperziou σ2, kde σ > 0. Potom

lim
n→∞

P

[∑n
i=1Xi − nµ√

nσ
< x

]
=

1√
2π

∫ x

−∞
e−t

2/2dt pre v²etky x ∈ R

Príklad 9.4. Na pamä´ovej karte máme vo©ných 330 MB. Aká je pravdepodobnos´, ºe sa na
¬u zmestí 300 fotogra�í s priemernou ve©kos´ou 1 MB a disperziou 0.52?

P [S ≤ 330] = P

[
U ≤ 330− 300 · 1

0.5
√

300

]
= Φ(3.46) ≈ 0.9997.

Príklad 9.5. Vieme, ºe po£et chýb na 1000 riadkov kódu má Poissonovo rozdelenie so stred-
nou hodnotou 5. Aká je pravdepodobnos´, ºe v tridsiatich 1000-riadkových programoch bude
viac ako 170 chýb?

Ozna£me náhodnou premennouXi po£et chýb v i-tom programe, tedaXi ∼ Po(5). Potom,
ak S je celkový po£et chýb v 30 programoch, S má pribliºne normálne rozdelenie so strednou
hodnotou a varianciou 30 · 5. Máme teda

P [S ≥ 170] = P

[
U ≥ 170− 150√

150

]
= 1− Φ(2.45) ≈ 0.05.

Príklad 9.6. Do lietadla naloºíme 300 kusov batoºiny, pri£om hmotnos´ jedného kusu ba-
toºiny je náhodná premenná s rovnomerným rozdelením na intervale od 10 do 100 kg. Aká
je pravdepodobnos´, ºe celková hmotnos´ batoºiny v lietadle presiahne 17000 kg? Pribliºnú
odpove¤ na túto otázku dostaneme pomocou centrálnej limitnej vety: chceme vypo£íta´
P [S300 > 17000], kde S300 je sú£et hmotností 300 kusov batoºiny. Stredná hodnota a dis-
perzia hmotnosti jedného kusu batoºiny je

µ =
10 + 100

2
= 55, σ2 = (100− 10)2/12 = 675

Potom máme

P [S300 ≤ 17000] = Φ

(
17000− 300 · 55√

300 · 675

)
≈ 0.8667,

a teda
P [S300 > 17000] ≈ 0.1333.

9.1 Cvi£enia

Úloha 9.1. Letecká spolo£nos´ predala 410 leteniek na let, v ktorom je 400 miest. Vypo£ítajte
pravdepodobnos´, ºe kaºdý cestujúci bude ma´ kde sedie´, ak vieme, ºe cestujúci so zakúpenou
letenkou príde na check-in s pravdepodobnos´ou 0.96.

Úloha 9.2. Dve agentúry na prieskum verejnej mienky vykonávajú prieskum volebných pre-
ferencií kandidáta, kaºdá na vzorke 1000 voli£ov. Ur£te hornú hranicu pravdepodobnosti, ºe
odhad preferencií u oboch agentúr sa bude odli²ovat' o viac ako 5%.
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Úloha 9.3. Vo vo©bách sú dvaja kandidáti, pri£om prieskum verejnej mienky na vzorke 1500
voli£ov ukázal, ºe 52% voli£ov podporuje prvého kandidáta a 48% voli£ov podporuje druhého
kandidáta. Aká je pravdepodobnost', ºe prieskum správne odhadol ví´aza volieb?

Úloha 9.4. Uvaºujme prieskum preferencií medzi dvomi kandidátmi, pri£om pod©a pries-
kumu verejnej mienky vykonaného na n respondentoch prvého kandidáta podporuje 100p%
voli£ov a druhého kandidáta podporuje 100(1-p)% voli£ov. Aké ve©ké musí by´ n, aby sme so
spo©ahlivos´ou aspo¬ 95% vedeli ur£i´ skuto£ný výsledok volieb s chybou men²ou ako 3%?

Úloha 9.5. Pois´ov¬a poistila 1000 osôb. Pravdepodobnos´ úmrtia v priebehu jedného roka
je pre kaºdého z nich 0,005. Zistite, s akou pravdepodobnos´ou bude poi´ov¬a zisková, ak
poistné je 22 eur a poistná suma je 7000 eur.

Úloha 9.6. Pravdepodobnos´ narodenia chlapca je 0,515. Aká je pravdepodobnos´, ºe medzi
10000 novorodencami bude viac diev£at ako chlapcov?



Kapitola 10

Generovanie náhodných premenných a
vektorov

10.1 Generovanie realizácií náhodných premenných

V tejto kapitole predpokladáme, ºe vieme sekven£ne generova´ nezávislé realizácie z rovnomer-
ného rozdelenia na intervale (0, 1). V praxi obvykle posta£uje postupnos´ �pseudonáhodných�
£ísiel získaných napríklad pomocou ²peciálnych (deterministických) kongruen£ných generáto-
rov. Rozsiahlou teóriou kongruen£ných generátorov sa v²ak nebudeme hlb²ie zaobera´ (nie-
ktoré základné pojmy boli spomenuté na predná²ke).

De�nícia 10.1 (Kvantilová funkcia). Nech F : R→ [0, 1] je distribu£ná funkcia. Kvantilovou
funkciou distribu£nej funkcie F nazývame funkciu G : (0, 1)→ R de�novanú

G(y) = sup {x ∈ R : F (x) ≤ y} pre v²etky y ∈ (0, 1)

Ak je distribu£ná funkcia F spojitá a rastúca na celom R, potom príslu²ná kvantilová
funkcia G je inverzná funkcia k F .

Veta 10.1 (Metóda inverznej transformácie). Nech F je distribu£ná funkcia a nech G je kvan-
tilová funkcia funkcie F . Nech náhodná premenná U má rozdelenie R(0, 1). Potom náhodná
premenná G(U) má distribu£nú funkciu F .

Dôkaz. Dôkaz pre v²eobecnú distribu£nú funkciu je technicky zd¨havý. Uvedieme si len dôkaz
pre prípad, ºe funkcia F je spojitá a rastúca na celom R. V takomto prípade G = F−1

(inverzná funkcia). Nech U ∼ R(0, 1). Potom pre distribu£nú funkciu FY náhodnej premennej
Y = G(U) a pre kaºdé y ∈ R platí:

FY (y) = P [Y < y] = P [G(U) < y] = P [U < F (y)] = FU(F (y)) = F (y)

pretoºe distribu£ná funkcia FU premennej U sp¨¬a FU(u) = u pre kaºdé u ∈ [0, 1].

Príklad 10.1 (Generovanie rozdelenia Exp(λ)). Distribu£ná funkcia rozdelenia Exp(λ) je
F (x) = 0 pre x ≤ 0 a F (x) = 1−e−x/λ pre x > 0. Kvantilová funkcia je G(y) = −λln(1−y) pre
y ∈ (0, 1), £iºe pod©a predchádzajúcej vety platí: Ak U ∼ R(0, 1), tak −λln(1−U) ∼ Exp(λ).
Ke¤ºe aj 1− U ∼ R(0, 1), tak dostávame tvrdenie vety 7.9: −λln(U) ∼ Exp(λ)
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Príklad 10.2. Nech m ∈ N. Uvaºujme distribu£nú funkciu F (x) = 0 pre x ≤ 0, F (x) = xm

pre x ∈ (0, 1) a F (x) = 1 pre x ≥ 1. (Táto distribu£ná funkcia charakterizuje rozdelenie
euklidovej normy m-rozmerného náhodného vektora s rovnomerným rozdelením vo vnútri m-
rozmernej gule so stredom v po£iatku súradnicovej sústavy a polomerom 1.) Ke¤ºe kvantilová
funkcia je G(y) = y1/m pre y ∈ (0, 1), tak pod©a vety 10.1 dostávame: Ak U ∼ R(0, 1), potom
U1/m má distribu£nú funkciu F .

Príklad 10.3 (Generovanie diskrétneho rozdelenia s kone£ným nosi£om). Nech p1, p2, ..., pn
sú nezáporné £ísla také, ºe

∑n
i=1 pi = 1 a nech x1 < x2 < ... < xn. Uvaºujme distribu£nú fun-

kciu F (x) = 0 pre x ≤ x1 a F (x) =
∑

i:xi<x
pi pre x > x1. (F je distribu£ná funkcia diskrétnej

náhodnej premennej, ktorá nadobúda hodnoty x1, ..., xn s pravdepodobnos´ami p1, ..., pn. Ta-
kéto je napríklad binomické, alebo hypergeometrické rozdelenie.) Kvantilová funkcia takejto
distribu£nej funkcie je G(y) = x1 ak 0 < y < p1 a G(y) = xk ak

∑k−1
i=1 pi ≤ y <

∑k
i=1 pi pre

k = 2, ..., n. Realizácie príslu²nej diskrétnej náhodnej premennej preto môºeme generova´ ako
G(U), kde U ∼ R(0, 1).

Konkrétnej²ie, interval (0, 1) rozbijeme na intervaly I1 = (0, p1), I2 = [p1, p1 + p2), I3 =
[p1+p2, p1+p2+p3),..., In = [1−pn, 1). Ak realizácia u ∈ (0, 1) náhodnej premennej U ∼ R(0, 1)
padne do intervalu Ik, tak xk môºeme povaºova´ za realizáciu diskrétnej náhodnej premennej
s distribu£nou funkciou F .

