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Kapitola 1
Uvod

Teoria pravdepodobnosti poskytuje zakladné modely a matematicky aparat pre mnohé oblasti
teoretickej aj aplikovanej informatiky. Napriklad axiomatizacia samotnej tedrie informacie a
kodovania je postavena na pravdepodobnosti a na ndhodnych premennych (pozri |2]). Dolezi-
tou sucastou teorie zlozitosti algoritmov je Stidium spravania sa algoritmov pre ndhodne gene-
rované vstupy. Taktiez, vela efektivnych algoritmov na rieSenie deterministickych tloh vyuziva
principidlnym spésobom nahodnost, povedzme Millerov-Rabinov test prvociselnosti, algorit-
mus na hladanie najmengieho rezu v grafe a iné “znahodnené” algoritmy ([4]). Zaujimavou
metodou pouzitia tedrie pravdepodobnosti v kombinatorike je takzvana “pravdepodobnostna
metoda’, pomocou ktorej vieme konStruovat prehladné dékazy niektorych existen¢nych tvr-
deni ([1]). V neposlednom rade, poc¢itacova simulacia a optimalizacia skoro vSetkych redlnych
systémov a vSetky pokrocilejSie pocitacové hry si vyzaduji pouzitie vhodnych generatorov
nahodnosti (|5] a mnoho inych ucebnic).



Kapitola 2

Axiomaticka definicia pravdepodobnosti

2.1 Priestor udalosti

o-algebra je jednym zo zakladnych nastrojov tedrie pravdepodobnosti. Neskér na nej budeme
definovat pravepodobnostna mieru.

Definicia 2.1 (o-algebra). Nech Q je neprédzdna mnoZina a nech § C 2. Usporiadant dvojicu
(Q,8) nazyvame o-algebra, alebo g-algebra udalosti, ak plati

1. Q€8
2. AeS§=0Q\AeS
3. Ak (A;)ier je postupnost mnoZin patriacich do systému 8, tak U;crA; € §

Poznamka 2.1. Ak pouzijeme v texte pojem "postupnost”, myslime tym konec¢nt, alebo aj
nekonecnu spocitatelna postupnost. To znamend, Ze v prechadzajucej definicii je I kone¢na,
alebo nekonecna spocitatelna usporiadand mnozina.

Priklad 2.1. Nech Q je Tubovolna neprazdna mnozina a nech ) # A C Q. Potom (€, {0, Q}),
(Q,{0,A,Q/A,Q}) aj (2,2%9) st g-algebry. (Symbolom 2 zna¢ime mnozinu vsetkych pod-
mnoZin mnoziny .) Ak Q = {1,2,3}, potom (2, {0, {1}, {2}, {3}, Q}) nie je o-algebra.

Veta 2.1 (Uzavretost o-algebry vzhladom k spocitatelngm prienikom). Ak (€2, 8) je o-algebra
a (A;)ier je postupnost prvkov systému 8, tak N A; € S.

Dokaz. Ak A; € 8 pre vSetky ¢ € I, tak podla vlastnosti 2 z definicie 2.1 plati Q\ A; € 8 pre
vSetky ¢ € I; podla vlastnosti 3 teda mame U,;c;(Q\ A;) € S a opét podla vlastnosti 2 dosta-
vame Q\ (U;er(Q\ A4;)) € 8. Lenze Q \ (Uier(Q2\ A;)) = NierA; na zéklade De Morganovych
pravidiel. O

Axiomy definicie 2.1 zarucuji, ze systém § je uzavrety nielen vzhladom na spocitatelné
prieniky a zjednotenia, ale aj vzhladom na akékolvek mnozinové operacie, ktoré su vyjadri-
teIné pomocou spocitatelnych zjednoteni, prienikov, alebo komplementov. UkdZme napriklad,
7e systém 8§ je uzavrety vzhladom na mnozZinovy rozdiel. Ak A, B € 8, tak podla vlastnosti 2
definicie 2.1 plati Q\ A € 8. Teda podla predchadzajicej vety obsahuje systém 8 aj mnozinu
BNn(Q\A) =B\A.
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V teorii pravdepodobnosti predstavuju prvky mnoziny €2 najjednoduchsie, d'alej nerozlo-
ziteIné vysledky ndhodného experimentu (takzvané elementarne vysledky). Tie mnoziny ele-
mentarnych vysledkov, ktoré patria do systému S, reprezentuju “udalosti”, ktorym je mozné
pripisat pravdepodobnost realizacie. Ak je mnoZina 2 spocitatelné, tak v nasom modeli ob-
vykle volime 8§ = 2. Ukazuje sa viak, Ze ak je mnoZina {2 nespocitatelna a zvolili by sme
§ = 29 potom by mohlo byt obtiaZne priradif prvkom takto bohatého systému udalosti
pravdepodobnostnt mieru, ktord by sa nespravala paradoxne. Napriklad ak je 2 = R™, byva
vhodnym (dostato¢ne, ale nie prili§ bohatym) systémom udalosti systém B,, borelovskych
mnozin, definovany nizsie (pozri definiciu 2.4).

Definicia 2.2 (Elementdrne vysledky a udalosti). Nech (§2,8) je o-algebra. Prvky mnoziny
) nazveme elementarne vysledky a podmnoziny () patriace do systému 8 nazveme udalosti.

Priklad 2.2. Nas experiment pozostava z jedného hodu kockou. Ak nés na tomto experi-
mente zaujima jedine to, na ktorta stranu padne kocka (a ak z modelu vyli¢ime moznost,
7e kocka zostane staf na hrane), potom je zmysluplnou mnozinou elementarnych vysledkov
Q ={1,2,...,6}. Systém udalosti mozeme zvolit 8§ = 22, Udalost {1,2,3} zodpoveda vyroku
"padne ¢islo mensie nez 4”7, udalost {2, 4,6} zodpoveda vyroku ”padne parne ¢islo” a podobne.

Uvedomme si, 7ze v modeli danom nejakym pravdepodobnostnym priestorom existuje priro-
dzend korespondencia medzi udalostami a vyrokmi tykajicimi sa elementarnych vysledkov ako
je naznacené v predchadzajicom priklade. Vo vSeobecnosti udalosti A € § zodpoveda vyrok
“nastane niektory elementarny vysledok z A”. V tejto koreSpondencii zodpovedaji mnozinové
operacie medzi udalostami logickym operaciam medzi prislusnymi vyrokmi. Mnozinovy kom-
plement takto zodpoveda negacii vyroku, zjednotenie logickému "alebo”, prienik logickému "a”,
alebo napriklad symetricka diferencia mnozin (AAB = (A\B)U(B\A)) zodpoveda logickému
"vyluéné alebo” (zndmemu aj pod oznacenim xor).

Definicia 2.3 (o-algebra generovand systémom mnoZin). Nech Q # () a nech F je nejaky
systém podmnoZin mnoziny €. Nech o(F) je prienik v8etkych takych systémov 8§ podmnozin
mnoziny 2, ze F C § a stcasne (2,8) je o-algebra. Potom o-algebru (2, 0(F)) nazyvame
o-algebra podmnozin mnoziny {2 generovana systémom mnozin &, alebo tiez miniméalna o-
algebra podmnozin mnoziny () obsahujtca systém F.

Priklad 2.3. V pripade, ze je systém JF kone¢ny, je jednoduché najst o(F) postupnym pri-
davanim prienikov, zjednoteni a komplementov.
Nech napriklad Q = {1,2,3,4,5} a F = {{1,2},{3,4}}. Potom

o(F)=1{0,9,{1,2},{3,4},{1,2,3,4},{3,4,5},{1,2,5},{5}} .
Zaujimavejsia je vSak situécia, ked je systém F nekone¢ny, ako v nasledujicej definicii.

Priklad 2.4. Hadzeme mincou (nekonecne dlho), pricom akikolvek pre nas zaujimava in-
formécia je obsiahnutd v zédzname o tom, v ktorych hodoch padla na minci hlava a v kto-
rych hodoch padol znak. Tuto situaciu je prirodzené formalizovat tym sposobom, Ze priestor
elementarnych vysledkov €2 bude mnozina vsetkych nula-jednotkovych nekone¢nych postup-
nosti, kde nula reprezentuje padnutie hlavy a jednotka reprezentuje padnutie znaku. Defino-
vat na tejto mnozine vhodna o-algebru uz vSak nie je dplne elementarne. Ukazuje sa, Ze v
tomto pripade je vhodnou o-algebrou udalosti o(F), kde F = {Ag’) ke NAb e {0,1}}
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a pre kazdé k € N, b € {0,1} je A,(f) mnozinou vsetkych tych postupnosti z mnoziny €,
ktorych k-ty ¢len je rovny hodnote b. Tento systém udalosti je dostatocne bohaty, ale nie
prili§ bohaty. Napriklad o vSetkych nasledovnych udalostiach je moZné Tahko ukézat, Ze
patria do o(F): A1 = {(i1,i2,...) € Q : Vk € N (i, = 0)} (“vo v8etkych hodoch padne
hlava”), Ay = {(i1,i2,...) € Q : Vk € N (iy # iry1)} (“budi sa striedat hlavy a znaky”),
As =A{(i1,19,...) €Q iy =+ =11 = 0N, = 1} (“znak padne prvykrat v m-tom hode”).

Definicia 2.4 (o-algebra borelovskich podmnozin R™). Nech O je systém v8etkych otvorenych
podmnozin mnoziny R™. Potom c-algebru (2, B,,) podmnozin R™ generovani systémom O
nazyvame o-algebra borelovskych podmnozin R™.

Veta 2.2 (Zdkladné borelovské podmnoZiny mnoZiny R). Nech a,b € R, pricom a < b. Potom
vSetky nasledovné mnoziny patria do By: (—o0,a), (a,00), (—00,al, [a, ) (a,b], [a,b), |a,b],
{a}. Do systému B; tiez patri akdkol'vek spocitatelnd podmnozina R.

Doékaz. To, ze otvorené intervaly si borelovské mnoziny, plynie priamo z definicie. AvSak
interval akéhokolvek typu (ako aj jednoprvkovad mnoZina) musi byt borelovskou mnozinou,
pretoZe ho je moZné zapisat ako prienik spocitatelnej postupnosti otvorenych intervalov a
o-algebra je uzavreta vzhladom na spocitatelné prieniky. Spocitatelnd mnozina je borelovska
preto, lebo je spocitatelnym zjednotenim mnozin typu {a}, a € R, ktoré patria do systému
B podla prvej casti vety a systém B je uzavrety vzhladom na spocitatelné zjednotenia. []

Priklad 2.5. Sledujeme o kol'ko sekiind zaznamenéame novi poziadavku na ur¢ity systém hro-
madnej obsluhy, napriklad na server. Ak predpokladame, ze ¢as vieme odmerat uplne presne,
potom je vhodnym priestorom elementarnych vysledkov 2 = (0, 00) a prislusnym systémom
udalosti je 8 = {B N (0,00) : B € By}, t.j. tie borelovské mnoziny, ktoré st podmnozinou
(0,00). Udalost (0,60) zodpoveda vyroku "novii poziadavku zaznamename skor ako uply-
nie mintta”, udalost [3600, c0) zodpovedéa vyroku "uplynie aspoii hodina, kym zaznamenéame
nova poziadavku” a tak dalej. Samozrejme, rozne udalosti mézu mat réoznu pravdepodobnost
nastatia, ktort mozeme stanovit na zaklade dlhodobych skusenosti, fyzikalnych principov a
podobne. (éo chapeme pod pojmom “pravdepodobnost” je vysvetlené v nasledujicej ¢asti.)

2.2 Pravdepodobnostni miera

Definicia 2.5 (Pravdepodobnostnd miera). Pravdepodobnostna miera na o-algebre udalosti
(€, 8) je zobrazenie P : 8§ — R splhajice nasledovné podmienky:

1. Pre vsetky A € § plati 0 < P(A) <1
2. P(Q)=1, P(0)=0
3. Ak (A;)ier je postupnost disjunktnych udalosti, tak P (UerA;) = >, P(4;)

Vlastnost 3 z definicie 2.5 nazyvame aditivita pravdepodobnosti ak je I kone¢nd mnozina,
alebo o-aditivita ak je I nekone¢né spocitatelna mnozina.

Definicia 2.6 (Pravdepodobnostny priestor). Nech (€,8) je o-algebra udalosti a nech P je
pravdepodobnostna miera na (2,8). Potom trojicu (£2,8, P) nazveme pravdepodobnostny
priestor.
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Priklad 2.6. Nech Q = {1,...,6} a 8§ = 2% Nech P : § — [0,1] je zobrazenie definované
nasledovne: Pre kazdé A € § plati P(A) = |A| /6, kde |A| znamend pocet prvkov mnoziny A.
Potom (€2,8, P) je pravdepodobnostny priestor. Tento pravdepodobnostny priestor mézeme
povazovat za model hadzania hracou kockou, ak nas zaujima vylu¢ne ¢iselny vysledok hodu.
(Pozri priklad 2.2.)

FEzxistencia rovnomernej miery na jednotkovom intervale. Nech 8 je mnozina vsetkych bo-
relovskych podmnozin kocky [0, 1]™. Podla tlohy 2.5 je ([0, 1]™, 8) o-algebra. Mozno ukazat,
7e na ([0,1]™, 8) existuje pravdepodobnost P, ktora splia nasledovni podmienku: Pre kazdy
kvader A = [a1,b1] X+« X [am, bp], kde 0 < a; < b; < 1, plati

Pre m = 1 mo6zeme pravdepodobnostny priestor (2,8, P) povazovat za model "rovnomer-
ného ndhodného vyberu redlneho ¢isla na tsecke [0, 1)”. Podobne, pre m = 2 je (€2, 8, P) model
"rovnomerného ndhodného vyberu bodu na $tvorci [0, 1] x [0, 1]”. Pravdepodobnost P mozno
povazovat za definiciu thrnnej dizky (plochy, objemu) borelovskych podmnozin jednotkového
intervalu (Stvorca, kocky).