Veta 10.2 (Zamietacia metóda). Nech f, h : R → [0,∞) sú dve funkcie hustoty, ktoré sú
kladné na intervale I ⊆ R a inde nulové, pri£om

c = sup {f(x)/h(x) : x ∈ I} <∞

Nech Y1, U1, Y2, U2, ... sú nezávislé náhodné premenné, pri£om Y1, Y2, ... majú hustotu h a
U1, U2, ... majú rozdelenie R(0, 1). Ozna£me

N = min {n ∈ N : c.h(Yn)Un < f(Yn)}

Potom náhodná premenná YN má hustotu f .

Dôkaz. Pre jednoduchos´ urobíme dôkaz len pre tento prípad: I = (0, 1) a h je hustota
rozdelenia R(0, 1), t.j. h(x) = 1 pre x ∈ (0, 1), h(x) = 0 pre x /∈ (0, 1).

Zvo©me ©ubovo©né z ∈ (0, 1). Zrejme platí

P [YN < z] = ∪∞k=1P [YN < z,N = k] = ∪∞k=1P [Yk < z,N = k].

Ke¤ºe pre akéko©vek k má náhodný vektor (Yk, Uk)
T dvojrozmerné rovnomerné rozdelenie

na mnoºine [0, 1] × [0, 1], je P [Yk < z, cUk < f(Yk)] rovná ploche mnoºiny Bz = {(y, u)′ ∈
[0, 1]× [0, 1] : y < z a c.u < f(y)}, teda

P [Yk < z, cUk < f(Yk)] =
1

c

∫ z

0

f(y)dy = rz.

Preto P [Y1 < z,N = 1] = P [Y1 < z, c.U1 < f(Y1)] = rz a pre n ≥ 2 je P [Yk < z,N =
k] = P [Yk < z, c.U1 ≥ f(Y1), ..., c.Uk−1 ≥ f(Yk−1), c.Uk < f(Yk)] = P [Yk < z, c.Uk <
f(Yk)]P [c.U1 ≥ f(Y1)]...P [c.Uk−1 ≥ f(Yk−1)] = rz(1− r1)k−1. Takºe

P [YN < z] = rz

∞∑
k=1

(1− 1/c)k−1 = rzc =

∫ z

0

f(y)dy.

Z toho plynie, ºe f je hustota YN .
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Naj£astej²ie pouºívaný ²peciálny prípad predchádzajúcej vety je nasledovný: f je ohra-
ni£ená hustota kladná len na intervale I = (a, b), kde a, b sú kone£né £ísla a h je hus-
tota rozdelenia R(a, b). V tomto prípade platí N = min {n ∈ N : d.Un < f(Yn)}, kde d =
sup {f(x) : x ∈ I}.

Príklad 10.4. Uvaºujme hustotu f(x) = (8/π)
√
x
√

1− x pre x ∈ (0, 1) a f(x) = 0 pre
x /∈ (0, 1). (Jedná sa o tzv. beta-rozdelenie s parametrami 3/2 a 3/2.) Ak zvolíme h hustotu
rovnomerného rozdelenia na intervale (0, 1), tak realizáciu z rozdelenia s hustotou f dostaneme
nasledovne:

Budeme generova´ nezávislé realizácie Y1, U1, Y2, U2, ... z rozdelenia R(0, 1) aº pokým nena-
stane prípad (4/π)Un < f(Yn). V tomto okamihu bude Yn reprezentova´ realizáciu z rozdelenia
s hustotou f .

Príklad 10.5 (Generovanie z normálneho rozdelenia zamietacou metódou). Pomocou za-
mietacej metódy je moºné generova´ aj realizácie z rozdelenia N(0, 1) (a následne, vhodnou
lineárnou transformáciou, aj z rozdelenia N(µ, σ2)).

Uvaºujme najprv hustotu f(x) =
√

2/π × e−x
2/2 pre x > 0 a f(x) = 0 pre x ≤ 0, £o

zodpovedá hustote náhodnej premennej |X|, ak X ∼ N(0, 1). Zvolíme za h hustotu rozdelenia
Exp(1), t.j. h(x) = e−x pre x > 0 a h(x) = 0 pre x ≤ 0. Pomocou ²tandardných metód
matematickej analýzy vypo£ítame, ºe c = sup {f(x)/h(x) : x > 0} =

√
2e/π. Podmienka

ur£ujúca index n akceptovanej realizácie je√
2e/π × e−YnUn <

√
2/π × e−Y 2

n /2,

£o je moºné ekvivalentne zapísa´ v tvare

Un < exp (−(Yn − 1)2/2)

Vygenerova´ realizáciu premennej z rozdelenia s hustotou f môºeme teda nasledovne: generu-
jeme nezávislé realizácie Y1, U1, Y2, U2, ..., pri£om Y1, Y2, ... majú rozdelenie Exp(1) a U1, U2, ...
majú rozdelenie R(0, 1). Akonáhle bude splnené Un < exp (−(Yn − 1)2/2), bude Y = Yn ko-
ne£ným výsledkom.

Pomocou realizácie Y s hustotou f môºeme vygenerova´ realizáciu z rozdelenia N(0, 1)
jednoducho tak, ºe Y vynásobíme s pravdepodobnos´ou 1/2 hodnotou −1 a s pravdepodob-
nos´ou 1/2 hodnotou 1 (t.j. £íslu Y dáme náhodné znamienko).

Veta 10.3 (Boxov-Müllerov generátor normálneho rozdelenia). Nech U, V sú nezávislé ná-
hodné premenné s rozdelením R(0, 1). Nech

X =
√
−2ln(U) cos(2πV ) a Y =

√
−2ln(U) sin(2πV )

Potom X a Y sú nezávislé náhodné premenné, obe s rozdelením N(0, 1).

Veta 10.4 (Generovanie Poissonovho rozdelenia). Nech X1, X2, ... sú nezávislé premenné
s rozdelením Exp(1) a N = min {n ∈ N :

∑n
i=1 Xi > λ}. Potom N − 1 ∼ Po(λ). Ekvi-

valentne: Nech U1, U2, ... sú nezávislé náhodné premenné s rozdelením R(0, 1). Nech N =
min

{
n ∈ N :

∏n
i=1 Ui < e−λ

}
. Potom N − 1 ∼ Po(λ).

Veta 10.5 (Generovanie geometrického rozdelenia). Nech p ∈ (0, 1) a nech U ∼ R(0, 1).
Potom

bln(U)/ ln(1− p)c ∼ Geo(p)

kde b.c ozna£uje dolnú celú £as´.
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�iadna z uvedených metód generovania zo ²peci�ckých typov rozdelení (v tomto, ani v
predchádzajúcom odstavci) nie je vo v²eobecnosti najrýchlej²ia. Najrýchlej²ie známe metódy
sú obvykle algoritmicky ve©mi komplikované (napríklad vyuºívajú rozsiahle tabu©ky ²peciál-
nych kon²tánt), ich programová implementácia je zd¨havá a oplatí sa iba v prípade, ºe je
potrebné generova´ obrovské po£ty realizácií.

10.2 Generovanie realizácií náhodných vektorov

Veta 10.6. Nech X ∼ Mult(n, p1, . . . , pm), kde p1, ..., pm > 0. Potom X1 ∼ Bin(n, p1).
Nech ¤alej k1, ..., km ∈ {0, 1, ..., n} sú také, ºe

∑m
j=1 kj = n. Nech i ∈ {2, 3, ...,m}. Ozna£me

ni =
∑m

j=i kj a ri = pi/
∑m

j=i pj. Potom

P [Xi = ki|X1 = k1, . . . , Xi−1 = ki−1] =

(
ni
ki

)
rkii (1− ri)ni−ki

Predchádzajúca veta znamená, ºe �podmienené rozdelenie� náhodnej premennej Xi za
podmienky [X1 = k1, . . . , Xi−1 = ki−1] je rozdelenie Bin(

∑m
j=i kj, pi/

∑m
j=i pj). Realizáciu

(k1, ..., km)T náhodného vektora X ∼ Mult(n, p1, . . . , pm) teda vygenerujeme tak, ºe najprv
vygenerujeme realizáciu k1 z rozdelenia Bin(n, p1), potom vygenerujeme realizáciu k2 z rozde-
lenia Bin(n− k1, p2/

∑m
j=2 pj), potom realizáciu k3 z rozdelenia Bin(n− k1− k2, p3/

∑m
j=3 pj)

a tak ¤alej.

Veta 10.7. Nech X1, ..., Xm sú nezávislé náhodné premenné s rozdelením N(0, 1). Nech µ ∈
Rm a nech Σ je pozitívne de�nitná matica typu m×m. Predpokladajme, ºe Σ = CCT , kde
C je matica typu m × m. Potom náhodný vektor Y = C(X1, ..., Xm)T + µ má rozdelenie
Nm(µ,Σ).

Dôkaz. Veta je jednoduchým dôsledkom viet 8.21 a 8.23.

Maticu C z predo²lej vety je moºné ur£i´ viacerými metódami; obvykle sa v²ak pou-
ºíva dolná trojuholníková matica, ktorú je moºné z matice Σ vypo£íta´ relatívne rýchlym
algoritmom a naviac mierne zjednodu²uje aj výpo£et sú£inu C(X1, ..., Xm)T . Takúto dolnú
trojuholníkovú maticu vypo£ítame napríklad pomocou nasledovného algoritmu (prvky matice
Σ ozna£íme sij a prvky matice C ozna£íme cij)

1 Prvkom matice C nad diagonálou prira¤ hodnotu 0.

2 c11 ←
√
s11 a pre i = 2 aº m vykonaj: ci1 ← si1/c11

4 c22 ←
√
s22 − c2

21

5 Pre i = 3 aº m vykonaj:

5.1 Pre j = 2 aº i− 1 vykonaj: cij ← (sij −
∑j−1

k=1 cikcjk)/cjj

5.2 cii ←
√
sii −

∑i−1
k=1 c

2
ik

6 Výsledok: C
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Veta 10.8. Nech Gm(r) je m-rozmerná gu©a so stredom v po£iatku súradnicovej sústavy a
polomerom r > 0:

Gm(r) =

(x1, ..., xm) ∈ Rm :

√√√√ m∑
i=1

x2
i ≤ r

 .