2.3 Zakladné vlastnosti pravdepodobnosti

7 definicie pravdepodobnostnej miery 2.5 sa daji odvodit mnohé uzitoéné vlastnosti pravde-
podobnosti.

Veta 2.3 (Rozdielovost a monotdnnost). Nech A,B st udalosti pravdepodobnostného pries-
toru (2,8, P), pricom A C B. Potom P(B\ A) = P(B) — P(A) a P(A) < P(B).

Dokaz. Kedze udalosti A a B\ A st disjunktné, méme P(A)+ P(B\ A) = P(AU(B\A)) =
P(B) (pouzili sme aditivitu pravdepodobnosti), ¢ize P(B \ A) = P(B) — P(A). Nerovnost
P(A) < P(B) plynie z predchadzajicej rovnosti a vlastnosti P(B\ A) > 0. O

Veta 2.4 (Pravdepodobnost komplementu). Nech (2,8, P) je pravdepodobnostny priestor a

nech A je udalost. Potom

P(Q\A)=1-P(A).
Dokaz. Veta je $pecidlny pripad predchadzajicej vety pre B = Q. O
Veta 2.5 (Pravdepodobnost zjednotenia dvoch udalosti). Nech A, B st udalosti pravdepodob-
nostného priestoru (€2, 8, P). Potom plati

P(AUB)=P(A)+ P(B) — P(AN B).

Dokaz. Zrejme udalosti A a B\ A st disjunktné a ich zjednotenie je AU B, takze P(AUB) =
P(A) + P(B\A). Sucasne st AN B a B\A disjunktné, pri¢om ich zjednotenie je udalost B,
takze mame P(B\A) = P(B)— P(ANDB). Spojenim tychto dvoch rovnosti dostavame rovnost
70 znenia vety. O
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Veta 2.6 (Princip inklizie-exklizie (zapojenia-vypojenia)). Nech Ay, As, ..., A, st udalosti
na pravdepodobnostnom priestore (2,8, P). Potom plati

n

P(Up Ay = (—1)F! > P(A;,N...NA;)

k=1 1<d <ia <. <ip<n

Dékaz. Pre n = 2 je tvrdenie tejto vety také isté ako vo vete 2.5. Pre vSeobecné n je mozné po-
uzit matematicka indukciu. Na pochopenie principu dékazu staci, ak si ako cvicenie dokazete
tuto vetu pre n = 3. ]

Priklad 2.7. Za okriihlym stolom je rozostavenych n > 3 stoliciek. Nahodne za tento stol
rozsadime troch Tudi. Aké je pravdepodobnost p,, Ze niektori dvaja I'udia budu sediet vedla
seba?

Riesenie: Zrejme p3 = 1; v dalSom budeme predpokladat, Zze n > 4. Oznac¢me Tudi ako
1,2,3 a definujme udalost A (B, C') ako udalost, ze budi vela seba sediet ¢lovek 1 a 2 (2 a 3,
resp. 1 a 3). Zaujima nas P(A U B U (). Podla principu zapojenia-vypojenia mame:

P(AuBUC)=P(A)+P(B)+P(C)—P(ANB)—P(BNC)—P(ANC)+ P(ANBNC).

Zrejme vSak

2
A PANB) = P(BNC) = PANC) = (s

Pre n > 4 udalost AN B N C nemdze nastat, preto P(AN BN C) = 0. Takze

2 _3. 2 _ 6(n—3)
n—1 (n—1mn-2) (n-1)(n-2)

P(AUBUC)=3-

Specialne, ps = ps = 1 a pg = 9/10.

Priklad mozno riesit aj tak, ze si definujme m udalosti By, Bs, ..., B,,, ze budi obsadené
susedné stolicky 1,2; 2,3; ...;resp. m, 1. Hladana pravdepodobnost je P(U;B;), ¢o sa da opéat
vypocitat pomocou principu zapojenia-vypojenia.

Poznamka 2.2. V predchadzajicom priklade sme formélne nedefinovali model na drovni
komponentov €2, § a P, hoci by to bolo mozné. (Vedeli by ste to?) To v8ak ani nebolo
potrebné, pretoze sme pouzivali uvahy platné pri akejkolvek zmysluplnej formalizacii. Takto
budeme riesit priklady ¢asto.

Priklad 2.8. Postupnost ¢isiel (1,2,...,n) dokonale ndhodne premiesame. (T.j. kazda spo-
medzi n! permutécii ma rovnaka pravdepodobnost.) Najdite pravdepodobnost p,, Ze aspoii
jedno z ¢isiel 1,2, ..., n bude po premiesani na svojom povodnom mieste. Urcéte lim,, oo Pp-

Riesenie. Nech n je pevné. Nech A je udalost, Ze aspon jedno z ¢isiel 1,2,...,n bude po
premiesani na svojom pévodnom mieste. Potom zrejme A = U ; A;, kde A; oznacuje udalost,
ze Cislo 7 zostane na svojom povodnom mieste. KedZze moznosti vyberu réznych indexov
1<ii<is<...<ipz<nje (Z) a pre kazdy takyto vyber je P(4;, N...NA4;,) = (";!k)!, tak
podla vety 2.6 dostavame

u n\ (n — k)! ZL(=1)k
pn = P(A) = Z(_l)k—l(k)( n!k)' _ Z( 2_
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Zrejme tiez

0 _1]9—1 00 _1k
limpnzz%:l—z( ) =1—e¢"!

n—oo . ]{7'
k=1 k=0

v . 7 k v 7 vz
¢o plynie zo znameho vzorca e* = Y | 7¢ pre vietky redlne Cisla z.

Poznamka 2.3. Vlastnost pravdepodobnosti z predchadzajicej tilohy nazyvame subaditivita
ak je I konefna mnozina, alebo o-subaditivita ak je I nekone¢nd spocitatelna mnozina.

Priklad 2.9. Presne 30 percent (nie nutne sivislych) dlzky jednotkovej kruznice v rovine je
zafarbenych na zeleno a zvysnych 70 percent je zafarbenych na modro. Formalne presnejsie:
méame dani funkciu f: S — {Z, M}, pricom

P{z €[0,1): f(cos(2mz),sin(27x)) = Z} = 0,3,
P{z €10,1) : f(cos(2mzx),sin(27zx)) = M} = 0,7,

kde P je rovnomerna pravdepodobnost na intervale [0, 1] z prikladu 2.2. Dokézte, ze do tejto
kruznice je mozné vpisat rovnostranny trojuholnik tak, aby vSetky jeho vrcholy lezali na
modrej farbe.

Riesenie. Rovnomerne ndhodne zvolime bod X na jednotkovej kruznici S. Symbolom A
oznac¢ime udalost, ze X padne do zelenej ¢asti kruznice, symbolom B oznac¢me udalost, ze X
po otoc¢eni o uhol 27/3 v smere hodinovych rudiciek padne do zelenej farby a symbolom C
ozna¢me udalost, Ze X po otoceni o uhol 47/3 v smere hodinovych ruci¢iek padne do zelenej
farby. Zrejme P(A) = P(B) = P(C) = 0,3, teda z Booleovej nerovnosti mame P(AUBUC) <
P(A)+ P(B)+ P(C) = 0,9. Takze pravdepodobnost, Ze ani jeden 7 trojice vytvorenych bodov
nepadne do zelenej farby je aspon 0,1. To znamené, Ze nutne musi ezistovat aspon jedna takéa
trojica bodov, ¢ize rovnostranny trojuholnik, ktorého vSetky tri vrcholy lezia na modrej casti
kruznice.

Veta 2.7 (Spojitost pravdepodobnosti zdola). Nech (A;)2, je nekonena postupnost udalosti
pravdepodobnostného priestoru (2,8, P), ktora je neklesajiuca v zmysle A; C Ay C A3 C .. ..
Potom

Dékaz. Polozme Ay =0 a B; = A;\A;_1 pre kazdé i € N. Vimneme si, 7e U2, B; = U2, A;,
dalej ze udalosti B; su disjunktné a naviac P(B;) = P(A;) — P(A;_1). Taktiez Tahko ove-
rime, ze » . (P(A;) — P(A;_1)) = P(A,). Postupne dostavame P (U2, A;) = P (U2, B;) =
S P(By) =limy oo > i P(Bi) = lim, 00 Yoy (P(A) — P(Aj1)) = limy, 00 P(A,). O

2.4 Cvicenia

Uloha 2.1 (Prienik o-algebier je o-algebra). Nech J je neprazdna indexova mnoZina (nemusi
byt spocitatelna) a nech (€2,8,) je o-algebra pre kazdé j € J. Potom (Q,N;cs8;) je tiez
o-algebra.

Uloha 2.2. Uvazujme mnozinovii operaciu 1 definovant nasledovne: Tic; A; = Q\ (MicrA4:),
kde I je spocitatelna mnozina a A; C Q # (). (Logicky ekvivalent operacie T sa zvykne nazyvat
nand.) Ukazte, Ze (2, 8) je o-algebra vtedy a len vtedy, ked st splnené nasledovné podmienky:
1) Q € 8 a 2) Ak je I spocitatelna mnozina a A; € 8 pre vietky i € I, tak T,c; A; € 8.
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Uloha 2.3. Nech a,b,¢,d € R, pricom a < b a ¢ < d. Zdovodnite, preco vietky nasledovné
mnoziny patria do Bay: (a,b) x (¢,d), [a,b) x (¢, d), [a,b] x [¢,d], bod (a,b), akikoI'vek spoci-
tatelna podmnozina R2. Rozmyslite si, pre¢o By obsahuje akykolvek n-uholnik, alebo kruh
(nezéavisle na tom, ¢i hranicu povazujeme za stucast tychto mnozin, alebo nie).

Uloha 2.4. Sami si definujte nejaku podmnozinu R? a dokazte o nej, Ze je borelovska. (Prak-
ticky akakoIvek mnozina, ktori sme schopni popisat priamou konstrukciou, je borelovska.
Existuju vSak aj mnoziny, ktoré nie si borelovské; dokonca ich je z hladiska mnozZinovej
mohutnosti "viac”.)

Uloha 2.5. Nech (€2, 8) je o-algebra a nech () # A € 8. Definujme nasledovny systém mno#in:
R ={ANB: B e 8}. Potom (A4,R) je tiez o-algebra. Dokazte!

Uloha 2.6. Nech Q = {1,2,3}. Najdite vietky také systémy 8§ C 2%, 7e (2, 8) je o-algebra.

Uloha 2.7 (Booleova nerovnost). Ukdzte, 7e ak (A;)icr je postupnost udalosti pravdepodob-
nostného priestoru (2,8, P), tak

P (Ujer4;) < ZP(Ai)'

Uloha 2.8 (Spojitost pravdepodobnosti zhora). Ukazte nasledovné tvrdenie: Nech (A4;)%2; je
nekoneéna postupnost udalosti pravdepodobnostného priestoru (€2, 8, P), ktora je nerasttica
v zmysle A; D Ay D Az D .... Potom, rovnako ako vo vete 2.7, P (N2, A;) = lim;_,o, P(4;).



Kapitola 3

Podmienovanie a nezavislost udalosti

3.1 Podmienena pravdepodobnost

V tejto kapitole budeme riesit otazku, aky vplyv mé na pravdepodobnost udalosti A nastanie
nejakej inej udalosti B.

Definicia 3.1 (Podmienend pravdepodobnost). Nech A a B st udalosti, pricom P(B) > 0.

Potom hodnotu
P(A|B)=P(ANB)/P(B)

budeme nazyvat pravdepodobnost udalosti A za podmienky B.

Priklad 3.1. Mame dve nepriehladné vreckd, pricom v jednom vrecku st dve biele gul6¢ky
a v druhom vrecku je jedna gulocka biela a druha ¢ierna. Nahodne sme zvolili jedno vrecko
(kazdé s pravdepodobnostou 1/2) a z tohoto vrecka sme néhodne vybrali jednu gul6cku,
o ktorej sme sa presvedcili, 7e je biela. Aka je pravdepodobnost, 7e aj druha gul6cka vo
vybratom vrecku je biela?

Takéto zadania chapeme nasledovne: Z hladiska pred vyberom vrecka a gulocky, aka je
pravdepodobnost udalosti A = "vyberieme vrecko s dvomi bielymi gul6¢kami” za podmienky
udalosti B = "vybrata gulo¢ka bude biela”? Alebo ina formulécia: Predpokladajme, 7e priestor
(Q,8, P) zodpoveda pravdepodobnostnému modelu danej situacie z hTadiska pred zaciatkom
celého experimentu. Dodato¢né informaécia, ze nastala udalost B, meni na$ pévodny model
na pravdepodobnostny priestor (£2,8, Pg) z tlohy 3.7. Aka je pravdepodobnost udalosti A v
tomto novom priestore?

Takze riesenie (nezavisle na tom, ktort interpretéaciu alohy prijmeme) je nasledovné: Mame
P(A|B) = P(AN B)/P(B). Zrejme vSak P(ANB) =1/2 a P(B) = 1/2.1/2+1/2 = 3/4.
Preto P(A|B) = 2/3.

Definicia 3.2 (Rozklad mnoZiny elementdrnych vgsledkov). Budeme hovorit, ze udalosti
Ay, ..., A, tvoria rozklad mnoziny 2 elementarnych vysledkov, ak su tieto udalosti disjunktné,
kazda z nich mé nenulovii pravdepodobnost a stucasne plati Ul ; A; = €.