Nech X1, ..., Xm, U sú nezávislé náhodné premenné, pri£om Xi ∼ N(0, 1) a U ∼ R(0, 1).
Potom náhodný vektor

Y = r(
m∑
i=1

X2
i )−1/2(X1, ..., Xm)T

má rovnomerné rozdelenie na hranici (povrchu) gule Gm(r) a náhodný vektor Z = U1/mY
má rovnomerné rozdelenie na vo vnútri (t.j. na) Gm(r).

Dôkaz. Veta plynie z rota£nej symetrie hustoty rozdelenia Nm(0, I) a z faktu, ºe ak náhodný
vektor má rovnomerné rozdelenie vo vnútri Gm(1), tak jeho Euklidova norma má rovnaké
rozdelenie ako U1/m pre U ∼ R(0, 1).

Existuje viacero alternatívnych, £asto efektívnej²ích spôsobov ako generova´ náhodné vek-
tory rovnomerne na povrchu Gm(r), alebo na Gm(r), najmä pre dimenzie m = 2, 3 (ak vyne-
cháme triviálny prípad m = 1).

Zo ²irokého spektra rôznych metód spomenieme napríklad nasledovné �zamietacie� metódy
pre m = 2, 3. Generujme X1, Y1, X2, Y2, ... ako nezávislé realizácie z rozdelenia R(−1, 1), aº
kým prvýkrát nenastane prípad X2

n + Y 2
n < 1. Ozna£me X = Xn, Y = Yn. Potom platí:

• (X, Y )T má rovnomerné rozdelenie na G2(1)

• (X2 + Y 2)−1/2(X, Y )T má rovnomerné rozdelenie na hranici G2(1)

• (X2 + Y 2)−1(X2 − Y 2, 2XY )T má rovnomerné rozdelenie na hranici G2(1)

• (2X
√

1−X2 − Y 2, 2Y
√

1−X2 − Y 2, 1 − 2(X2 + Y 2))T má rovnomerné rozdelenie na
hranici G3(1).

Veta 10.9. Nech Sm(h), h > 0, je m-rozmerný simplex typu:

Sm(h) =

{
(x1, ..., xm)T ∈ Rm :

m∑
i=1

xi ≤ h a xi ≥ 0 pre v²etky i = 1, ...,m

}
Predpokladajme, ºe U1, ..., Um sú nezávislé náhodné premenné s rozdelením R(0, 1) a nech
Y1, ..., Ym je usporiadanie týchto náhodných premenných od najmen²ej po najvä£²iu. De�-
nujme Z1 = Y1 a Zi = Yi − Yi−1 pre i = 2, ...,m. Potom náhodný vektor Z = h.(Z1, ..., Zm)T

má rovnomerné rozdelenie na simplexe Sm(h).

Dôkaz. Technicky presný dôkaz pre v²eobecné m je zd¨havý, av²ak základná my²lienka je
jednoduchá; popí²eme ju pre m = 2 a h = 1. V tomto prípade generujeme U1, U2 nezávisle
rovnomerne na intervale (0, 1), teda bod U = (U1, U2)T padá rovnomerne náhodne do ²tvorca
S = (0, 1) × (0, 1). Ak U padne do trojuholníka T = (0, 0), (0, 1), (1, 1), tak poloºíme Y =
(Y1, Y2)T = U, ak padne U do trojuholníka S \ T , tak Y dostaneme preklopením bodu U
okolo priamky y = x. Je teda zrejmé, ºe Y má rovnomerné rozdelenie na trojuholníku T . Z
Y dostaneme Z = (Z1, Z2)T uº len jednoduchým lineárnym zobrazením transformujúcim T
na simplex S2(1).
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Vetu 10.9 je moºné pouºi´ na generovanie realizácií s rovnomerným rozdelením na akom-
ko©vek simplexe (napr. na ©ubovo©nom nedegenerovanom trojuholníku v R2) pomocou vhodnej
lineárnej transformácie. Takisto nie je ´aºké pouºi´ predchádzajúcu vetu na generovanie rea-
lizácií náhodných vektorov s rovnomerným rozdelením na ohrani£enej polyedrickej mnoºine
v Rm, ak poznáme rozklad tejto mnoºiny na v²eobecné simplexy.



Kapitola 11

Základy teórie informácie

11.1 Informácia

V tejto kapitole sa pokúsime kvanti�kova´ pojem informácie.

De�nícia 11.1. Uvaºujme pravdepodobnostný priestor (Ω, S, P ) taký, ºe |Ω| = m. Pod in-
formáciou obsiahnutou v udalosti E budeme rozumie´ veli£inu

I(E) = − log2(P (E)).

Informáciu budeme mera´ v bitoch.

V²imnime si, ºe I je klesajúcou funkciou P (E), t.j. ak pre E,F ∈ S: P (E) ≤ P (F ), potom
I(E) ≥ I(F ). Tieº platí, ºe ak E,F sú nezávislé, potom I(E∩F ) = I(E) + I(F ) a pre v²etky
E ∈ S je I(E) ≥ 0.

Poznámka 11.1. V tejto kapitole budeme pod ozna£ením log(x) rozumie´ logaritmus so
základom 2.

Príklad 11.1. Uvaºujme náhodnú premennú X ∼ Alt(1/2). Máme

I(X = 0) = I(X = 1) = − log2(1/2) = 1.

Teda výberom jednej z dvoch rovnako pravdepodobných moºností získame jeden bit informá-
cie.

11.2 Entropia

Ak máme diskrétnu náhodnú premennú, ktorá nadobúda hodnoty {x1, . . . , xn} s pravdepodob-
nos´ami p1, . . . , pn, nevieme s ur£itos´ou poveda´, aké ve©ké sú informácie I(pi) := I(X = xi),
i = 1, . . . , n. Môºeme teda aj informáciu I(X) chápa´ ako náhodnú premennú. Stredná hod-
nota tejto náhodnej premennej sa nazýva entropia.

De�nícia 11.2. [Entropia]. NechX je diskrétna náhodná premenná, ktorá nadobúda hodnoty
{x1, . . . , xn} s pravdepodobnos´ami p1, . . . , pn. Potom entropiou H premennej X nazývame
'mieru neur£itosti'

H(X) = E(I(X)) = −
n∑
i=1

pi log pi
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V prípade, ºe pi = 0, de�nujeme pi log pi = 0. V²imnime si, ºe hodnota entropie nezávisí
na tom, aké hodnoty nadobúda náhodná premenná X, ale len na ich pravdepodobnostiach.

Príklad 11.2. Majme náhodnú premennú

X =


u1 s pravdepodobnos´ou 1/4
u2 s pravdepodobnos´ou 1/2
u3 s pravdepodobnos´ou 1/4

Potom
H(X) = −1

4
log

1

4
− 1

2
log

1

2
− 1

4
log

1

4
≈ 1.04

Entropia nadobúda hodnoty z intervalu [0, log n]. Minimum nastáva, ak pre niektoré
j ∈ {1, . . . , n} je pj = 1, teda P [X = xj] = 1. Naopak, maximálnu hodnotu entropie
dostaneme pre pi = 1/n, i = 1, . . . , n, teda ak X nadobúda v²etky hodnoty s rovnakou
pravdepodobnos´ou.

Veta 11.1. Nech X je diskrétna náhodná premenná, ktorá nadobúda hodnoty {x1, . . . , xn}
s pravdepodobnos´ami p1, . . . , pn. Potom:

1. H(X) ≥ 0 a rovnos´ nastáva práve vtedy, ke¤ existuje také x, ºe P [X = x] = 1.

2. H(X) ≤ log(n) a rovnos´ nastáva práve vtedy, ke¤ X má rovnomerné rozdelenie.

Dôkaz. 1. Nezápornos´ je zrejmá z de�nície entropie. Aby H(X) = 0, musí by´ pi log pi = 0
pre v²etky i. To ale znamená, ºe existuje nejaké k, pre ktoré je pk = 1.

2. Predpokladajme najskôr, ºe pi > 0 pre v²etky i. Z de�nície máme

H(X)− log(n) = − 1

ln(2)

(
n∑
i=1

pi ln pi + ln(n)

)
= − 1

ln(2)

(
n∑
i=1

pi ln(pin)

)
=

=
1

ln(2)

(
n∑
i=1

pi ln

(
1

pin

))
≤ 1

ln(2)

(
n∑
i=1

pi

(
1

pin
− 1

))
≤

≤ 1

ln(2)

(
n∑
i=1

(
1

n
− pi

))
= 0.

Pouºili sme vz´ah ln(x) ≤ x− 1. Rovnos´ v tomto vz´ahu platí práve vtedy, ke¤ x = 1, a
teda v na²om prípade 1/(pin)− 1 = 0, t.j. pi = 1/n, i = 1, . . . , n.