Veta 3.1 (Veta o uplnej pravdepodobnosti). Nech Ay, ..., A, tvoria rozklad mnoziny elemen-
tarnych vysledkov. Nech B je akdkoIvek udalost. Potom plati:

P(B) =Y P(BIA)P(4)

13
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2.kocka

o ] [ ] ] @] [ ]

® @ ® o L J ®
1.kocka

Obr. 3.1: HadZeme naraz dvomi kockami. Ak ozna¢ime B = {max(U,V) = 5} udalost, 7e
vicsie z padnutych &isel je 5 a A = {min(U, V') = 2} udalost, Ze mensie z padnutych ¢isel je
2, potom podmienena pravdepodobnost P(A|B) = 2/9.

A1 R A2

Obr. 3.2

Dokaz P(B) = P(BN (A U...UA,)) =P(BNA)U...U(BNA,)) =" ,P(BNA) =
> i1 P(BIA)P(4)).

U

Priklad 3.2. Udalosti A;, Ay, a A3 na nasledujicom obrazku tvoria rozklad mnoziny (2
vSetkych elementarnych udalosti, a teda udalost B mézeme rozlozit na disjunktné podmnoziny
typu A;N B, i—1,2,3. To ale znamena, 7ze B = (A;NB)U (A2 N B)U(A3N B) a 7 aditivity a
definicie podmienenej pravdepodobnosti je P(B) = 327 P(A;N B) = 3.2 | P(A,)P(B|A;).

Veta 3.2 (Bayesov vzorec). Nech udalosti Aj, As, ..., A, tvoria rozklad mnoziny elemen-
tarnych vysledkov. Nech B je akdkoIvek udalost nenulovej pravdepodobnosti a nech k €
{1,...,n}. Potom plati:
P(B|A,)P(A
> iz P(BlA;) P(A))

Dokaz. Pre kazdé k € {1,...,n} mame P(BNAy) = P(B|Ax)P(Ayx), preto P(Ax|B) = P(BN
Ay)/P(B) = P(B|Ag)P(Ax)/P(B). Pouzitim vzorca pre tplnt pravdepodobnost dostavame
dokazovani rovnost. O

Priklad 3.3. Majme systém, ktory sa moze nachddzat v stavoch S, Al, A2, A3, B1, B2, B3,
pricom st mozné nasledovné prechody medzi stavmi: S — Al, S — A2, S — A3, Al — Bl1,
Al — B2, A2 — Bl1, A2 —» B2, A2 — B3, A3 — B2, A3 — B3. Ak ma systém viacero
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moznosti prechodu, tak prejde do kazdého nového pripustného stavu s rovnakou pravdepo-
dobnostou.

Vieme len to, ze na zaciatku sa systém nachadzal v stave S a na konci sa nachadzal v
stave B2. Urc¢te pravdepodobnost (v zmysle nasho subjektivneho hodnotenia), ze systém pre-
siel stavom A2.

Riesenie: Pozrieme sa na situaciu z hl'adiska pred experimentom (t.j. z pohladu pozorova-
tel'a, ktory vidi, Ze systém je v poc¢iatoénom stave S). Oznaéme ako A; (As, As,...,Bs) udalost,
7e sa systém vyskytne v stave Al (A2,A3, ..., B3). Zaujima nas podmienené pravdepodobnost
P(A3|Bs). Podla Bayesovej vety je

P<B2’A2>P<A2)

P(As|By) = — .
> et P(Ba|Ai) P(A;)

Avsak P(A;) = P(Ay) = P(A3) a P(Bs|As) = 1/3, P(B3|A;1) = P(By|A3) = 1/2. Dosadenim
dostavame rieSenie P(A|By) = 1/4.

Priklad 3.4. Na vstupe do laboratoéria st 2 nezavisle pracujice biometrické autoriza¢né zaria-
denia (typ A: snimanie prstu a typ B: snimanie o¢nej duhovky.) Typ A vykazuje 0,6% mylnych
odmietnuti a 0,1% mylnych prijati. Typ B vykazuje 2% mylnych odmietnuti a 0,01% myl-
nych prijati. Systém nam ohlési pokus o neautorizovany vstup, ak aspon jeden typ autorizacie
ohlasi odmietnutie. (Systém ale neoznami, ktory typ testu zlyhal). Uréte pravdepodobnost,
ze systém ohlasi pokus o neautorizovany vstup pre neautorizovanu osobu. Z dlhodobych skii-
senosti vieme, ze v 99,9 percentach pripadov sa o vstup poktusa osoba, ktord ma autoriziciu
na vstup a len v 0,1 percentach pripadov ide o pokus o neautorizovany vstup. Aka je prav-
depodobnost, 7e sa naozaj jedna o pokus o neautorizovany vstup za podmienky, Ze systém
ohlasil pokus o neautorizovany vstup?

Riesenie: Oznacme ako N udalost, Ze d6jde k neautorizovanému pokusu o vstup a ako H
udalost, Ze systém ohldsi neautorizovany vstup. Oznacme si tiez ako H4 a Hp udalosti, Ze
zariadenie A, resp. zariadenie B ohléasi pokus o neautorizovany vstup. Tiez si uvedomime, 7Ze
pravdepodobnosti 0,6%, 0, 1%, 2%, 0,01%, 99,9% a 0,1% v zadani st postupne P(H4|N°),
P(H3|N), P(Hp|N*), P(H3|N), P(N©) a P(N).

V prvej otazke nas zaujima P(H|N). Kedze H = H,U Hp a zariadenia sa spravaji navza-
jom nezavisle, mame P(H|N) = P(HA\UHp|N) = 1-P(HGNH§|N) = 1-P(H4|N)P(HE|N)
1-1073-10*=1-10"".

V druhej otazke potrebujeme vypoéitat P(N|H). Podla Bayesovho vzorca méme

P(H|N)P(N)
(HIN)P(N) + P(H|N¢)P(N¢)’

P(N|H) = -

V tomto vzorci musime dopocitat uz len P(H|N°€), ¢o je podobné ako P(H|N). Mame
P(H|N®) = P(Hs U Hp|N¢) = P(H4|N°) + P(Hg|N¢) — P(Ha|N°)P(Hg|N°) = 0,006 +
0,02 — 0,006 - 0,02 = 0,02588.

Celkovo teda mame

(1—-10"7)0,001

P(N|H) =
(NIH) (1 -10-7)0,001 4 0,02588 - 0,999

~ 0,037.
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3.2 Nezavislost udalosti

Definicia 3.3 (Nezdvislost dvoch udalosti). Nech pre udalosti A a B plati P(AN B) =
P(A)P(B). Potom hovorime, ze udalosti A a B st nezavislé. Ak P(AN B) # P(A)P(B), tak
hovorime, Ze udalosti A a B su zavislé.

Vsimnime si, ze pre nezavislé udalosti A a B (P(B) > 0) plati P(A|B) = P(A), cize,
volne povedané, znalost toho, Ze nastala udalost B, neovplyvni nasu mieru oc¢akavania, 7e
nastane aj udalost A.

Naopak, ak plati P(A|B) = P(A) (a P(B) > 0), tak su udalosti A a B nezavislé. Inymi
slovami: ak vieme, ze znalost vysledku udalosti B nijak nemeni naSe pravdepodobnostné
ocakavanie, ze nastane A, potom st udalosti A a B nezavislé.

Definicia 3.4 (ZdruZend nezdvislost n-tice udalosti). Ay, ..., A, nech si udalosti, pricom pre
kazdt mnozinu indexov {i,..., i} C {1,...,n} plati

Potom hovorime, ze udalosti Ay, ..., A, st zdruZene nezavislé. V opa¢nom pripade hovorime,
ze su tieto udalosti zdruzene zavislé.

Priklad 3.5. Majme priestor (2,8, P), kde Q = {1,2,...,8}, § = 2%, P(A) = |A| /8 pre
kazdé A C Q. (Tento model zodpoveda rovnomernému nahodnému vyberu jedného z ¢isiel
1,2,...,8, alebo modelu hadzania tromi mincami, ak kazdd z 6smich roznych kombinacii
vysledkov na jednotlivych minciach ozna¢ime jednym z ¢isiel 1,2,...,8.)

Definujme nasledovné udalosti: A = {1,2,3,4}, B = {1,2,5,6}, C = {1,3,5,7}, D =
{1,2,7,8} a E = {1,3,4,8}. Tlahko sa presved¢ime, 7e a) Udalosti A, B, C' st zdruZene
nezavislé. b) Udalosti A, B, D su po dvojiciach nezévislé, ale zdruZene nezavislé nie s,
pretoze P(AN BN D) # P(A)P(B)P(D). c¢) Udalosti A, B, E nie su vSetky po dvojiciach
nezavislé, napriek tomu, ze P(AN BN E) = P(A)P(B)P(E).

Veta 3.3 (Nezdvislost komplementov). Ak st udalosti A a B nezavislé, tak si nezéavislé aj
udalosti A a Q\ B, ako aj udalosti Q\ A a Q\ B. V8eobecne, nech A, ..., A, st zdruZzene
nezavislé udalosti. Pre kazdé ¢ = 1,...,n zvolme za A, bud A;, alebo Q\ A;. Potom aj udalosti
Al ..., Al st zdruzene nezavislé.

Dékaz. Urobme dokaz pre dvojicu udalosti; pre vSseobecny pocet udalosti je dokaz analogicky.

Ak st udalosti A a B nezavislé, tak s vyuzitim zakladnych vlastnosti pravdepodobnosti
dostavame P(AN(Q\ B)) = P(A\ (AN B))=P(A)— P(AnB) = P(A) — P(A)P(B) =
P(A)(1 - P(B)) = P(A)P(Q\ B). Tym sme ukazali, ze A a Q\ B st nezavislé. Nezavislost
udalosti 2\ A a 2\ B plynie opakovanym pouzitim uz dokizanej ¢asti vety. O

Nezavislost po skupinach: Predpokladajme, Ze mame zdruZene nezavislé udalosti A, . ..
Nech ng = 0 < n; < ng < ... <ngy <ng = n. Prekazdé j = 1,...,k vytvorme B;
7 An; 141, -, An, akokolvek, pomocou operacii komplementu, zjednotenia, alebo prieniku.
Potom st aj udalosti By, ..., By zdruzene nezavislé.

Veta 3.4 (Binomickd formula). Nech Ay, Ao, ..., A, st nezavislé udalosti, pricom kazda ma
pravdepodobnost p. Nech A je udalost, Zze nastane prave k spomedzi udalosti Ay, As, ..., A,
kde k € {0,...,n}, t.j.

A={we{ie{l,...,n};we A} =k}
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Potom plati
n

S

Dékaz. Pre kazda k-prvkovi mnozinu indexov {iy,..., it} C {1,...,n} oznatme ako B;,
udalost, ze nastant vSetky A; pre i € {i1,...,i;} a sucasne nenastane ziadna udalost A; pre
J & i, ..y}, b

B, i, = n Ai ﬂ (€2 Aj)

iG{i1,...,ik} ]%{il ..... Zk}

Vsimnime si, Ze zjednotenim (Z) udalosti B;, ;, je udalost A, tieto udalosti si navzajom
disjunktné a kazd4 z nich méa pravdepodobnost p*(1 — p)"~*. Preto

n .
P<A> =P (U{il ----- ik}Bilw“’ik) = Z P(Bil,m,ik) = (k>pk(1 _p) g
{i1yeensip }

]

Priklad 3.6. Komunika¢ny kanal sa sklada zo série uzlov, pricom vzdy i-ty uzol predava
jednobitova informéciu na vstup ¢ + 1-vému uzlu. Na kazdom uzle v8ak s pravdepodobnostou
p dochédza k chybe, ktord sa prejavi tym, Ze na vystupe tohoto uzla bude opac¢ny bit ako na
jeho vstupe. Naviac, chyby na jednotlivych uzloch sa vyskytuji navzajom nezavisle. Napiste
vzorec udavajuci pravdepodobnost, Ze bit na vstupe prvého uzla bude rovnaky ako bit na
vystupe n-tého uzla.

Riesenie: Je zrejmé, 7e bit na vstupe prvého uzla bude rovnaky ako bit na vystupe n-tého
uzla prave vtedy, ak dojde k chybe prenosu na parnom pocte uzlov. Pre jednoduchost zapisu
predpokladajme, Ze n je parne. Ak ozna¢ime A®) udalost, ze dojde k chybe prave na k uzloch
(k=0,...,n), tak podla binomickej formule je hfadan& pravdepodobnost

, 4 1-2p)" 1
0<j<n/2 J
SRS

Priklad 3.7. Vo vrecku mame dve na pohlad nerozliSiteIné mince; vieme vSak, Ze st obe
falosné. Dokonca vieme, Ze na jednej z tychto minci pada znak s pravdepodobnostou 1/3
a hlava s pravdepodobnostou 2/3 a na druhej minci presne naopak, t.j. znak na nej pada s
pravdepodobnostou 2/3 a hlava s pravdepodobnostou 1/3. Nahodne sme zvolili z tejto dvojice
jednu mincu a hodili sme fiou Sestkrat, z ¢oho nam Styrikrat padol znak a dvakrat hlava. S
akou pravdepodobnostou nam padne znak pri siedmom hode zvolenou mincou?