11.3 Zdruºená a podmienená entropia

De�nícia 11.3. Nech X a Y sú dve diskrétne náhodné premenné de�nované na rovnakom
pravdepodobnostnom priestore, X nadobúda hodnoty {x1, . . . , xn} s pravdepodobnos´ami
p1, . . . , pn, Y nadobúda hodnoty {y1, . . . , ym} s pravdepodobnos´ami q1, . . . , qm. Ozna£me
zdruºené pravdepodobnosti pij = P [X = xi, Y = yj], i = 1, . . . , n, j = 1, . . . ,m. Potom
de�nujeme zdruºenú entropiu

H(X, Y ) = −
n∑
i=1

m∑
j=1

pij log pij.
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V²imnite si, ºe H(X, Y ) = H(Y,X).
Aby sme vedeli lep²ie popísa´ vz´ah medzi závislos´ou náhodných premenných a entropiou,

zavedieme pojem podmienenej entropie.

De�nícia 11.4. V kontexte predchádzajúcej de�nície ozna£me podmienené pravdepodobnosti
pj|i = P [Y = yj|X = xi]. Potom podmienenou entropiou Y za podmienky X = xi nazývame

Hi(Y ) = −
m∑
j=1

pj|i log(pj|i).

Hi(Y ) meria na²u mieru neur£itosti o Y , ak vieme, ºe nastala udalos´ X = xi. Uvaºujme
teraz náhodnú premennú H.(Y ), ktorá nadobúda hodnoty H1(Y ), . . . , Hn(Y ) s pravdepodob-
nos´ami p1, . . . , pn; H.(Y ) je teda funkciou X.

De�nícia 11.5. Pod podmienenou entropiou náhodnej premennej Y pri danej X budeme
rozumie´

HX(Y ) = E(H.(Y )) =
n∑
i=1

piHi(Y ).

Veta 11.2.

HX(Y ) = −
n∑
i=1

m∑
j=1

pij log(pj|i).

Veta 11.3. Ak X a Y sú nezávislé, potom HX(Y ) = H(Y ).

Príklad 11.3.

Veta 11.4. H(X, Y ) = H(X) +HX(Y ).

Dôkaz.

H(X, Y ) = −
n∑
i=1

m∑
j=1

pij log(pj|ipi) = −
n∑
i=1

m∑
j=1

pij log(pj|i)−−
n∑
i=1

m∑
j=1

pij log(pi).

Dôsledok 11.1. AkX a Y sú nezávislé náhodné premenné, potomH(X, Y ) = H(X)+H(Y ).

11.4 Relatívna entropia a vzájomná informácia

Videli sme, ºe HX(Y ) je miera informácie Y , ktorá nie je obsiahnutá v X. Teda informácia
Y , ktorá je obsiahnutá aj v X, potom je H(Y )−HX(Y ).

De�nícia 11.6 (Vzájomná informácia). Nech X a Y sú dve diskrétne náhodné premenné
so zdruºeným rozdelením pij = P [X = xi, Y = yj], i = 1, . . . , n, j = 1, . . . ,m. Vzájomnou
informáciou X a Y nazývame

I(X, Y ) = H(Y )−HX(Y ).
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Veta 11.5 (Vlastnosti vzájomnej informácie). 1.

I(X, Y ) =
n∑
i=1

m∑
j=1

pij log

(
pij
piqj

)

2. I(X, Y ) = I(Y,X)

3. Ak X a Y sú nezávislé, potom I(X, Y ) = 0.

Dôkaz. Dôkazy tvrdení 2 a 3 sú triviálne.
1. H(Y ) = −

∑m
j=1 qj log(qj) = −

∑n
i=1

∑m
j=1 pij log(qj) a odtia©

I(X, Y ) = −
n∑
i=1

m∑
j=1

pij log(qj) +−
n∑
i=1

m∑
j=1

pij log(pj|i).

Dosadením pj|i = pij/pi dostávame poºadované tvrdenie.

Príklad 11.4.

De�nícia 11.7 (Kullback-Leiblerova vzdialenos´). Relatívna entropia alebo Kullback-Leiblerova
vzdialenos´ medzi dvoma rozdeleniami pravdepodobnosti p a q je de�novaná ako

D(p ‖ q) =
∑
x

p(x)
p(x)

q(x)
= Ep log

p(X)

q(X)
.

Poznámka 11.2. V predchádzajúcej de�nícii 0 log 0
q

= 0 a p log p
0

=∞.

Relatívna entropia je miera vzdialenosti medzi dvoma rozdeleniami pravdepodobnosti
alebo miera 'straty' pri predpoklade správnosti rozdelenia q, ak je v skuto£nosti správne
rozdelenie p.

Veta 11.6. Nech p(x), q(x) sú dve rozdelenia pravdepodobnosti. Potom D(p ‖ q) ≥ 0 a
rovnos´ nastáva práve vtedy, ke¤ p(x) = q(x) pre v²etky x.

Dôkaz. Ozna£me A = {x : p(x) > 0}. Potom

−D(p ‖ q) = −
∑
x∈A

p(x)
p(x)

q(x)
=
∑
x∈A

p(x) log
q(x)

p(x)
≤ log

∑
x∈A

p(x)
q(x)

p(x)
≤ log

∑
x

q(x) = 0.

Ke¤ºe t→ log T je striktne konkávna funkcia, rovnos´ nastáva len ak q(x)
p(x)

= 1.

Príklad 11.5.
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11.4.1 Princíp maximálnej entropie

Nech X je diskrétna náhodná premenná, ktorá nadobúda hodnoty {x1, . . . , xn} s pravde-
podobnos´ami p1, . . . , pn. Predpokladajme, ºe o X vieme, ºe E(X) = K, kde K je nejaká
kon²tanta. Ak K 6= 1

n

∑n
i=1 xi, vieme, ºe X nemá rovnomerné rozdelenie.

H©adajme maximum entropie H(X) vzh©adom na ohrani£enia
∑n

i=1 pi = 1,
∑n

i=1 pixi =
K.

Maximalizujeme teda funkciu (n+ 2) premenných

L(p1, . . . , pn;λ, µ) = −
n∑
i=1

pi log(pi) + λ

(
n∑
i=1

pi − 1

)
+ µ

(
n∑
i=1

pixi −K

)
,

kde λ a µ sú Lagrangeove multiplikátory.
Ak túto funkciu zderivujeme pod©a premenných a deriváciu poloºíme rovnú 0, dostávame

vyjadrenie pre pi:
pi = exp ln(2)λ− 1 + ln(2)µxi, i = 1, . . . , n.

Pretoºe
∑n

i=1 pi = 1, musí plati´

λ =
1

ln(2)

(
1− ln

(
n∑
i=1

exp ln(2)µxi

))
(11.1)

a odtia© dostávame tzv. Gibbsovo rozdelenie

pi =
exp ln(2)µxi∑n
i=1 exp ln(2)µxi

, i = 1, . . . , n. (11.2)

Gibbsovo rozdelenie je teda prirodzenou alternatívou k rovnomernému rozdeleniu, ak po-
známe len strednú hodnotu náhodnej premennej.

11.5 Entropy rate

V prípade postupnosti n náhodných premenných je prirodzené pýta´ sa, ako rastie entropia s
rastúcim n.

De�nícia 11.8. Miera entropie náhodného procesu {Xi} je de�novaná ako

H(S) = lim
n→∞

1

n
H(X1, . . . , Xn)

Príklad 11.6. Nech X1, X2, . . . sú nezávislé a rovnako rozdelené náhodné premenné. Potom

H(S) = lim
n→∞

H(X1, . . . , Xn)

n
= lim

n→∞

nH(X1)

n
= H(X1)

Veta 11.7. Ak je {Xi} stacionárny markovovský re´azec, potom

H(S) = lim
n→∞

H(Xn|Xn−1, . . . , X1) = lim
n→∞

H(Xn|Xn−1) = H(X2|X1),

kde podmienenú entropiu po£ítame pri danom stacionárnom rozdelení π, teda

H(S) = −
∑
i,j

πipij log pij.

Príklad 11.7. Entropia markovovského re´azca z príkladu 6.4 je

H(S) = H(X2|X1) =
p

p+ q
H(q) +

q

p+ q
H(p).
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11.6 Cvi£enia

Úloha 11.1. Nech S =
∑1

k=1 01/k2. Uvaºujme náhodnú premennú X takú, ºe P [X = k] =
1/S · k2 pre k = 1, . . . , 10. Nájdite H(X).

Úloha 11.2. Hádºeme vyváºenou mincou aº pokia© nepadne hlava. Nájdite entropiu náhodnej
premennej X, ktorá reprezentuje po£et hodov v tomto experimente.



Kapitola 12

Lineárny regresný model

12.1 Rozdelenia pravdepodobnosti odvodené od normál-
neho rozdelenia

De�nícia 12.1. Nech X1, ..., Xk sú nezávislé náhodné premenné s rozdelením N(0, 1). Potom
rozdelenie náhodnej premennej Z =

∑k
i=1X

2
i nazývame chíkvadrát rozdelenie s k-stup¬ami

vo©nosti. Zna£íme Z ∼ χ2
k.

Dá sa ukáza´, ºe Z ∼ χ2
k vtedy a len vtedy, ke¤ je Z spojitá náhodná premenná s hustotou

danou predpisom

f(z) =
zk/2−1e−z/2

2k/2Γ(k/2)

pre z > 0 a f(z) = 0 pre z ≤ 0. Vo vyjadrení tejto hustoty je Γ takzvaná gama funkcia, pre
ktorú platí Γ(1/2) =

√
π a pre kaºdé k ∈ N: Γ(k) = (k− 1)! a Γ(k+ 1/2) =

√
π

2k
(2k− 1)!!. Pre

na²e potreby v²ak nie je tvar hustoty rozdelenia χ2
k dôleºitý.

Veta 12.1. Nech Z ∼ χ2
k. Potom E(Z) = k a D(Z) = 2k.