Riegenie. Pozrieme sa na situaciu z hladiska pred zacatim celého experimentu a vypoci-
tajme pravdepodobnost, Ze nam v siedmom hode nadhodne zvolenou mincou padne znak (uda-
lost A) za podmienky, Ze z prvych Siestich hodov touto mincou padne znak Styrikrat (udalost
B). Pre oba indexy ¢ = 1,2 definujme este udalost C;, ktora znamen4, Ze na hadzanie ndhodne
vyberieme mincu 7. KedZe udalosti C, Cy tvoria rozklad priestoru elementarnych vysledkov
a pravdepodobnost kazdej z nich je 1/2, dostavame podla vety o uplnej pravdepodobnosti a
binomickej formule nasledovné rovnosti:

rimy=y-rsncores =3 (2(0) (1) (2) + () () (3)).
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ranm - Srcmansner -3 () ) )5+ () () ()3)

Po mechamckych upravach zistujeme, ze

P(ANB) 3

PAIB) ==pE =5

=0,6.

Veta 3.5 (Multinomicka formula). Uvazujme udalosti Agj), i=1,...,naj=1,...,m. Nech

pre kazdé i tvoria udalosti AZ(»I), LA

]

P(Al(l)) =p1,..., P(A(m)) = pm. (Pravdepodobnosti py, . . ., p,, nezavisia na i.) Dalej nech pre

(2

rozklad mnoziny elementarnych vysledkov, pricom

kazdy vyber indexov ji, ja, ..., jn € {1,...,m} st udalosti Agjl), o ,Ag") zdruzene nezavislé.
Nech ki, ..., ky, st ¢sla z mnoziny {0, ...,n}, ktorych sacet je n. Nech Ay, k. je udalost,
ze spomedzi udalosti Agj), ..., AY) nastane prave k; a to pre kazdé j. Potom plati
— n' kl k km
P(Apy, k) = AT Py’ - Py

Priklad 3.8. V urne mame 10 gulic¢iek, z ktorych je 5 bielych, 3 sit modré a 2 s Cervené.
Z urny 7-krat vyberieme gulicku, pricom kazdd vybrant gulicku vratime naspét do urny este
pred vyberom dalsej gulicky. Vypocitajte pravdepodobnost, Ze takto vyberieme spolu 3 biele
gulicky, 2 modré gulicky a 2 cervene gulicky (nezavisle na tom, v ktorom tahu).

RieSenie: Ak udalost A 1,...,7, 7 = 1,2,3 zodpoveda tomu, Ze v i-tom tahu
vyberieme gulicku j-tej farby (farba 1 je biela, farba 2 modr4 a farba 3 éervené), tak mame
situdciu z predchadzajicej vety. Dostavame

7!
P(Ass9) = mo 5%0.3%20.2% = 0.0945

3.3 Cvicenia

Uloha 3.1. Hadzeme 100-krat mincou. Ak je pravdepodobnost, Ze padne rovnaky pocet
hlav a znakov?

Uloha 3.2. Vykoname dva nezavislé hody kockou. Aké je pravdepodobnost, Ze sucet bodiek
na oboch kockach je parne ¢islo, ak vieme, Zze v prvom hode padlo ¢islo 27

Uloha 3.3. Uvazujme systém zlozeny z troch nezavislych komponentov, ktory je funkény,
ak aspon dva z tychto troch komponentov pracuji bez poruchy. Aka je pravdepodobnost, Ze
systém je funkény, ak kazdy z komponentov funguje s pravdepodobnostou 0,987

Uloha 3.4. Mame dve vrecka: v prvom je a; Gernych a by bielych guli¢iek a v druhom je as
¢iernych a by bielych gulic¢iek. Z kazdéhé vrecka vyberieme po jednej gulicke a z tychto dvoch
potom jednu gulicku. Aka je pravdepodobnost, ze vybrata gulicka bude biela?

Uloha 3.5. V urne je 12 lopti¢iek, po troch loptickach z kazdej zo §tyroch farieb. Postupne
vyberieme $tyri lopti¢ky (s vracanim, t.j. vybratu lopticku vratime naspét do urny este pred
vyberom nasledujticej lopticky). Aka je pravdepodobnost, Ze vietky Styri vybraté lopticky
budt mat roéznu farbu?
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Uloha 3.6. éportovec 3 krat nezavisle vystrelil na ciel. Pravdepodobnosti zasahov st po-
stupne 0.5, 0.6 a 0.7. Najdite pravdepodobnost toho, ze

a) v cieli bude aspon jeden zasah,

b) v cieli bude préave jeden zasah,

¢) v cieli budu préave dva zéasahy.

Uloha 3.7. Nech (, 8, P) je pravdepodobnostny priestor a nech B € 8§, P(B) > 0. Definujme
funkciu Pg : § — R nasledovne: Pg(A) = P(A|B). Potom Pp je pravdepodobnostna miera
na (2, 8).

Uloha 3.8. Uvazujme pravdepodobnostny priestor (Q, 8, P) modelujuci hod dvomi kockami,
Gize Q = {1,...,6}2, 8§ = 2% a P(M) = |M|/36, kde | M| je pocet prvkov mnoZiny M. Formalne
zapiste udalost A zodpovedajucu vyroku, Ze na prvej kocke padne parne ¢islo a udalost B
zodpovedajicu vyroku, ze na druhej kocke padne neparne ¢islo. Presvedcte sa, ze udalosti
A, B st nezévislé. Uvazujme udalost C', Ze na prvej kockej padne ¢islo menSie ako 5 a sti¢asne
na druhej kocke padne ¢islo mensie ako 4. Uvazujme tiez udalost D, Ze na prvej kocke padne
jedno z ¢isiel 3,4, 5 a sucasne na druhej kocke padne jedno z ¢isiel 2, 3,4, 5. Formélne zapiste
udalosti C, D ako podmnoziny mnoziny (2. St udalosti C, D nezavislé?

Uloha 3.9 (VolIne prevzaté z [3]). Predpokladajme, 7e sme napisali (klasicky, “determinis-
ticky”) algoritmus na overovanie nasledovnej rovnosti dvoch polynémov:

d
H(Gﬂ —b;) = cgr’ + ...crx + ¢p. (3.1)

=1

(Vstupom algoritmu st koeficienty ay, ..., a4, b1, ..., by, o, ..., ¢4 & vystupom je logickd hodnota
true, alebo false, podla toho, ¢ (3.1) plati alebo nie.) VSimnite si, Ze tento algoritmus
potrebuje ©(d?) nasobeni.

Uvazujme tiez nasledovny “zndhodneny” algoritmus: rovnomerne ndhodne vygenerujeme
prirodzené &isla Xy, ..., X z mnoziny {1,2,...,100d}. Nech @ je polyném na lavej strane
rovnosti (3.1) a R nech je polyném na pravej strane rovnosti (3.1). Pokial bude platit
Q(X;) = R(X;) pre kazda hodnotu Xj, ..., X}, zndhodneny algoritmus vrati hodnotu true,
v opa¢nom pripade (t.j. ak Q(X;) # R(X;) pre ¢o i len jednu hodnotu Xj, ..., X}), znadhod-
neny algoritmus vrati hodnotu false. Aka je pravdepodobnost, Ze sa znahodneny algoritmus
“pomyli” v pripade, ze rovnost (3.1) plati a aka je tato pravdepodobnost v pripade, ze (3.1)
neplati? Aky pocet nasobeni vyzaduje nas zndhodneny algoritmus?



Kapitola 4

VsSeobecné nahodné premenné

V mnohych situéciich je vysledkom experimentu nejaka numericka hodnota. Napriklad ak na-
hodne vyberame §portovca z druzstva, moze nas zaujimat jeho vykon. V takychto pripadoch je
uzito¢né danym hodnotam priradit prislusné pravdepodobnosti. Toto priradenie budeme robit
pomocou realnych funkcii definovanych na priestore €2, ktoré nazveme nahodné premenné.

4.1 Zakladné vlastnosti ndhodnych premennych

Definicia 4.1 (Ndhodnd premennd). Nech (€, 8, P) je pravdepodobnostny priestor. Budeme
hovorit, ze funkcia X : Q — R je ndhodna premennd, ak pre kazdé x € R plati

{we: X(w)<z}es.
Priklad 4.1. Priklady ndhodnych premennych:

e HadZeme naraz piatimi kockami. Sucet bodiek na vSetkych kockach, najvac¢si pocet
bodiek na kocke, aj pocet kociek, na ktorych padla Sestka, st nahodné premenné.

e Hrame nasledovnu hru: hadZzeme mincou a vyhrame 1 euro, ak padne znak a prehrame
2 eura, ak padne hlava. Vyska vyhry v tejto hre je ndhodna premenna.

e HadZeme dvakrat mincou. Pocet znakov v tychto dvoch hodoch je ndhodna premenna.

R

Pre jednoduchost budeme mnozinu B; borelovskych podmnozin mnoziny R oznacovat
symbolom B.

20
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Veta 4.1. Nech (2,8, P) je pravdepodobnostny priestor. Potom funkcia X : Q@ — R je
nidhodna premennda vtedy a len vtedy, ak pre kazdé B € B plati

{weQ: X(w)e B} eSs.

Dokaz. Dokaz implikacie ’=": Nech X : Q — R je ndhodna premenna. Pre aktkolvek mnozinu
A C R ozna¢ime symbolom X ~1(A) vzor mnoZiny A v zobrazeni X. Uvazujme systém H tych
podmnozin H C R, pre ktoré plati X ~1(H) € 8. Lahko overime, Ze (R, H) je o-algebra, ktora
obsahuje vetky otvorené intervaly. (Uvedomime si, Ze pre kazdt mnozinu A C R plati X ~1(R\
A) = Q\ X 1(A) a tiez pre akykolvek systém mnozin A; C R, 7 € I plati X 1(Ujes4;) =
Uier X 1(A4;).) KedZze (R, B) je najmensia o-algebra obsahujica vSetky otvorené intervaly,
tak musi platit B C H, ¢im je dokaz priamej implikacie ukonceny. Implikicia 7<= je zrejma,
pretoze kazdy interval typu (—oo, a) patri do systému B. ]

Poznamka 4.1. Pre B € B budeme udalost {w € Q : X (w) € B} zapisovat skratene [X € B].
Teda {we Q: X(w) € (a,0)} = [X € (a,b)] = [a < X < V], alebo {w € Q: X(w) =a} =
[X = a] a podobne.

Definicia 4.2. Funkciu g : R® — R nazveme borelovskou, ak pre kazdé B € B plati g~ (B) €
B, Cize ak vzor kazdej (jednorozmernej) borelovskej mnoZiny je (n-rozmerné) borelovska
mnozina.

Nasledovné vety maja predovsetkym teoreticky vyznam a ich dokazy s technicky pomerne
zdlhavé, preto ich dokazovat nebudeme.

Veta 4.2. Nech By, By, ... € B, st navzajom disjunktné a také, ze U*, B; = R". Nech ¢, ¢a, ...
st spojité funkcie na R”. Potom funkcia g : R* — R spliajica g(r) = g;(x) pre vietky = € B;,
je borelovska (funkcia g je “po Castiach spojita”).

Veta 4.3. Nech Xj,..., X, st ndhodné premenné na priestore udalosti (£2,8) a nech g je
borelovska funkcia. Potom aj zobrazenie g(Xj, ..., X,,) : 2 — R definované

9( X1, .., Xp)(w) = 9(X1(w), ..., Xp(w)); w e Q
je ndhodnou premennou na (€, 8).

Dolezité je uvedomit si to, ze prakticky kazda “slusnd” funkcia z R™ do R sa d& napisat v
tvare po Castiach spojitej funkcie g, a preto prakticky akdkoI'vek funkcia jednej, alebo viacerych
nahodnych premennych je tiez ndhodnou premennou. Povedzme, ak je X ndhodna premenné,
tak aj X? je ndhodna premenna (lebo transformac¢na funkcia g(z) = 22 je spojita), ak X, Xy
st ndhodné premenné, tak aj X; + X5 je ndhodna premennd (lebo transforma¢na funkcia
g(z1,22) = x1 + 13 je spojita na R?), ale aj napriklad X1HX2H je ndhodné premenna (pretoze
prislu$na transformacné funkcia g(xq,z9) = x{llel sa d& napisat v tvare zo znenia vety ako
funkcia po ¢astiach spojita na spocitatelnom systéme dvojrozmernych borelovskych mnozin).

Definicia 4.3 (Nezdvislost ndhodniych premenngch). Nezavislymi nazyvame nahodné pre-
menné X, ..., X,, vtedy, ked pre akékolvek By, ..., B, € B plati

P[X, € By, .., X, € B, = [[ P[Xi € Bi]. (4.1)

i=1
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Veta 4.4. Nech Xi,..., X, s ndhodné premenné a nech systém mnozin F C B generuje na
R o-algebru (R, B). Potom X7, ..., X,, st nezavislé vtedy a len vtedy, ked rovnost (4.1) plati
pre akékolvek By, ..., B, € F.

Veta 4.5 (Nezdvislost ndhodngch premenngch po skupindch). Predpokladajme, ze X1, Xo, ..., X,
st nezavislé ndhodné premenné. Nech ng =0 < n; < ng < ... < ng_1 < ni = n. Pre kazdé
j=1,...,knech g; : R"%~"-1 — R je borelovska funkcia a

}/} = gj<XTLj71+17 an71+27 B 7an)-
Potom st ndhodné premenné Y7, Y5, ..., Yy nezavislé.

Teda napriklad, ak X;, Xs, X3 st nezavislé ndhodné premenné, potom aj ndhodné pre-
menné Y = X; a Yy = X7 — X3 st nezavislé.

4.2 Distribu¢na funkcia ndhodnej premennej

Definicia 4.4 (Distribuénd funkcia). Distribu¢nou funkciou nédhodnej premennej X nazy-
vame funkciu F' : R — R, ktora je v bode = € R definovana

F(z) = P[X < z].