Dôkaz. Ak Z ∼ χ2
k, potom Z =

∑k
i=1 X

2
i , kde X1, ..., Xk sú nezávislé náhodné premenné

s rozdelením N(0, 1). Ke¤ºe E(X2
i ) = D(Xi) + (E(Xi))

2 = 1 + 0 = 1, tak platí E(Z) =∑k
i=1 E(X2

i ) = k. Na odvodenie disperzie Z po£ítajme: E(X4
i ) =

∫∞
−∞ x

4 1√
2π
e−x

2/2dx = 3

(pozri poznámku 7.1). To znamená, ºe D(X2
i ) = E(X4

i )− (E(X2
i ))2 = 3− 1 = 2. S pouºitím

vety 8.14 dostávame D(Z) =
∑k

i=1D(X2
i ) = 2k.

De�nícia 12.2. Nech Y, Z sú nezávislé náhodné premenné, pri£om Y ∼ N(0, 1) a Z ∼
χ2
k. Potom rozdelenie náhodnej premennej T = Y/

√
Z/k nazývame t-rozdelenie (alebo aj

Studentove rozdelenie) s k-stup¬ami vo©nosti. Zna£íme T ∼ tk.

Podobne ako v prípade rozdelenia χ2
k, nie je pre na²e potreby dôleºité pozna´ tvar hustoty

rozdelenia tk. Uvedieme ho len v tejto poznámke:

f(t) =
Γ((k + 1)/2)√
πkΓ(k/2)

(
1 +

t2

k

)− k+1
2

pre v²etky t ∈ R. Rozdelenie t1 sa nazýva Cauchyho rozdelenie a z teoretického h©adiska
je zaujímavé napríklad tým, ºe nemá strednú hodnotu. Pre k ≥ 2 rozdelenie tk má strednú
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hodnotu 0. Disperzia rozdelenia tk je kone£ná pre k ≥ 3 a rovná k/(k− 2), £o v²ak nebudeme
dokazova´. Je tieº moºné ukáza´, ºe pre k → ∞ konvergujú hustoty rozdelení tk k hustote
rozdelenia N(0, 1).

12.2 Náhodný výber a výberové charakteristiky

Máme kone£nú mnoºinu £ísel {y1, . . . , yn}, ktoré sme získali meraním nejakej veli£iny v danej
populácii (napr. krvný tlak u pacientov uºívajúcich konkrétny liek).

De�nícia 12.3. Nech Y1, ..., Ym sú nezávislé náhodné premenné, v²etky s rovnakým rozdele-
ním daným distribu£nou funkciou F . Potom hovoríme, ºe náhodné premenné Y1, ..., Ym tvoria
náhodný výber rozsahu m z rozdelenia s distribu£nou funkciou F .

Aby sme v skratke popísali tento, £asto rozsiahly, súbor dát, pouºívame súhrnné charakte-
ristiky. Na£astej²ie pouºívanou charakteristikou polohy je výberový priemer a charakteristikou
variability výberový rozptyl.

De�nícia 12.4. Nech Y1, ..., Ym, m ≥ 2 tvoria náhodný výber (z nejakého rozdelenia). Nech

Ȳ =
1

m

m∑
i=1

Yi a S2 =
1

m− 1

m∑
i=1

(Yi − Ȳ )2

Potom náhodnú premennú Ȳ nazveme výberový priemer a náhodnú premennú S2 výberový
rozptyl náhodných premenných Y1, ..., Ym.

Veta 12.2. Nech Y1, ...Ym tvoria náhodný výber z rozdelenia N(µ, σ2), pri£om m ≥ 2. Nech
Ȳ je výberový priemer a S2 je výberový rozptyl náhodného výberu Y1, ..., Ym. Potom platí:

Ȳ ∼ N(µ, σ2/m) E(Ȳ ) = µ

(m− 1)S2

σ2
∼ χ2

m−1 E(S2) = σ2

T =
Ȳ − µ
S

√
m ∼ tm−1

Dôkaz. Ak Y1, ..., Ym tvoria náhodný výber z rozdelenia N(µ, σ2), potom pre náhodný vektor
Y = (Y1, ..., Ym)T platí:Y ∼ Nm(Fθ, σ2I), kde θ = µ a F = (1, 1, ..., 1)T . Máme teda ²peciálny
prípad vety 12.5 s k = 1. V²imneme si, ºe

θ̂ = (F TF )−1F TY = Ȳ

a ºe náhodná premenná S2 z vety 12.5 je práve výberový rozptyl náhodného výberu Y1, ..., Ym.
Tým dostávame tvrdenie o rozdelení a strednej hodnote Ȳ a S2. Posledné tvrdenie dostaneme
tak, ºe vo vete 12.5 poloºíme c = 1.
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12.3 Lineárny regresný model

12.3.1 Lineárny regresný model priamkou

Príklad 12.1. Chceme ur£i´ závislos´ medzi dávkou radiácie a zmen²ovaním nádoru v nasle-
dovnej situácii:

x: dávka radiácie 1 2 3 4 5
y: ve©kos´ nádoru 14 11 10 8.5 6.5

Predpokladajme,ºe závislos´ sa riadi jednoduchým lineárnym modelom

y(xi) = θ0 + θ1xi + εi,

kde εi je náhodná chyba i-teho merania.
Na²im cie©om je ur£i´ neznámy vektor θ = (θ0, θ1)T tak, aby výsledná priamka £o naj-

viac zodpovedala meraniam. Chceme teda minimalizova´ ²tvorce odchýlok na²ej priamky od
nameraných hodnôt, a teda nájs´ také θ̂, aby platilo

θ̂ = arg min
θ∈R2

5∑
i=1

[y(xi)− (θ0 + θ1xi)]
2.

De�nícia 12.5. Ak Y1, ..., Ym je postupnos´ nezávislých náhodných premenných, pri£om Yi ∼
N(axi + b, σ2), kde x1, ..., xm ∈ R, a, b ∈ R a σ2 > 0, tak hovoríme, ºe náhodné premenné
Y1, ..., Ym sp¨¬ajú lineárny regresný model priamkou s normálnymi a nezávislými chybami s
kon²tantným rozptylom σ2.

V²imnite si, ºe Y1, ..., Ym sp¨¬ajú predpoklady prechádzajúcej de�nície vtedy a len vtedy,
ke¤ Yi = axi+b+εi, kde �chyby meraní� ε1, ..., εm tvoria náhodný výber z rozdelenia N(0, σ2).

Veta 12.3. Nech Y1, ..., Ym, m ≥ 3 je postupnos´ nezávislých náhodných premenných, pri£om
Yi ∼ N(axi + b, σ2), kde x1, ..., xm ∈ R nie sú v²etky rovnaké, a, b ∈ R, σ2 > 0. Nech
x̄ = (1/m)

∑m
i=1 xi. De�nujme nasledovné náhodné premenné:

â =

∑m
i=1 Yi(xi − x̄)∑m
i=1(xi − x̄)2

, b̂ = Ȳ − âx̄, S2 =
1

m− 2

m∑
i=1

(Yi − âxi − b̂)2

Potom platí:
(â, b̂)T ∼ N2((a, b)T ,Σ) E((â, b̂)T ) = (a, b)T

kde

Σ =
σ2

m
∑m

i=1 x
2
i −m2x̄2

(
m −mx̄
−mx̄

∑m
i=1 x

2
i

)
(m− 2)S2

σ2
∼ χ2

m−2 E(S2) = σ2

â− a
S

√√√√ m∑
i=1

x2
i −mx̄2 ∼ tm−2
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Dôkaz. Tvrdenie vety je priamym dôsledkom vety 12.5. Skuto£ne, ak ozna£ímeY = (Y1, ..., Ym)T

a θ = (a, b)T , potom platí: Y ∼ Nm(Fθ, σ2I), kde

F =

(
x1 x2 . . . xm
1 1 . . . 1

)T
V²imnime si, ºe ak x1, ..., xm nie sú v²etky rovnaké, tak hodnos´ matice F je k = 2. Mecha-
nickým výpo£tom sa ©ahko presved£íme, ºe platí

(â, b̂)T = (F TF )−1F TY

¤alej ºe náhodné premenné S2 v tejto vete a vo vete 12.5 sú (pre na²e ²peci�cké F ) rovnaké
a ºe

(F TF )−1 =
1

m
∑m

i=1 x
2
i −m2x̄2

(
m −mx̄
−mx̄

∑m
i=1 x

2
i

)
Takto z vety 12.5 priamo dostávame rozdelenie a stredné hodnoty (â, b̂)T a S2. Posledný výrok
dostaneme tak, ºe vo vete 12.5 poloºíme c = (1, 0)T .

K predpisom pre â a b̂ je moºné dospie´ pomocou takzvanej metódy najmen²ích ²tvorcov,
t.j. â a b̂ minimalizujú sú£et

∑m
i=1(Yi − axi − b)2. Náhodné premenné â, b̂ sa preto nazývajú

odhady koe�cientov a, b pomocou metódy najmen²ích ²tvorcov (MN�-odhady).

12.3.2 Základná veta o lineárnom regresnom modeli

Vo v²eobecnosti, ak v bodoch ξ1, . . . , xm nameriame dáta y1, . . . , ym, lineárnym regresným
modelom nazývame vz´ah

yi = fT (xi)θ + εi,

kde f je daná vektorová funkcia, θ = (θ1, . . . , θk)
T je vektor neznámych parametrov a pre

náhodné chyby platí E(εi) = 0, D(εi) = σ2 a cov(εi, εj) = 0 pre i 6= j. Na²ou úlohou je z dát
odhadnú´ priebeh regresnej funkcie x→ fT (x)θ.