Priklad 4.2. HadZeme dvakrat mincou. Nech ndhodna premenna X pocet znakov v tychto
dvoch hodoch. Potom distribu¢né funkcia ndhodnej premennej X je

0 ak r <0
1/4 ak0<z<1
3/4 akl<z<2
1 ak x> 2

Fr) =

Veta 4.6 (Zdkladné vlastnosti distribucnej funkcie). Nech F' je distribu¢nd funkcia akejkol'vek
nahodnej premennej X. Potom plati:

1. 0 < F(x) <1 pre vetky = € R,
2. F je neklesajuca a spojita zlava,
3. limy oo Fi(z) =1 alim, o F(z) = 0.

Dékaz. Vlastnost 0 < F(z) < 1 pre kazdé x € R je zrejmé. Neklesajiucost F' je tiez jedno-
duché: ak = < y s dve redlne ¢isla, tak F(z) = P[X < 2] < P[X < y| = F(y), pretoze
(X <z] C[X <yl

Dokazeme spojitost zlava. Nech a € R. Pre kazdé prirodzené ¢islo n plati [X < a —
1/n] C[X <a—1/(n+1)], takze z neklesajicosti distribuénej funkcie a vety 2.7 o spojitosti
pravdepodobnosti zdola: lim, ,,- F(x) = lim,_,o F(a — 1/n) = lim, oo P[X < a—1/n] =
P(U,[X <a—1/n]) = P[X <a] = F(a).

Podobne odvodime: lim, o, F(z) = lim, o F(n) = lim, . P[X < n| = P(UX,[X <
n]) = P(Q) = 1. Rovnost lim, , - F(x) = 0 mozeme dokazat analogicky. O
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Veta 4.7 (Pravdepodobnosti intervalov vyjadrené pomocou F). Nech F je distribuéné funkcia
ndhodnej premennej X. Nech a,b € R, pricom a < b. Potom plati

1. Pla< X <b=F(b)— F(a), Pla< X]=1- F(a)
2. Pla< X <b] = lim F(x)— F(a), P[X =a] = lim F(x)— F(a)

xz—bt z—at
3. Pla< X <b]=F(b)— lim F(z), Pla< X]=1- lim F(x)
z—at z—at
4. Pla< X <b| = lim F(z)— lim F(z), P[X <b] = lim F(x)
z—bt z—at z—bT

Dékaz. Priamo z definicie mame Pla < X < b = P[X < b — P[X < a] = F(b) — F(a).
Ukazeme este napriklad P[X = a| = lim, .+ F'(x) — F(a); ostatné rovnosti je mozné dokazat
bud z tejto rovnosti, alebo analogicky. P[X = a] = P(N{°4fa — 1/n < X < a+ 1/n]) =
lim, o Pla—1/n < X <a+1/n] =lim, o (F(a+1/n)—F(a—1/n)) = lim,_,.+ F(z)—F(a).
Druha rovnost plynie zo spojitosti pravdepodobnosti, posledné rovnost plynie z toho, ze F' je
spojita zlava. H

4.3 Cvicenia

Uloha 4.1. Nech (£, 8) je priestor udalosti (c-algebra) a nech A C Q. Definujme zobrazenie
I, : Q — R nasledovne: [4(w) = 1 pre vietky w € A a I4(w) = 0 pre vietky w € Q/A.
(Zobrazenie I, nazyvame identifikitorom mnoziny A.) Potom I4 je ndhodna premenné na
tomto priestore vtedy a len vtedy, ked A € 8. Dokazte!

Uloha 4.2. Presved¢te sa, 7e na priestore (9,29 je kazdé zobrazenie X : Q — R nahodnou
premennou a na priestore (€, {Q,0}) st ndhodnymi premennymi len konstantné zobrazenia.
Popiste mnozinu v8etkych ndhodnych premennych na o-algebre (Q,{2,{0,1},{2},0}), kde
Q={0,1,2}.

Uloha 4.3. Uvazujme pravdepodobnostny priestor (2,292, P), kde Q = {1,...,6} a P(A) =
|A]/6 pre A C Q. Najdite distribu¢ni funkciu ndhodnych premennych X : 2 — R definova-
nych

a) X(w) = w;

b) X(w) =w mod 4 pre vSetky w € €.

Uloha 4.4. Uvazujme pravdepodobnostny priestor (2,8, P), kde Q = {a,b,c}, 8§ = 2% a pre
kazdée A € 8 plati P(A) = |A|/3. (JA| je pocet prvkov mnoziny A.) Nacrtunite distribuénu
funkciu nadhodnej veli¢iny X, najdite F(X) a D(X), ak

a) X(a) =X() =X(c) =0;

b) X(a) = X(b) =0,X(c) = 1;

c) X(a)=0,X(b) =1,X(c) = 2.



Kapitola 5

Diskrétne nahodné premenné

5.1 Zakladné vlastnosti diskrétnych ndhodnych premen-
nych

Definicia 5.1 (Diskrétna ndhodnd premennd). Nahodnt premenntt X na pravdepodobnost-
nom priestore (€2, 8, P) nazyvame diskrétna, ak jej obor hodnot X (2) C R je spocitatelna
mnozina.

Niekedy hovorime, 7Ze diskrétna ndhodna premenna X "nadobuda” spocitatelne vela hod-
not. Hovorime tiez, Ze diskrétna ndhodnda premenna X nadobuda ¢islo x ”s pravdepodobnos-
tou” P[X = z].

Poznamka 5.1. Vsimnite si, Ze ak je X, ..., X,, st diskrétne ndhodné premenné a g : R® — R
je akakol'vek borelovska funkcia, tak g( Xy, ..., X,,) je tiez diskrétna ndhodna premenné, pretoze
jej obor hodndt musi byt spocitatelny.

Veta 5.1 (Nezdvislost diskrétnych ndhodngch premenngch). Diskrétne nahodné premenné
X1, Xo, ..., X, st nezavislé vtedy a len vtedy, ked plati

PlXy =21, Xp = 29,..., X,y = 1] :HP[Xi:l’i] (5.1)
i=1

pre vsetky x1,xo,...,z, € R.

Dokaz. Dokaz implikdcie = plynie priamo z definicie nezavislosti a z toho, ze jednoprvkové
mnoziny By = {z1},...,B, = {z,} st borelovské.

Ukazme opa¢ni implikaciu. Nech By, ..., B, si akékolvek borelovské mnoziny. Pre kazdé
i =1,...,n ozna¢ime C; = X;(Q2) N B; mnoZinu tych ¢siel z oboru hodnét nahodnej premen-
nej X;, ktoré patria do B;. KedZe ndhodné premenné X; su diskrétne, tak mnoziny C; st
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spocitatelné. Z aditivity (pripadne o-aditivity) pravdepodobnosti a rovnosti (5.1) dostavame:

PXy €By,.. X, €B,] = > - > PlXi=a1,... X, =1,

1'1601 rn€Ch

_ Z Z P[X1 = 241]...P[X,, = x,]

I1€C1 zn€Ch

_ <Z P[Xlle])---<z P[Xn=$n])

x1€C n€Ch

= P[X, € By]---P[X, € B,].

]

5.2 Ciselné charakteristiky diskrétnych nahodnych pre-
mennych

Definicia 5.2 (Strednd hodnota diskrétnej ndhodnej premennej). Nech X je diskrétna né-
hodna premenna a nech rad >,y ) zP[X = x| absolitne konverguje. Potom hovorime, Ze
nahodné premenna X ma kone¢ni stredni hodnotu F(X) a kladieme:

E(X)= Y aP[X =a].

z€X(Q)

Ak rad na pravej strane absolitne nekonverguje, hovorime, Ze ndhodna premennd X nemé
kone¢nt stredni hodnotu.!

Poznamka 5.2. Pod absolitnou konvergenciou radu ) r(x), kde X je spocitatelna mno-
zina, myslime to, ze >, |r(z;)| < oo, pri¢om 1, zo, ... je (akékolvek) ocislovanie prvkov mno-
ziny X. Absoltitna konvergencia zarucuje, Zze hodnota ) r(x) je kone¢né a rovnaka nezavislé
na tom, v akom poradi s¢itujeme ¢leny tohoto radu.

Veta 5.2 (Linearita strednej hodnoty). Nech X a Y su diskrétne nahodné premenné, ktoré
maji konec¢nl strednit hodnotu. Nech a, b st realne ¢isla. Potom aj diskrétna ndhodna pre-
mennd aX + bY mé konec¢ni strednt hodnotu a plati

E(aX +bY) = aB(X)+bE(Y).
Specidlne, E(aX) = aBE(X) a E(X +Y) = E(X) + E(Y).

Dékaz. Obor hodnot ndhodnej premennej a X + bY je uréite podmnozinou mnoziny aX (£2) +
bY (€2), kde X (£2) a Y (£2) st obory hodnét nahodnych premennych X a Y. Z definicie strednej

1Ak je X nezaporni ndhodna premennj a EIGX(Q) xP[X = z] = oo, tak sa niekedy hovori, Ze ndhodna
premennd X ma nekone¢nd strednd hodnotu.
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hodnoty a aditivity (pripade o-aditivity) pravdepodobnosti dostavame:

E(aX +bY) = Z zPlaX +bY = 2]
z€aX (Q)+bY ()

= Z Z (azx + by)P x,Y =y

2€X(Q) yeY (Q)

=a Y x> P Y=yl+b > y > PX=zY=y

zeX(Q) yeX(Q) yeY (Q) zeX(Q)
= a )y z]+b Z yPlY =y] = aB(X) + bE(Y).
zeX () yeY (2

(V pripade, ze by predchadzajice rovnosti sim boli nejasné, je instruktivne si ich platnost
premysliet pre §pecidlny pripad, napriklad taky, ze X () =Y () ={0,1}, a=b=1.) ]

Veta 5.3 (Strednd hodnota funkcie diskrétnej ndhodnej premennej). Nech X je diskrétna
ndhodna premennd a nech g : R — R je funkcia. Potom g(X) je diskrétna nahodna premenna
a jej strednd hodnota je konefnd, ak rad ), ) 9(z)P[X = z] absolitne konverguje. V
takom pripade plati:

zeX(Q)

Definicia 5.3 (Disperzia diskrétnej ndhodnej premennej). Nech X je diskrétna nahodna
premennd a nech nahodna premenna X? ma koneéni strednit hodnotu. Potom hovorime, Ze
ndhodna premenna X ma koneénu disperziu D(X) a kladieme:

D(X) = E ((X ~ E(X))").

Ak nahodna premenns X2 nemé koneé¢ni strednt hodnotu, tak hovorime, e X m4 nekone¢nt
disperziu.

Veta 5.4 (Zdkladné vlastnosti disperzie diskrétnej ndhodnej premennej). Nech X je nahodna
premennd, ktord ma konec¢ni disperziu a nech a, b st redlne ¢isla. Potom aj diskrétna nadhodné
premennd aX + b mé konec¢ni disperziu a plati:

D(X) = E(X?)-E(X)",
D(aX +b) = a*D(X).

Dokaz. 7 definicie disperzie a linearity strednej hodnoty mame: D(X) = E((X — E(X))?) =
B(X? — 9(E(X))X + (B(X))?) = B(X?) - 2(B(X))(E(X)) + (B(X))? = B(X?) — (B(X))*
Dokaz druhej casti vety je podobne jednoduché cvicenie. O

Ak diskrétna ndhodna premenna X nadobtda hodnoty (z;);c; s nenulovou pravdepodob-
nostou a ak ma konec¢ntu strednit hodnotu, tak z vety 5.3 a predchadzajtcej vety plynie, ze
disperziu X mozeme vypocitat podla ktoréhokol'vek z nasledujicich dvoch vzorcov

o D(X) =3 e,(w — BE(X))’P[X = ]
d D(X):Zzel zzP[X Z]_(E(X))z
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5.3 Zakladné typy diskrétnych ndhodnych premennych

5.3.1 Alternativne rozdelenie

Definicia 5.4 (Alternativne rozdelenie). Hovorime, ze diskrétna nahodné premenna X ma
alternativne rozdelenie s parametrom p € (0,1), ak P[X =0] =1—p a P[X = 1] = p. Tuto
skuto¢nost znacime X ~ Alt(p).

Priklad 5.1. HadZeme mincou, na ktorej padne znak s pravdepodobnostou p. Potom ndhodné
premenna

_J 1 ak padne znak
10 ak padne hlava

mé alternativne rozdelenie X ~ Alt(p).
Veta 5.5. Nech X ~ Alt(p). Potom E(X)=pa D(X)=p(l—p).

Dékaz. Dokaz je elementarne cvicenie. O]

5.3.2 Binomické rozdelenie

Definicia 5.5 (Binomické rozdelenie). Hovorime, 7e diskrétna nadhodna premenna X ma
binomické rozdelenie s parametrami p € (0,1) a n € N, ak pre kazdé k =0, 1,...,n plati

n

PLY =4 = )k =

Tuto skutoénost znac¢ime X ~ Bin(n,p).
Priklad 5.2. HadZeme mincou z predchédzajiceho prikladu n krat. Definujme ndhodni pre-
menni X ako pocet znakov, ktory padne v tychto n hodoch. Potom X mé binomické rozdelenie
X ~ Bin(n,p).
Veta 5.6. Nech X ~ Bin(n,p). Potom E(X)=npa D(X) =np(1—p).
Dékaz. Nech X ~ Bin(n,p), ¢ =1 — p. Plati:

par k (n — k)k!

k=1

= (n—1)! k—1 _n—k (n—1)! i (n—1)—i _
”p;(n—k)u{;—n'p 1 _”pz (n—1) -t ? -

n—1
n—1 i (n— n—
an( i )Pq( D7 = np(p+q)" " = np

=0

Posledn4 rovnost plynie z binomickeho rozvoja suctu (p+¢)"~!. Podobne odvodime F(X (X —
1) = Yoo bk =1) ()" q" " = n(n—1)p* a preto D(X) = B((X)?) — (E(X))* = BE(X(X -
1) + B(X) — (B(X))* = n(n 1)1? +np —n?p? = np(1 — p). O
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Obr. 5.1: Rozdelenie pravdepodobnosti a distribu¢na funkcia ndhodnej premennej X ~
Bin(8,0.3)

Poznamka 5.3. Néhodna premenna X s rozdelenim Bin(n,p) zodpoveda poctu tspechov,
ak robime n nezavislych experimentov a pravdepodobnost tuspechu v kazdom experimente je
p. Vsimnite si tiez, ze X ~ Alt(p) vtedy a len vtedy, ked X ~ Bin(1,p).

Priklad 5.3. Pre potreby genetického algoritmu modelujeme “chromozém dizky n” postup-
nostou n binarnych hodnét 0 alebo 1. Nech x je chromozém pozostavajici z k jednotiek a
n — k ndl. Chromozém y vytvorime z chromozému x ndhodnou "mutaciou”, t.j. tak, ze kazdy
bit preklopime na opa¢ny s pravdepodobnostou p. Najdite strednti hodnotu poc¢tu jednotiek,
ktoré bude obsahovat chromozom y.

RieSenie: Ak za "ispech” budeme povazovat to, ze déjde k preklopeniu bitu, tak je zrejmé,
ze pocet Ny_,1 nulovych bitov chromozému z, ktoré sa zmenia na jednotku, mé rozdelenie
Bin(n—k,p) a pocet Ny, jednotkovych bitov chromozomu z, ktoré sa pri mutécii nezmenia,
mé rozdelenie Bin(k,1 — p). Vidime, 7e pre po¢et N jednotkovych bitov chromozomu y plati
N = Ny_1 + N1, a teda na zaklade linearity strednej hodnoty a vety 5.6 dostavame:

E(N) = E<N0_>1> + E(N1_>1) == (n - k)p—l— /{?(1 —p).

Priklad 5.4. Hrame hru, v ktorej sa tahaja 4 ¢isla zo 40. Vyhrame, ak uhadneme vsetky Styri
¢isla. Urcte pravdepodobnost, ze ak sa hry zucastnime 500 krat, vyhrame raz alebo dvakrat.
Ak pravdepodobnost vyhry v jednej hre oznac¢ime p, mame

4y (36
_WE) 5
(3)
Potom nédhodna premenna X, ktord oznacuje pocet vyhier v 500 hrach, ma binomické rozde-
lenie s parametrami 500 a p a

PIX=1VX=2= (5(1)0);9(1 s (500

5 >p2(1 —p)*® ~ 0.00546.



Pravdepodobnost a Statistika, FMFI UK, predbezna verzia 6.10.2017

V takomto pripade, ked je n 'velké” a p 'velmi malé’, je vyhodnejsie aproximovat binomické
rozdelenie nasledovnym spodsobom.

Veta 5.7. Majme postupnost nahodnych premennych X,,,, X,,, 11, ... pricom X,, ~ Bin(n, \/n),
kde 0 < X\ < n;. Potom pre kazdé k € {0,1,2,...} plati

k
lim P[X, = k] = N

k n—=k
lim P[X, = k] = lim ("> <5) (1—5>
n—oo n—o0 /{j n n
Moo n n—1 n—k-+1 A\ 7F A\"
HJE&(E)( " )(T) (17) (“5)

Avsak zrejme plati
—1 —k+1 K
lim (ﬁ)(n )(m> (1_é> _1
n—oo \ 1 n n n

lim (1 — é) =
n—o00 n

z predchadzajicich rovnosti dostavame pozadované tvrdenie. O

Dokaz.

5.3.3 Poissonovo rozdelenie

Definicia 5.6 (Poissonovo rozdelenie). Hovorime, Ze diskrétna ndhodna premenna X ma

Poissonovo rozdelenie s parametrom A\ > 0, ak pre kazdé £k = 0,1, 2, ... plati
A\F
o1 A
P X =kl=e Tk

Tuto skutocnost znacime X ~ Po(\).

Priklad 5.5. V predchadzajiucom priklade mdzeme binomické rozdelenie aproximovat Poisso-
novym rozdelenim s parametrom A = 500p ~ 0.00547 a dostavame Potom ndhodna premenné
X, ktora oznacuje pocet vyhier v 500 hrach, mé binomické rozdelenie s parametrami 500 a p

a
NS
PIX=1vX=2=¢*(T+75 ) ~0.0057.

Veta 5.8. Nech X ~ Po()). Potom E(X)=Xa DX = \.

Dékaz.

© 2\ 1

_ AN S S

E(X)—g ke e )\E (k:—l)!_e et =\
k=0 k=1

Podobne mame

EX(X -1))

S A e AP A2 2
;k(k—we ’\H:e)‘)\ ;(k_m!:eﬂ =\
Preto D(X) = E(X)?)— (E(X))2 = E(X(X —=1)+EX)—(B(X))2 = X4+A-X2 =) [
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P[X=x]

Obr. 5.2: Rozdelenie pravdepodobnosti a distribu¢na funkcia nédhodnej premennej X ~

Po(0.5)

P[X=x]

Obr. 5.3: Rozdelenie pravdepodobnosti a distribu¢na funkcia nadhodnej premennej X ~

Po(2.5)
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Poissonovo rozdelenie sa pouziva napriklad na modelovanie poc¢tu rozpadov atémov ra-
dioaktivnej latky za urcity cCas, volani na telefénnu dstrediiu, impulzov prichddzajicich na
neurénovi bunku a podobne. Poissonovo rozdelenie je tiez limitnym rozdelenim niektorych
postupnosti ndhodnych premennych (pozri vetu 5.7 a priklad 5.6).

Priklad 5.6. Nech n € N a nech X,, znamen& pocet prvkov, ktoré zostand na svojom po-
vodnom mieste po dokonalej ndhodnej permutécii postupnosti (1,...,n). Dokéazte, ze limitné
rozdelenie ndhodnych premennych X, je Po(1), t.j. Ze lim,, o, P[X,, = k] = e~ /k! pre kazdé
nezaporné celé ¢islo k.

Riesenie: Najprv si uvedomme, 7e p, = P[X,, > 0] sme uz ur¢ili v priklade 2.8. Polozme
qn = P[X,, = 0] = 1 — p,, t.j. g, je pravdepodobnost, ze po ndhodnej permutacii n ¢isiel ne-
zostane ani jedno z nich na svojom povodnom mieste. Dodefinujme tiez gy = 1. Pre v8eobecné

k > 1 méme
P[Xn:kz]:P< U Ba. k>

1<i1<...<ip<n

kde B;, ;. znamend udalost, Ze ¢isla iy, ..., zostand na svojom pdovodnom mieste a ziadne
iné ¢islo nezostane na svojom pdévodnom mieste. Je zrejmé, ze takychto udalosti je (Z), 7e si
navzajom disjkunktné a pravdepodobnost kazdej takejto udalosti je

An—k
P(Bi,. )=

Spojenim tychto vysledkov dostdvame

n Gn—k Gn—k
PlXo = H = (k:) nn—1)..(n—k+1) Kk

Pouzitim rieSenia prikladu 2.8 mame

. 1~ po_
lim P[X, =k = lim &8 — Jim = 2ok — =1 /g1

n—o00 n—oo k! n—00 k!

5.3.4 Geometrické rozdelenie

Definicia 5.7 (Geometrické rozdelenie). Hovorime, 7e diskrétna ndhodné premenna X ma
geometrické rozdelenie s parametrom p € [0, 1], ak pre kazdé k = 0,1,2,... plati

P[X = k] =p(1—p)".
Tuto skutotnost zna¢ime X ~ Geo(p).

Priklad 5.7. HadZeme mincou, na ktorej padne znak s pravdepodobnostou p. Potom ndhodné
premennd, ktord reprezentuje pocet hodov, kym nepadne prvy krat znak, ma geometrické
rozdelenie s parametrom p.

Veta 5.9. Nech X ~ Geo(p). Potom plati E(X) = (1—p)/pa D(X) = (1—p)/p*
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Obr. 5.4: Rozdelenie pravdepodobnosti a distribu¢na funkcia ndhodnej premennej X ~
Geo(0.4)

Dékaz. Pre kazdé g € (0,1) plati f(q) = > 4y q” = (1 — ¢)~*. Derivovanim funkcie f dosté-
vame jednak f'(q) = > 7, k¢" " ako aj f'(q) = (1 — q¢)~2 Preto

Y kgt =(1—-¢)7
k=0
Takze

BE(X)= ikp(l —p)* =p(1=p) > k(1 =p)* " =p(l—p)p~> = (1—p)/p

k=0

Dvojnasobnym derivovanim funkcie f dostaneme vzorec pre stic¢et nekonec¢ného radu, pomocou
ktorého odvodime disperziu velmi podobne, ako sme vypocitali stredni hodnotu. O]

Néhodna premennd X s rozdelenim Geo(p) zodpoveda poc¢tu netspesnych experimentov
predchadzajucich prvy uspe$ny experiment, ak pravdepodobnost aspechu v jednotlivom expe-
rimente je p.

Priklad 5.8. Kodom PIN méZe byt akdkoIvek postupnost Styroch cifier od 0000 po 9999.
Predpokladajme, Ze systém akceptuje kod PIN, ak spravne zadame aspon 3 zo Styroch cifier
(na zodpovedajicich miestach). Budeme nahodne volit kody PIN, az kym néas kod nebude
akceptovany. (Volbu vykonavame tak, ze kazdu cifru volime s pravdepodobnostou 1/10 bez
ohladu na to, ¢o sme volili predtym.) Aké je stredné hodnota po¢tu pokusov?

Riesenie: Pravdepodobnost, Ze zo Styroch ndhodne zadanych cifier uhadneme aspon tri je
podla binomickej formule

p= @) (0,1)* (0,9)" + (i) (0,1)*(0,9)° = 0,0037.
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Pocet "netspesnych experimentov” X, t.j. odmietnutych kodov PIN, ma rozdelenie Geo(p).
Preto stredna hodnota poc¢tu N = X + 1 zadani kodu PIN, so zapocitanim aj posledného,
uspesného, je podla vety 5.9:

1—p 1

E(N)=E(X)+1=—=+1= - =10000/37 = 270.
p p

Priklad 5.9. Predpokladajme, Ze velkost N vstupu algoritmu ma rozdelenie Geo(p) + 1 a
¢as T vypoctu algoritmu zavisi od velkosti vstupu podla vztahu T = aN? + BN + v, kde
p € (0,1), a, B, > 0 st zndme konstanty. Uréte stredntt hodnotu ¢asu vypoctu 7.

5.3.5 Hypergeometrické rozdelenie

Definicia 5.8 (Hypergeometrické rozdelenie). Hovorime, Ze diskrétna ndhodna premenné X
mé hypergeometrické rozdelenie s parametrami M, N,n € N, splhajacimi N < M an < M,
ak

N\ (M-N
() Cace)

pre kazdé k = max(0,n+N—M), ..., min(n, N). Tato skutotnost znac¢ime X ~ Hyp(M, N, n).

Poznamka 5.4. Predpokladajme, ze mame urnu s M gulickami, z ktorych je N ciernych.

Z urny (stacasne alebo, ekvivalentne, bez vratenia) vyberieme n guli¢iek. Ak X znamena

pocet ¢lernych guliiek v tomto vybere, tak X ma rozdelenie Hyp(M, N, n). Hypergeometrické

rozdelenie sa pouziva napriklad pri pravdepodobnostnej analyze lotérii a v Statistickej kontrole
kvality.

Veta 5.10. Nech X ~ Hyp(M, N,n). Potom E(X) = n.

Dékaz. Pozri priklad 5.10. O

5.4 Vyuzitie indikAtorov udalosti a linearity strednej hod-
noty

Priklad 5.10. Nech X ~ Hyp(M, N,n). Uréte EX.

Riesenie: Ak sa chceme vyhnit vypoctu komplikovanych stim, mézeme urobit dokaz s vy-
uzitim linearity strednej hodnoty a to nasledovne: Uvazujme urnovi schému z poznamky 5.4.
Ozna¢me pre i = 1, ...,n ako U; nahodni premenni, ktord nadobuda hodnotu 1 v pripade, ze
i-ta vybrata gul6cka je ¢ierna a hodnotu 0 ak je biela. Zo symetrie plynie, 7e U; ~ Alt(N/M),
preto E(U;) = N/M. Kedze X =" | U; tak mame:

E(X)=E <Z Ui> = ZE(Ui) = n(N/M).

Takto by bolo mozné odvodit aj disperziu; vypocet je viak zdlhavejsi.
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Priklad 5.11. Nech n € N, n > 2 a nech X,, znamené pocet prvkov, ktoré zostani na
svojom poévodnom mieste po dokonalej ndhodnej permutécii postupnosti (1,...,n), rovnako
ako v priklade 5.6. Uré¢te E(X,,) a D(X,,)!

Riesenie: Nech Uy, ..., U, st ndhodné premenné, pricom U; je indikdtor udalosti, ze ¢islo
1 zostane na svojom pdvodnom mieste. To znamend, ze U; je 1 ak ¢islo ¢ zostane na svojom
mieste a U; je 0 ak ¢islo ¢ nezostane na svojom pdvodnom mieste. Zrejme U; ~ Alt(1/n), t.].
E(U;) = 1/n podla vety 5.5. Kedze X = U; + ... + U, dostavame z tvrdenia 5.2 F(X) =
Z?:l E(U;) = 1.

Podobne, pouzitim linearity strednej hodnoty mame

E(X2)=E (i U, i UJ) = i i E(UU;).