Veta 12.4. Nech F je matica typu m × k, pri£om k < m a hodnos´ matice F je k, θ ∈ Rk.
Potom minimaliza£ný problém

θ̂ = arg min
θ∈Rk

m∑
i=1

[Yi − (Fθ)i]
2

má práve jedno rie²enie
θ̂ = (F TF )−1F TY

Veta 12.5. Nech pre náhodný vektor Y = (Y1, ..., Ym)T platí:

Y ∼ Nm(Fθ, σ2I)

kde F je matica typu m× k, pri£om k < m a hodnos´ matice F je k, ¤alej θ ∈ Rk, σ2 > 0 a
I je jednotková matica typu m×m. Nech

θ̂ = (F TF )−1F TY
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S2 =
1

m− k

∥∥∥Y − F θ̂∥∥∥2

=
1

m− k

m∑
i=1

(
Yi − (F θ̂)i

)2

Potom platí
θ̂ ∼ Nk(θ, σ

2(F TF )−1) E(θ̂) = θ

(m− k)S2

σ2
∼ χ2

m−k E(S2) = σ2

T =
cT (θ̂ − θ)

S
√
cT (F TF )−1c

∼ tm−k

pre kaºdý nenulový vektor c ∈ Rk.

Veta 12.6. Nech Y1,1, ...Y1,m1 , Y2,1, ..., Y2,m2 sú zdruºene nezávislé náhodné premenné. Pre
i = 1 aj pre i = 2 nech Yi,1, ...Yi,mi tvoria náhodný výber z rozdelenia N(µi, σ

2), pri£om
mi ≥ 2, σ2 > 0 a nech Ȳi a S2

i sú výberový priemer, resp. výberový rozptyl daného náhodného
výberu. Ozna£me m = m1 +m2 a

S2 =
1

m− 2

(
(m1 − 1)S2

1 + (m2 − 1)S2
2

)
Potom platí:

(m− 2)S2

σ2
∼ χ2

m−2 E(S2) = σ2

T =
Ȳ1 − Ȳ2 − (µ1 − µ2)

S
√

1
m1

+ 1
m2

∼ tm−2

Dôkaz. Veta je ²peciálnym prípadom tvrdenia 12.5 pre Y = (Y1,1, ...Y1,m1 , Y2,1, ..., Y2,m2)
T ,

m = m1 +m2, k = 2, θ = (µ1, µ2)T

F =

(
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1

)T
(v©avo hore je m1 a vpravo dole je m2 jednotiek) a pre c = (1,−1)T .



Kapitola 13

Bodové a intervalové odhady parametrov
²tatistických modelov

13.1 Bodové odhady

De�nícia 13.1 (Nevychýlený bodový odhad parametra). Nech Θ ⊆ Rk je parametrický
priestor a nech {Fθ : Rm → [0, 1]; θ ∈ Θ} je parametrická trieda distribu£ných funkcií. Nech
gi : Rm → R je taká funkcia, ºe pre kaºdé θ ∈ Θ platí: Ak náhodný vektor (X1, ..., Xm)T má
distribu£nú funkciu Fθ, tak náhodná premenná Ti = gi(X1, ..., Xm) má strednú hodnotu θi.
Náhodnú premennú Ti potom nazývame nevychýlený odhad parametra θi.

De�nícia 13.2. Hovoríme, ºe odhad T ∗ je rovnomerne lep²í ako odhad T , akDθ(T
∗) ≤ Dθ(T )

pre v²etky θ ∈ Θ.

De�nícia 13.3 (Konzistentný odhad). Odhad Tn, ktorý dostaneme na základe náhosného
výberu rozsahu n, nazývame konzistentný, ak

∀ε > 0 ∀θ : lim
n→∞

Pθ[|Tn − θ| < ε] = 1.

13.1.1 Metóda maximálnej vierohodnosti

De�nícia 13.4. Nech x1, . . . , xn je realizácia náhodného výberu z rozdelenia s Pθ[X = x]
alebo s hustotou f(x; θ). Odhadom parametra θ metódou maximálnej vierohodnosti roz-
umieme tú hodnotu θ̂, ktorá maximalizuje vierohodnostnú funkciu

L(θ) =

{
Pθ[X1 = x1] · · ·Pθ[Xn = xn] pre diskrétne rozdelenie
f(x1; θ) · · · f(xn; θ) pre spojité rozdelenie.

Funkcia vierohodnosti L je teda zdruºená hustota X1, . . . , Xn chápaná ako funkcia θ:

L(x; θ) =
n∏
i=1

f(xi; θ)

a
θ̂ = arg max

θ
L(x; θ)

Vä£²inou je ©ah²ie narába´ s prirodzeným logaritmom tejto funkcie (tzv. log-likelihood)

l(x; θ) = lnL(x; θ)
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Príklad 13.1. Máme realizáciu x1, . . . , xn z alternatívneho rozdelenia s parametrom p ∈
(0, 1). Odhadnite tento parameter metódou maximálnej vierohodnosti.

L(x; p) = P [X1 = x1] · · ·P [Xn = xn] = p
∑
xi(1− p)n−

∑
xi

Logaritmus vierohodnostnej funkcie je

l(x; p) = lnL(x; p) =
∑

xi ln p+ (n−
∑

xi) ln(1− p)

Aby sme ur£ili maximum, poloºíme deriváciu rovnú 0:

l′(x; p) =
1

p

∑
xi +

1

1− p
∑

xi = 0 =⇒ p̂ =
1

n

∑
xi

13.2 Intervalové odhady

De�nícia 13.5 (Interval spo©ahlivosti). Nech Θ ⊆ Rk je parametrický priestor, nech
{Fθ : Rm → [0, 1]; θ ∈ Θ} je parametrická trieda distribu£ných funkcií a nech α ∈ (0, 1). Nech
g∗ : Rm → R a g∗ : Rm → R sú také funkcie, ºe g∗ ≤ g∗ na celom Rk a pre kaºdé θ ∈ Θ platí:
Ak náhodný vektor (X1, ..., Xm)T má distribu£nú funkciu Fθ, tak

P [g∗(X1, ..., Xm) < θi < g∗(X1, ..., Xm)] = 1− α

Potom povieme, ºe (náhodný) interval

[g∗(X1, ..., Xm), g∗(X1, ..., Xm)]

je 100(1− α)-percentným intervalom spo©ahlivosti pre parameter θi.

13.2.1 Odhady parametrov náhodného výberu z N(µ, σ2)

Veta 13.1. Nech Y1, ..., Ym je náhodný výber z rozdelenia N(µ, σ2), kde m ≥ 2, µ ∈ R,
σ2 > 0, nech Ȳ je výberový priemer a S2 je výberový rozptyl náhodného výberu Y1, ..., Ym.
Potom Ȳ je nevychýlený odhad parametra µ, S2 je nevychýlený odhad parametra σ2. Naviac,
pre α ∈ (0, 1) je [

Ȳ −∆µ, Ȳ + ∆µ

]
, kde ∆µ = tm−1(1− α/2)

S√
m

100(1− α)-percentný interval spo©ahlivosti pre parameter µ a[
(m− 1)S2

χ2
m−1(1− α/2)

,
(m− 1)S2

χ2
m−1(α/2)

]
100(1− α)-percentný interval spo©ahlivosti pre parameter σ2.

Dôkaz. Veta je dôsledkom vety 12.2 a de�nícií intervalov spo©ahlivosti a kvantilov.

Poznámka 13.1. V²imnite si, ºe d¨ºka intervalu spo©ahlivosti klesá s rastúcim �po£tom po-
zorovaní� m, ale rastie so zmen²ujúcou sa hodnotu α, t.j. ak rastú na²e poºiadavky na spo-
©ahlivos´ tohoto intervalu.
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Príklad 13.2. V analýze bezpe£nosti siete sa testoval £as potrebný na prenos paketov apli-
kácie v pevnej a bezdrôtovej sieti. Nájdite 95%-ný interval spo©ahlivosti pre rozdiel stredných
hodnôt, ak máme k dispozícii nasledovné údaje:

výb.priemer smer. odchýlka ve©kos´ výberu
pevná sie´ 2.000 6.299 436

bezdrôtová sie´ 11.520 9.939 344
Rie²enie:

11.520− 2.000± 1.96

√
6.2992

436
+

9.9392

344
= 9.52± 1.22

13.3 Odhady parametrov lineárneho regresného modelu
priamkou

Veta 13.2. Nech Y1, ..., Ym, m ≥ 3 je postupnos´ nezávislých náhodných premenných, pri£om
Yi ∼ N(axi + b, σ2), kde x1, ..., xm ∈ R nie sú v²etky rovnaké, a, b ∈ R, σ2 > 0. Nech
x̄ = (1/m)

∑m
i=1 xi a nech x ∈ R. Nech â, b̂ a S2 sú náhodné premenné de�nované vo vete

12.3 Potom â je nevychýlený odhad parametra a, b̂ je nevychýlený odhad parametra b a S2

je nevychýlený odhad parametra σ2. Naviac, pre α ∈ (0, 1) je

[â−∆a, â+ ∆a] , kde ∆a =
tm−2(1− α/2)S√∑m

i=1 x
2
i −mx̄2

100(1− α)-percentný interval spo©ahlivosti pre parameter a,[
b̂−∆b, b̂+ ∆b

]
, kde ∆b = tm−2(1− α/2)S

√
1

m
+

x̄2∑m
i=1 x

2
i −mx̄2

100(1− α)-percentný interval spo©ahlivosti pre parameter b,[
(m− 2)S2

χ2
m−2(1− α/2)

,
(m− 2)S2

χ2
m−2(α/2)

]
100(1− α)-percentný interval spo©ahlivosti pre parameter σ2 a pre akéko©vek x ∈ R je[

âx+ b̂−∆x, âx+ b̂+ ∆x

]
, kde

∆x = tm−2(1− α/2)S

√
1

m
+

(x− x̄)2∑m
i=1 x

2
i −mx̄2

100(1− α)-percentný interval spo©ahlivosti pre hodnotu ax+ b.