Zrejme U;U; ~ Alt(p), kde p je pravdepodobnost, ze zaroven ¢&islo ¢ aj ¢islo j zostane na
svojom mieste. Ak ¢ = j, tak p = % aak i # 7, tak p = %ﬁ Preto

B(X2) = Y BUU) + Y3 E(UU;) = e

7. odvodenych rovnosti a vety 5.4 dostavame
D(X,) = E(X2) - (BE(Xy)’=2-1=1.

Z prikladu 5.6 (a vety 5.8) vieme, Ze limitné rozdelenie ndhodnych premennych X, ma
strednt hodnotu aj disperziu 1. Prave sme sa vSak presveddcili, ze F(X,) = D(X,,) = 1 pre
kazdé n.

Priklad 5.12. Nech o = (04, ...,0,) je permutécia postupnosti (1,...,n). Index i € {1,...,n}
nazveme rekordom v permutacii o, ak bud ¢ = 1, alebo ak ¢ > 1 a 0, > o, pre vSetky
j € {1,....,i — 1}. Nech X,, oznacuje pocet rekordov v dokonalej ndhodnej permutécii o po-
stupnosti (1, ...,n). (Pozn.: Kvoli jednoduchosti zna¢ime v tomto priklade aj pevnti aj nahodnu
permutaciu symbolom ¢.) Najdite E(X,) a D(X,).

Riesenie: Pre vSetky ¢ = 1,...,n ozna¢me ako U; ndhodnt premennt, ktord nadobuda
hodnotu 1 prave vtedy, ked v ndhodnej permutacii ¢isiel (1, ..., n) bude i rekordom a hodnotu 0
inak. Zjavne X,, = Uy+...4+U,. TieZ je zrejmé, Ze pre kazdé i € {1,...,n} je udalost [i je rekord]
ekvivalentna udalosti [0; = max(o7q, ..., 0;)], ktorej pravdepodobnost je 1/i, pretoze z dovodov
symetrie ma kazda z i hodnot oy, ..., o; rovnakia pravdepodobnost, Zze bude najvic¢sia v mnozine
{01, ...,0;}. Na zéklade linearity strednej hodnoty dostavame:

BX) =Y By =
=1 =1
n 1

Poznamenajme, Ze stcet prvych n ¢lenov harmonického radu je Y ", = ~ In(n) + 1, kde v =~
0,577 je Eulerova-Mascheroniho konstanta. Aby sme vypoéitali varianciu, overte si najprv?,
ze pre vsetky 4,7 € {1,...,n};i < j s udalosti [i je rekord] a [j je rekord] nezavislé a teda

n n

E(X?) = i > EUU;) = i E(U;)+2) EUU;) => % 4oL

R}
X . - X — 1]
i=1 j=1 1<j i=1 i<j

2ako cvicenie
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7 ¢oho dostavame

D(X,) = BOX) = (BOG) =35 +2 3 = - <21> DI S

Pre velké n je Y7 | 4 ~ %,2, ¢ize D(X,,) = In(n) +v — %2

1=

Priklad 5.13. Za okrthlym stolom je rozostavenych 17 stoli¢iek ocislovanych 0, ..., 16, na
ktoré sa posadilo 12 muzov a 5 zien. Ukézte, Ze existuje sedmica susednych stoli¢iek, na
ktorych sedia aspon tri Zeny.

Riegenie: Najprv si definujeme (nendhodné) konstanty Ry a Vi pre kK = 0,...,16 a to
nasledovne: Ry oznacCuje pocet Zien, ktoré sedia na stolickach s ¢islami k,k + 1,...,k + 6
modulo 17. V}, je 1 ak na stoli¢ke s ¢islom k sedi Zena a v opac¢nom pripade Vj, definujeme ako
0.

Dalej ndhodne zvolme jednu stolicku (kazda s pravdepodobnostou 1/17). Nech K je €islo
tejto stolicky, t.j. K je ndhodna premenni s rovnomerngm rozdelenim na mnoZine {0, ..., 16}.
Pre ndhodnt premenni Rg plati

Rg = Vg + Vi + ... + Vige,

kde indexy stale berieme modulo 17. V§imnime si, ze E(Vky;) = 5/17 pre vSetky i =0, ..., 6,
lebo E(Vkyi) = P[Vk4i = 1], ¢o je pravdepodobnost, Ze na stolicke K + ¢ (modulo 17) je
zena. Mame:

Aby mohlo platit F(Rg) > 2, musi byt splnené P[Ryx > 2] > 0, t.j. ndAhodna premenna
Ry nadobida s nenulovou pravdepodobnostou jednu z hodnét 3,4, .... Z toho ale plynie, ze
nutne musi existovat aspon jedna sedmica susednych stoli¢iek, na ktorych sedia aspon 3 Zeny.

Poznamka 5.5. Predchadzajici priklad ukazuje, zZe pravdepodobnostné metdédy mozeme po-
uzit aj na riesenie niektorych deterministickych aloh (napriklad kombinatorickych, alebo gra-
fovych). Sthrnne sa takéto techniky nazyvaju “probabilistic method”.

5.5 Cvicenia

Uloha 5.1. Ukazte: Nech B je borelovskd mnozina realnych &isiel a nech X je diskrétna
ndhodna premenna so (spoc¢itatelnym) oborom hodnét H. Potom

PXeB]= Y P[X=a]

r€BNH

Uloha 5.2. Nech X je diskrétna ndhodna premennd s oborom hodnot {z1,...,x,}, pricom
1 < ... < x,. Nacértnite distribu¢na funkciu ndhodnej premennej X.

Uloha 5.3. Hodime n-krat mincou. Sériou nazveme postupnost za sebou idicich rovnakych
vysledkov, pred a za ktorymi je vysledok opa¢ny, alebo ziadny (t.j. zaciatok, alebo koniec).
Napriklad pri n = 8 obsahuje vysledok "HZZZHHHH” tri série, vysledok "HZHZZHZH” 7
sérii. Nech X znamend vysledny pocet sérii. Najdite rozdelenie ndhodnej premennej X, t.j.
hodnoty P[X = k| pre k =1,...,8. Najdite E(X) a D(X).
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Uloha 5.4. Na zaciatku hry SCRABBLE hra¢ nahodne voli 7 roznych pismeniek spomedzi
100. Z tychto 100 pismeniek je 44 samohlasok. Nech X znamena pocet samohlasok, ktoré si
vyberieme. Néjdite rozdelenie (t.j. pravdepodobnosti P[X = k] pre k = 0,...,7) a stredni
hodnotu ndhodnej premennej X.

Riesenie: P[X = k] = (1) (%) /('%); B(X) = T4,

Uloha 5.5. Vo vrecku mame vietkych 2" podmnozin mnoziny {1,2,...,n} (vratane prazdnej
mnoziny). Z vrecka najprv ndhodne vyberieme mnoZinu E, vratime ju spat a po chvilke
vyberieme d'algiu mnozinu F'. Nech ndhodné premenna X znamend pocet prvkov zjednotenia
E a F'; Y nech znamené pocet prvkov prieniku £ a F'. Najdite rozdelenie a strednti hodnotu
a) nahodnej veli¢iny X;

b) nahodnej veli¢iny Y.

Uloha 5.6. 7 interpretacie binomického rozdelenia (pozri poznamku 5.3) je zrejmé, 7e ak
X ~ Bin(n,p), tak X mé rovnaké rozdelenie ako nahodna premenna X' = U; + ... + U, kde
U; ~ Alt(p) nadobudne hodnotou 0 v pripade netispechu v i-tom experimente a 1 v pripade
tspechu v i-tom experimente. Pomocou tohoto vyjadrenia odvodte F(X) a D(X).



Kapitola 6

Markovovské retazce

Rozsirenim pojmu nahodnej premennej je ndhodny proces, ktory je tvoreny postupnostou
ndhodnych premennych Xi, X, X3,.... Majme postupnost ndhodnych premennych {X;}:°,.
Hodnoty ndhodnych premennych X;, ¢t > 0 budeme nazyvat stavmi systému v ¢ase t a mnozinu
moznych stavov systému oznacime S. Ak mnozina vSetkych stavov je konecna alebo spocita-
telna, postupnost {X;}2°, sa nazyva retazec. Dalej budeme uvazovat len retazce s kone¢nou
mnozinou stavov S = {1,2,...,m}.

Definicia 6.1 (Markovousky retazec). Hovorime, ze retazec {X;}°, s mnozinou stavov S =
{1,2,...,m} ma Markovovu vlastnost, ak pre vietky n € N a pre l'ubovolné stavy iy, ... i, €
S plati

P(Xi1 = inst]s Xon = ines Xt = ity ooy X1 = i1) = P(Xnsr = ins1], X = i)
V tomto pripade sa {X;}:2, nazyva markovovsky retazec.
Podmienené pravdepodobnosti
P(Xpi1 =1, X, =j) = pij(n), neN

nazyvame pravdepodobnosti prechodu zo stavu j v ¢ase n do stavu ¢ v ¢ase n + 1.
Ak pravdepodobnosti prechodu nezévisia od ¢asu, t.j. ak pre Tubovolné n je P(X,.1 =
i, X, = j) = P(X,, = i|, X,-1 = j) =: pij, hovorime o staciondrnom retazci.
Pravdepodobnosti prechodu stacionarneho markovovského retazca mozeme zapisat do tzv.
matice pravdepodobnosti prechodu

P11 P12 --- Pim

P21 P22 ... P2m
P=1". . .

pml pm2 L pmm

7 definicie pravdepodobnosti prechodu vyplyva, ze > ;bij =1 pre vSetky i.
Pravdepodobnost prechodu zo stavu ¢ do stavu j po t krokoch definujeme ako

pij(t) = P(Xpnsr = j|Xe = 1)
Da sa I'ahko ukazaft, ze

Pt = puply!
u

37
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Odtial vyplyva, ze ak ozna¢ime P(t) maticu pravdepodobnosti prechodu po ¢ krokoch, potom
P(t) = P..
Tento vysledok zovSobeciiuje nasledovna veta:

Veta 6.1. (Chapmanova-Kolmogorovova rovnost): Oznacme p;;(t) prvky matice prechodu
P(t). Potom pre vSetky t, s > 0 a pre kazdé dva stavy 4, j € S plati: p;;(t+s) = >, .o Pit(5)Pr; (1),
a teda P(t+ s) = P(t)P(s).

Rozdelenie pravdepodobnosti p(0) = (p1(0),p2(0),...,pm(0)) také, ze p;(0) = P[Xy = i]

pre ¢ = 1,...,m sa nazyva pociato¢né rozdelenie retazca. D4 sa ukazat, Ze matice pre-

chodu P(t),t =1,2,3,... a pociato¢né rozdelenie p(0) jednozna¢ne urcuju rozdelenia retazca
o0

{Xe 12y

Markovovsky retazec mozeme znazornit pomocou orientovaného vazeného grafu (V, £, w),
kde mnozina vrcholov V' reprezentuje stavy retazca. Medzi vrcholmi ¢, j existuje hrana (i, j) €
E prave vtedy, ked p;; > 0, a potom w(%, j) = pi;.

Priklad 6.1. Mucha sa pohybuje po priamke. V kazdej sekunde sa pohne s pravdepodobnos-
tou 0.3 o centimeter dolava, s pravdepodobnostou 0.3 o centimeter doprava, a s pravdepo-
dobnostou 0.4 ostane na mieste. Na poziciach 1 a m na fu striehne pavik: ak mucha pristane
na jednom z tychto dvoch miest, pavik ju zozerie.

Zostrojme markovovsky retazec pre tuto situaciu za predpokladu, ze mucha je na zac¢iatku
v niektorej z pozicii 2,...,m. Nech stavy 1,...,m reprezentuji mozné pozicie muchy. Prav-
depodobnosti prechodu potom sii

P11 = 1) Pmm = 17
~J04 aki=j
Pi=Y03 akj—4i i=2 ... m—1
Matica pravdepodobnosti prechodu je
1 0 0 O
0.3 04 03 0

P=10 03 04 03
0o 0 0 1.

6.1 Klasifikdcia stavov markovovského retazca

Definicia 6.2 (Ireducibilny markovovsky retazec). Hovorime, 7e stav j je dosiahnutelng zo
stavu 7, ak pre systém v stave i je nenulovid pravdepodobnost, Ze niekedy dosiahne stav j.
Markovovsky retazec, pre ktory plati Ze [ubovolny stav je dosiahnutelny z [ubovolného iného
stavu v kone¢nom Case, sa nazyva treducibilng. Formélne

Vi,jeSdmeNm<oo: P(Xpim =1X,=7) >0

Definicia 6.3. MnoZina stavov C' sa nazyva uzavreta, ak pre Tubovolné i € C' a j ¢ C je
pij = 0, teda ak zo stavov v C nie je dosiahnutelny ziadny stav mimo C.
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Definicia 6.4 (Absorbujici stav). Stav i sa nazyva absorbujuci, ak p; = 1.

Poznamka 6.1. Vidime teda, Ze absorbujici stav je jednoprvkova uzavretd mnozina stavov. V
ireducibilnom markovovskom retazci je jedinou uzavretou mnozinou mnozina vsetkych stavov.

Priklad 6.2.

Ozna¢me fi(jt) pravdepodobnost toho, ze prvy prechod do stavu j, ak sme zacali v stave 1,
nastdva po k krokoch v case t, t.j.

f.(.t):P(Xt:japreVéetky1§s§t—1:Xs7éj’Xo:i)

)

Definicia 6.5 (Trvalé a prechodné stavy). Stav i sa nazyva trvaly, ak ), fi(it) = 1. Ak

2@1 f-(-t) < 1, stav sa nazyva prechodny.