Dôkaz. Veta je dôsledkom vety 12.3 a de�nícií intervalov spo©ahlivosti a kvantilov.

Poznámka 13.2. Uvaºujme zna£enie z predchádzajúcej vety. Potom mnoºina

H =
{

(x, y)T ∈ R2 : âx+ b̂−∆x ≤ y ≤ âx+ b̂+ ∆x

}
sa nazýva pás spo©ahlivosti pre hodnoty ax + b. Pás spo©ahlivosti je najuº²í v bode x = x̄ a
roz²iruje sa pre x→∞ a x→ −∞.
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13.4 Cvi£enia

Úloha 13.1. 100 náhodne vybraných programátorov sme sa spýtali, £i je C++ ich ob©úbený
programovací jazyk a 15 z nich odpovedalo kladne. Nájdite 95%-ný interval spo©ahlivosti pre
podiel programátorov, ktorých ob©úbeným jazykom je C++.

Úloha 13.2. Do siete po²leme 500 paketov v £ase medzi 10 a 11 hodinou a zistíme priemerné
oneskorenie 0.8s so smerodajnou odchýlkou 0.1. Pre 200 paketov v £ase medzi 22 a 23 hodi-
nou sme zistili priemerné oneskorenie 0.5s so smerodajnou odchýlkou 0.08. Zostrojte 99%-ný
interval spo©ahlivosti pre rozdiel medzi oneskoreniami.

Úloha 13.3. Merali sme vý²ku 12 rôznych detí vo vekoch od x1 = 18, x2 = 19, ..., x12 = 29
mesiacov. Predpokladáme, ºe stredná vý²ka (v danom vekovom rozmedzí) má lineárny trend v
závislosti od veku, pri£om individuálne odchýlky od strednej vý²ky majú normálne rozdelenie s
rozptylom nezávislým od veku. Formálne: pre die´a vo veku xi je nameraná vý²ka yi realizáciou
náhodnej premennej Yi = axi + b + εi, kde εi ∼ N(0, σ2). Nájdite regresnú priamku âx + b̂,
kde â a b̂ sú odhady parametrov a, b metódou najmen²ích ²tvorcov. Platí:

∑12
i=1 xi = 282,∑12

i=1 x
2
i = 6770,

∑12
i=1 yi = 961,

∑12
i=1 yixi = 22751, 6.

Úloha 13.4. Meriame rýchlos´ pohybujúceho sa objektu v £asoch ti = i sekúnd, pre i =
1, 2, 3, 4, 5. Z fyzikálnej podstaty problému a vlastností meracích zariadení vieme, ºe nameraná
rýchlos´ objektu v £ase t je náhodná premenná s rozdelením N(at+ b, σ2), kde a je zrýchlenie
objektu, b je jeho po£iato£ná rýchlos´ a σ2 je kon²tanta charakterizujúca chybovos´ meraní.
Naviac vieme, ºe merania sú navzájom nezávislé. Konkrétne namerané hodnoty rýchlosti boli
v1 = 99, 27; v2 = 108, 80; v3 = 119, 39; v4 = 128, 30 a v5 = 139, 88 m/s. Platí:

∑5
i=1 vi =

595, 64 a
∑5

i=1 tivi = 1887, 64. Nájdite odhad â zrýchlenia a b̂ po£iato£nej rýchlosti metódou
najmen²ích ²tvorcov.

Úloha 13.5. Za ú£elom testovania ²peciálnej váhy sme vykonali 10 nezávislých váºení závaºia,
ktorého hmotnos´ je presne 1 gram. V kaºdom váºení váha ukázala mierne odli²ný výsledok.
Z výsledkov sme vypo£ítali výberový priemer 1, 004581 gramu a výberový rozptyl 0, 000119
g2. Predpokladáme, ºe výsledky jednotlivých meraní majú normálne rozdelenie N(µ, σ2). Vy-
konajte test hypotézy H0 : µ = 1 vo£i H1 : µ 6= 1 na hladine významnosti α = 0, 1. Vieme, ºe
95-percentný kvantil Studentovho rozdelenia s 9-timi stup¬ami vo©nosti je t9(0, 95) ≈ 1, 833.



Kapitola 14

Testovanie ²tatistických hypotéz

14.1 V²eobecný úvod k testovaniu ²tatistických hypotéz

Majme daný pravdepodobnostný model na rozdelenie dát Y1, ..., Ym vyjadrený (napríklad)
systémom distribu£ných funkcií {F (·, θ); θ ∈ Θ}, kde Θ ⊆ Rk je parametrický priestor. To
znamená, ºe vieme, ºe náhodný vektor pozorovaní Y = (Y1, ..., Ym)T má distribu£nú funkciu
F (·, θ∗) pre nejaké �xné, �skuto£né�, no neznáme θ∗ ∈ Θ. Uvaºujme �nulovú� hypotézu H0, ºe
skuto£né θ∗ patrí do mnoºiny Θ0 ⊆ Θ a �alternatívnu� hypotézu H1, ºe θ∗ nepatrí do Θ0, £o
symbolicky zna£íme

H0 : θ ∈ Θ0 vo£i H1 : θ /∈ Θ0

Na²im cie©om je skon²truova´ procedúru (nazývanú ²tatistický test), ktorej vstupom budú
realizácie náhodných premenných Y1, ..., Ym a výsledkom bude bu¤ �H0 nezamietame�, alebo
�H0 zamietame�, s vlastnos´ou:

Ak hypotéza H0 platí, tak (z poh©adu pred získaním realizácií náhodných premenných
Y1, ..., Ym) nastane výsledok �zamietame H0� s vopred zvolenou pravdepodobnos´ou α.

Pravdepodobnos´ α, t.j. pravdepodobnos´, ºe H0 zamietneme napriek tomu, ºe H0 je
platné, nazývame chyba 1. druhu daného testu a test s chybou 1. druhu rovnou α nazý-
vame test �na hladine významnosti� α. Hodnota α sa naj£astej²ie volí 0, 05. V matematickej
²tatistike je predpis pre test so zadanou chybou 1. druhu α obvykle takýto:

Ak g(Y1, ..., Ym) ∈ Wα, tak výsledok testu je �H0 zamietame�, inak je výsledok testu �H0

nezamietame�.

Pritom funkcia g : Rm → R a mnoºina Wα ⊂ R sú zvolené tak, aby platilo

P [g(Y1, ..., Ym) ∈ Wα] = α.

V takomto prípade nazývame mnoºinu Wα kritickou oblas´ou pre ²tatistiku (funkciu dát)
T = g(Y1, ..., Ym) a test H0 : θ ∈ Θ0 vo£i H1 : θ /∈ Θ0 na hladine významnosti α.

Pre danú hypotézu H0 je obvykle moºné skon²truova´ ve©ké mnoºstvo rôznych testov na
hladine významnosti α. Takéto testy sa pritom môºu podstatne lí²i´ a to tým, akú majú
takzvanú chybu 2. druhu, t.j. s akou pravdepodobnos´ou vrátia výsledok �H0 nezamietame�,
ak H0 neplatí. Chybami druhého druhu sa v²ak nebudeme zaobera´.
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De�nícia 14.1 (Kvantil). Nech X je náhodná premenná s distribu£nou funkciou F . Nech
G je kvantilová funkcia distribu£nej funkcie F a nech p ∈ (0, 1). Potom £íslo G(p) nazveme
p-kvantilom (alebo 100p-percentným kvantilom) náhodnej premennej X. Pre náhodnú pre-
mennú X s rozdelením χ2

k a tk ozna£ujeme p-kvantil symbolom χ2
k(p), resp. tk(p).

Ekvivalentná, ale názornej²ia de�nícia kvantilu χ2
k(p) je nasledovná: Nech náhodná pre-

menná Z má rozdelenie χ2
k. Potom χ2

k(p) je to (jednozna£ne ur£ené) reálne £íslo, pre ktoré
platí P [Z < χ2

k(p)] = p. Podobne, ak náhodná premenná T má rozdelenie tk, tak tk(p) je to
(jednozna£ne ur£ené) reálne £íslo, pre ktoré platí P [T < tk(p)] = p.
Hodnoty χ2

k(p) alebo tk(p) obvykle získame z tabuliek, alebo pomocou vhodného ²tatistického
(numerického) programu. Tieto hodnoty nie je vo v²eobecnosti jednoduché vypo£íta´.

14.2 Testovanie hypotéz o strednej hodnote a disperzii

Pre model Y1, ..., Ym náhodného výberu z normálneho rozdelenia N(µ, σ2) môºeme testova´
hypotézy o strednej hodnote µ aj disperzii σ2 pomocou nasledovnej vety.

Veta 14.1. Nech Y1, ..., Ym je náhodný výber z rozdelenia N(µ, σ2), kde m ≥ 2, µ ∈ R,
σ2 > 0, Ȳ je výberový priemer a S2 je výberový rozptyl náhodného výberu Y1, ..., Ym a nech
α ∈ (0, 1).

Nech µ0 ∈ R. Pre test hypotézy

H0 : µ = µ0 vo£i H1 : µ 6= µ0

na hladine významnosti α, je mnoºina

Wα = (−∞,−tm−1(1− α/2)) ∪ (tm−1(1− α/2),∞)

kritickou oblas´ou ²tatistiky
Ȳ − µ0

S

√
m

Nech σ2
0 > 0. Pre test hypotézy

H0 : σ2 = σ2
0 vo£i H1 : σ2 > σ2

0

na hladine významnosti α, je mnoºina

Wα =
(
χ2
m−1(1− α),∞

)
kritickou oblas´ou ²tatistiky

(m− 1)S2

σ2
0

Dôkaz. Veta je dôsledkom vety 12.2, de�nície ²tatistického testu a kvantilov.
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14.3 Testovanie hypotézy o rozdiele stredných hodnôt

Pre dva nezávislé náhodné výbery z normálneho rozdelenia sa naj£astej²ie testuje hypotéza
týkajúca sa rozdielu µ1 − µ2 stredných hodnôt, obzvlá²´ hypotéza µ1 − µ2 = 0 ºe náhodné
výbery nevykazujú ²tatisticky významný rozdiel stredných hodnôt.

Veta 14.2. Uvaºujme rovnaké predpoklady a zna£enie ako vo vete 12.6.
Nech α ∈ (0, 1) a ∆0 ∈ R. Pre test hypotézy

H0 : µ1 − µ2 = ∆0 vo£i H1 : µ1 − µ2 6= ∆0

na hladine významnosti α, je mnoºina

Wα = (−∞,−tm−2(1− α/2)) ∪ (tm−2(1− α/2),∞)

kritickou oblas´ou ²tatistiky

T =
Ȳ1 − Ȳ2 −∆0

S
√

1
m1

+ 1
m2

Dôkaz. Veta je priamym dôsledkom vety 12.6, de�nície ²tatistického testu a kvantilov.

14.4 Testovanie hypotézy o sklone regresnej priamky

Ak modelujeme pozorovania Y1, ..., Ym lineárnym regresným modelom priamkou (de�nícia
12.5), môºeme v princípe testova´ mnoho hypotéz týkajúcich sa parametrov a, b, alebo dis-
perzie σ2 odchýlok. Av²ak obvykle sa testuje hypotéza o sklone regresnej priamky, t.j. o pa-
rametri a. Obzvlá²´ £asto sa testuje konkrétne hypotéza a = 0, t.j. hypotéza, ºe pozorovania
Y nevykazujú ²tatisticky významný rastúci (alebo klesajúci) trend pri zmene hodnôt x.

Veta 14.3. Uvaºujme rovnaké predpoklady a zna£enie ako vo vete 12.3.
Nech α ∈ (0, 1) a a0 ∈ R. Pre test hypotézy

H0 : a = a0 vo£i H1 : a 6= a0

na hladine významnosti α, je mnoºina

Wα = (−∞,−tm−2(1− α/2)) ∪ (tm−2(1− α/2),∞)

kritickou oblas´ou ²tatistiky

â− a0

S

√√√√ m∑
i=1

x2
i −mx̄2.

Dôkaz. Veta je dôsledkom vety 12.3, de�nície ²tatistického testu a kvantilov.
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14.5 Cvi£enia

Úloha 14.1. V roku 1882 vykonal Michelson 23 nezávislých meraní rýchlosti svetla, pri£om
priemer nameraných hodnôt bol x̄ = 299756, 2 km/s a výberový rozptyl meraní vy²iel S2 =
11473, 54. Môºeme predpoklada´, ºe merania zodpovedali realizáciám nezávislých náhodných
premenných s normálnym rozdelením N(µ, σ2). Na hladine významnosti α = 0, 05 testujte
hypotézu, ºe Michelsonove merania neboli za´aºené výchylkou strednej hodnoty, t.j. testujte,
ºe µ = 299792, 5 km/s, £o je �presná� rýchlos´ svetla ur£ená modernými metódami. Vieme,
ºe t22(0, 975) = 2, 074.

Príklad 14.1. Z ve©kého súboru rezistorov rovnakého typu a nominálnej hodnoty sme vybrali
16 kusov. Na základe dlhodobých skúseností môºeme predpoklada´, ºe v základnom súbore
majú hodnoty odporu rezistorov v kΩ rozdelenie N(µ, σ2), av²ak µ a σ2 sú neznáme. Výberový
priemer odporu vybratých rezistorov je 9, 3 kΩ a výberový rozptyl 6, 25 (kΩ)2.
a) Ur£te realizáciu 99-percentného intervalu spo©ahlivosti pre parameter µ.
b) Ur£te realizáciu 99-percentného intervalu spo©ahlivosti pre parameter σ2.
c) Na hladine významnosti α = 0, 1 testujte hypotézu, ºe µ = 10 kΩ.
d) Na hladine významnosti α = 0, 1 testujte hypotézu, ºe σ2 = 4 (kΩ)2.
Potrebné kvantily sú nasledovné: t15(0, 995) = 2, 95, t15(0, 95) = 1, 75, χ2

15(0, 995) = 32, 80,
χ2

15(0, 95) = 25, 00, χ2
15(0, 005) = 4, 60, χ2

15(0, 05) = 7, 26.



Literatúra

[1] N.Alon, J.H.Spencer: The Probabilistic Method, Wiley-Interscience, 2008

[2] T.M.Cover, J.A.Thomas: Elements of Information Theory, Wiley-Interscience, 2006

[3] M.Mitzenmacher, E.Upfal: Probability and Computing, Cambridge University Press,
2005

[4] R.Motwani, P.Raghavan: Randomized Algorithms, Cambridge University Press, 1995

[5] S.M.Ross: Simulation, Academic Press, 2012

95


	1 Úvod
	2 Axiomatická definícia pravdepodobnosti
	2.1 Priestor udalostí
	2.2 Pravdepodobnostná miera
	2.3 Základné vlastnosti pravdepodobnosti
	2.4 Cvičenia

	3 Podmieňovanie a nezávislosť udalostí
	3.1 Podmienená pravdepodobnosť
	3.2 Nezávislosť udalostí
	3.3 Cvičenia

	4 Všeobecné náhodné premenné
	4.1 Základné vlastnosti náhodných premenných
	4.2 Distribučná funkcia náhodnej premennej
	4.3 Cvičenia

	5 Diskrétne náhodné premenné
	5.1 Základné vlastnosti diskrétnych náhodných premenných
	5.2 Číselné charakteristiky diskrétnych náhodných premenných
	5.3 Základné typy diskrétnych náhodných premenných
	5.3.1 Alternatívne rozdelenie
	5.3.2 Binomické rozdelenie
	5.3.3 Poissonovo rozdelenie
	5.3.4 Geometrické rozdelenie
	5.3.5 Hypergeometrické rozdelenie

	5.4 Využitie indikátorov udalostí a linearity strednej hodnoty
	5.5 Cvičenia

	6 Markovovské reťazce
	6.1 Klasifikácia stavov markovovského reťazca
	6.2 Stacionárne rozdelenia
	6.3 Cvičenia

	7 Spojité náhodné premenné
	7.1 Základné vlastnosti spojitých náhodných premenných
	7.2 Číselné charakteristiky spojitých náhodných premenných
	7.3 Základné typy spojitých náhodných premenných
	7.3.1 Rovnomerné rozdelenie
	7.3.2 Exponenciálne rozdelenie
	7.3.3 Paretovo rozdelenie
	7.3.4 Normálne rozdelenie

	7.4 Cvičenia

	8 Náhodné vektory
	8.1 Všeobecné náhodné vektory
	8.1.1 Diskrétne náhodné vektory
	8.1.2 Spojité náhodné vektory

	8.2 Nezávislosť náhodných premenných
	8.3 Základné typy rozdelení náhodných vektorov
	8.3.1 Multinomické rozdelenie
	8.3.2 Mnohorozmerné normálne rozdelenie

	8.4 Cvičenia

	9 Zákony veľkých čísiel a centrálna limitná veta
	9.1 Cvičenia

	10 Generovanie náhodných premenných a vektorov
	10.1 Generovanie realizácií náhodných premenných
	10.2 Generovanie realizácií náhodných vektorov

	11 Základy teórie informácie
	11.1 Informácia
	11.2 Entropia
	11.3 Združená a podmienená entropia
	11.4 Relatívna entropia a vzájomná informácia
	11.4.1 Princíp maximálnej entropie

	11.5 Entropy rate
	11.6 Cvičenia

	12 Lineárny regresný model
	12.1 Rozdelenia pravdepodobnosti odvodené od normálneho rozdelenia
	12.2 Náhodný výber a výberové charakteristiky
	12.3 Lineárny regresný model
	12.3.1 Lineárny regresný model priamkou
	12.3.2 Základná veta o lineárnom regresnom modeli


	13 Bodové a intervalové odhady parametrov štatistických modelov
	13.1 Bodové odhady
	13.1.1 Metóda maximálnej vierohodnosti

	13.2 Intervalové odhady
	13.2.1 Odhady parametrov náhodného výberu z N(,2)

	13.3 Odhady parametrov lineárneho regresného modelu priamkou
	13.4 Cvičenia

	14 Testovanie štatistických hypotéz
	14.1 Všeobecný úvod k testovaniu štatistických hypotéz
	14.2 Testovanie hypotéz o strednej hodnote a disperzii
	14.3 Testovanie hypotézy o rozdiele stredných hodnôt
	14.4 Testovanie hypotézy o sklone regresnej priamky
	14.5 Cvičenia