7

Dalej ozna¢me h;; ocakavany cas, za ktory sa retazec dostane zo stavu ¢ do stavu j:

t
hij =y tfy
t>1
Definicia 6.6. Trvaly stav sa nazyva kladny, ak h;; < oo.
Definicia 6.7 (Periodické stavy). Hovorime, Ze stav i ma periodu d > 1, ak pl(-;n)
kazdé m, ktoré nie je nasobkom ¢isla d a d je najvicsie ¢islo s touto vlastnostou.

= 0 pre

Definicia 6.8 ( Ergodické stavy). Neperiodicky, kladny, trvaly stav sa nazyva ergodicky. Mar-
kovovsky retazec sa nazyva ergodicky, ak su vSetky jeho stavy ergodické.

Priklad 6.3.

6.2 Stacionarne rozdelenia

Ozna¢me p;(t) pravdepodobnost, ze retazec je v ¢ase t v stave i. Potom

pit) =D pi(t = Dy,

a teda ﬁ(t) = ﬁ(t - 1)P7 kde p(t) = (pO(t)apl(t)vPZ(t)’ x )

Definicia 6.9 (Staciondrne rozdelenie). Stacionarne rozdelenie markovovského retazca je
také pravdepodobnostné rozdelenie 7, pre ktoré plati 7 = 7wP.

Ak sa retazec dostane do stacionarneho rozdelenia, uz v hom zotrva v kazdom dalSom
¢ase. Nasledovna veta popisuje retazce, ktoré konverguji ku staciondrnemu rozdeleniu.

Veta 6.2. Lubovolny koneény, ireducibilny a ergodicky markovovsky refazec méa nasledovné
vlastnosti:

1. Existuje prave jedno stacionarne rozdelenie m = (m, ..., m,)

®)

L. . e . . t , .. L., .
2. Pre Tubovolné i, j existuje limita lim; ,, p;; a tato limita nezévisi na j

3. m = limy oo pg»? = hi_il
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Poznamka 6.2. Poziadavka na neperiodickost retazca nie je nutnou k existencii stacionér-
neho rozdelenia. Kazdy kone¢ny markovovsky retazec mé stacionarne rozdelenie, ale v pripade
periodického stavu i staciondrna pravdepodobnost 7; nie je limitnou pravdepodobnostou.

Staciondrne rozdelenie refazca je rieSenim sustavy rovnic 7P = 7.

Priklad 6.4. Uvazujme markovovsky retazec s dvoma stavmi 0 a 1 a s maticou prechodu

()
q 1—gq

Tento retazec moze predstavovat model prenosu bitov, pri ktorom stav 0 v ¢ase t znamena, 7ze
bit bol preneseny bezchybne a stav 1 znamen4, ze bit bol preklopeny na opac¢ny. Stacionarne
rozdelenie najdeme rieSenim nasledovnej sistavy rovnic:

mo(1 —p) + mq = mo

mop+m(l—q) =m

7o + m =0,

tedaﬂozlﬁqam:ﬁ.

V niektorych pripadoch vieme stacionarne rozdelenie refazca vypocitat pouzitim nasle-
dovnej vety.

Veta 6.3. Uvazujme konec¢ny, ireducibilny a ergodicky markovovsky retazec s maticou prav-
depodobnosti prechodu P. Ak existuji nezaporné ¢isla m = (m, ..., m,) také, ze Y . jm =1
a ak pre Tubovolné stavy ¢,j plati m;p;; = 7;p,;, potom 7 je staciondrne rozdelenie retazca s
maticou P.

Doékaz. j-ty prvok vektora 7P sa da napisat ako

n n
E TiPij = E TiPji = Tj,
=0 i=0

atedam = 7P. Kedze Y ! ,m = 1,z Vety 6.2 vyplyva, Ze 7 je jednozna¢ne uréené stacionarne
rozdelenie retazca. O

Priklad 6.5. (Algoritmus Google Page Rank) Reprezentujme systém webovych stranok ako
graf s mnozinou vrcholov V', kde vrcholy predstavuji jednotlivé webové stranky. Ak zo stranky
i vedie odkaz na stranku j, v grafe bude orientovana hrana vedica z i do j. Ozna¢me N (7)
mnozinu stranok, na ktoré odkazuje stranka ¢ a definujme pravdepodobnosti prechodu pre
retazec s mnozinou stavov V' nasledovne:

IN(@)|7!,  ak j € N(i),
pij = VI, ak N (i) = 0,
0 inak.

Ak {X,} je markovovsky retazec s maticou prechodu P = (p;;), nemusi byt nerozlozitelny a
neperiodicky. Preto uvazujeme retazec s pravdepodobnostami prechodu

0]
ri; = (1 — a)ps; + v
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kde « je malé nenulové ¢&islo, teda pouZivatel si vi¢sinou vyberd rovnomerne jeden z odkazov
na stranke, ale niekedy vyberie rovnomerne ndhodne zo vSetkych moznych webovych stranok.
Takyto retazec ma jednoznacCne urc¢ené stacionarne rozdelenie 7w a vyhladava¢ priradi stranke
i vySSie poradie ako stranke j, ak m; > ;.

Priklad 6.6 (C’akam’e na obsluhu). Uvazujme model zakaznikov ¢akajucich v rade, pricom v
kazdom kroku nastane jedna z troch moznosti:
1. ak je v rade menej ako n zakaznikov, novy zakaznik pride do rady s pravdepodobnostou A
2. ak rad nie je prazdny, bude s pravdepodobnostou p obslizeny prvy zakaznik
3. s pravdepodobnostou 1 — X\ — i ostane rad nezmeneny.

Ak oznacime X; pocet zakaznikov v rade v Case t, potom X; je markovovsky retazec s
nasledovnymi pravdepodobnostami prechodu:

Diji+1 = Aaki<n

pii-1=paki>0

1—X aki=0
pi=4 1—=A—p akl<i<n-1
l—p aki=mn

Tento markovovsky retazec je kone¢ny, ireducibilny a neperiodicky, teda existuje jeho staci-
onarne rozdelenie 7, ktoré najdeme riesenim sustavy

o = (1 — )\)71'0 + pry

mi=Ami1+ (1= A—p)m+ pmiq, prel <i<n-—1
Plp = /\7Tn—1 + (1 - ,U/)ﬂ-n

Lahko overime, Ze

6.3 Cvicenia

Uloha 6.1. Zaba skace po priamke sposobom, 7e v kazdej sekunde skoc¢i s pravdepodobnostou
b napravo a s pravdepodobnostou 1 —b nalavo. Za¢ne v jednej z pozicii 1,...,m, ale z 0 moze
skoCit len do 1 a z m+1 len do m. Modelujte tento proces ako markovovsky retazec a najdite
jeho stacionarne rozdelenie.

Uloha 6.2. Roztrzity profesor ma dva dazdniky, ktoré pouziva na cestu do prace a z préce.
Ak prsi a tam, kde sa nachadza, ma k dispozicii dazdnik, vezme si ho. Ak neprsi, dazdnik
si nikdy nevezme. Predpokladajme, Ze v kazdom case prsi s pravdepodobnostou p. Aka je
stacionarna pravdepodobnost, Ze profesor zmokne?
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Uloha 6.3. Z dlhodobych pozorovani pocasia vieme, Ze ak v nejaky deit prsi, na dalsi dent
bude prsat s pravdepodobnostou 0.4. Naopak, slnec¢ny den je nasledovany dal$im slne¢nym
diiom s pravdepodobnostou 0.7. Urobte 'predpoved pocasia’ na utorok a stredu, ak viete, Ze
v pondelok prsalo.

Uloha 6.4. Na dany potita¢ pristupuji vzdialene navzajom nezavisle dvaja pouzivatelia.
Pocas konkrétneho ¢asového tseku sa momentalne prihlaseny pouzivatel odhléasi s pravde-
podobnostou 0.5 a neprihlaseny pouzivatel sa prihlasi s pravdepodobnostou 0.2. Vypocitajte
pravdepodobnosti prechodu retazca X;, ktory reprezentuje pocet prihlasenych pouZivatelov
v Case t a najdite jeho stacionarne rozdelenie.



Kapitola 7

Spojité nahodné premenné

7.1 Zakladné vlastnosti spojitych ndhodnych premennych

Definicia 7.1 (Spojitd ndhodnd premennd). Nech X je ndhodné premenné a nech existuje
integrovatelna funkcia f : R — [0, 00) taka, Ze pre kazdé = € R plati

ﬂ@:/%f@ﬁ

Potom hovorime, 7ze X je spojitda ndhodna premenné s hustotou f.

Veta 7.1. Nech X je spojitd ndhodnéd premenna s hustotou f. Potom

/Zf@ﬁzl

. Naviac, pre akékol'vek a,b € R, a < b, plati P[X =a] =0, Pla< X <b]=Pla< X <} =
Pla< X <bl=Pla<X <b = [ f(t)dt.

Dokaz. Zrejme [ f(t)dt =lim, o [*__ f(t)dt = lim, o F(2) = 1 podla vety 4.6. Rovnost
P[X = a] = 0 plynie zo zékladnych vlastnosti integralu. Ak je F' distribu¢né funkcia ndhodnej
premennej X, tak plati Pla < X < b] = P[X < b — P[X < a] = F(b)— F(a) = [*__ f(t)dt —
[ ft)dt = f;f(t)dt. Ked7e P[X =a] = P[X =0 =0, tak Pla< X <b] = Pla< X <
b)=Pla< X <b=Pla< X <} O

Vztah medzi distribu¢nou funkciou a hustotou: Nech X je spojitd ndhodné pre-
mennd s hustotou f, pricom funkcia f je spojitd s vynimkou maximélne kone¢ného poctu
bodov. Potom distribu¢na funkcia ndhodnej premennej X je spojita na celom R a spojite
diferencovatelna maximalne s vynimkou kone¢ného poctu bodov (tych, v ktorych je funkcia
f nespojita).

Naopak, nech distribu¢nd funkcia F' ndhodnej premennej X je spojita na celom R a spojite
diferencovatelna v8ade, maximalne s vynimkou kone¢nej mnoziny bodov H. Potom X je
spojitd ndhodna premenna a akikolvek nezéporna funkcia spliajica f(z) = dF(x)/dz pre
vietky x ¢ H je hustotou X.

Veta 7.2 (Linedrna transformdcia spojitej ndhodnej premennej). Nech X je spojita ndhodna
premennd s distribu¢nou funkciou Fx a hustotou fx. Nech a,b € R, a # 0. Potom n&dhodnéa

43
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premennd Y = aX + b je tieZ spojita s distribu¢nou funkciou Fy(y) = Fx((y — b)/a) pre
vietky y € Rak a > 0 a Fy(y) =1 — Fx((y —b)/a) pre vSetky y € R ak a < 0. Hustota
nahodnej premennej Y je dana predpisom

fr(y) = —fx (—b> pre kazdé y € R.

lal
Dékaz. Nech a > 0 ay € R. Plati Fy(y) = PlaX +b<y] = P[X < (y—10)/a] = Fx((y —
b)/a). Hustotu fy dostaneme derivovanim Fy (v8ade tam, kde derivacia existuje). Podobne
odvodime vztah pre Fy a nasledne aj pre fy pre pripad a < 0. O

Priklad 7.1. Nech X je spojitd ndhodna premenné so spojitou hustotou fx. Ukazme, Ze
nahodna premennd Y = X? je tiez spojita a najdime jej hustotu fy.

Najprv pomocou distribuc¢nej funkcie F'y ndhodnej premennej X urc¢ime distribu¢ni fun-
kciu Fy ndhodnej premennej Y. Pre kazdé y > 0 plati: Fy(y) = P[Y <y] = P[X? < y] =
Pl-y <X <yl = Pl—\/y <X <yl = Fx(\/y) — Fx(—/y). Pre y < 0 zrejme plati:
Fy(y) = PIY <y] = P[X? <y| =0.

Ked7e fx je spojita, je F'x spojite diferencovatelné a teda z odvodeného vztahu medzi
Fx a Fy vidime, Ze aj Fy je spojite diferencovatelna vsade, s pripadnou vynimkou bodu 0.
To znamena, Ze Y je spojitda ndhodné premennd s hustotou fy, ktoru ziskame derivovanim
Fy vsade tam, kde derivacia existuje a inde (t.j. v bode 0) zvolime hustotu lubovolne. Teda
fr(y) =0pre y <0 a, kedze fx je derivaciou funkcie Fx, pre y > 0 dostavame

1
() = s—= (Ix(Vy) + fx(=VV)) -
N
Vieme, ze funkcia diskrétnej nadhodnej premennej je opéat diskrétna ndhodna premenna
(Poznamka 5.1). AvSak ak je X spojitd nahodna premenna, tak ndhodna premenna Y = g(X)
moZe byt ako spojité, tak aj diskrétna (napr. ak g(x) = |x], t.j. dolna celd ¢ast z), ale aj
taka nahodné premennd, ktora nie je ani spojita, ani diskrétna!

7.2 Ciselné charakteristiky spojitych nahodnych premen-
nych

Definicia 7.2. Nech X je spojitda ndhodné premennd s hustotou f a nech existuje konecny
integral [*_|z|f(z)dz. Potom hovorime, Ze ndhodnd premenng X mé konecnt stredni hod-
notu ~
E(X) :/ zf(z)dx

—0o0
Veta 7.3 (Linearita strednej hodnoty). Nech X a Y st spojité ndhodné premenné, ktoré maja
kone¢ni stredni hodnotu. Nech a,b siu akékolvek realne &isla také, Ze ndhodna premenné
aX + bY je spojita, alebo diskrétna. Potom aX + bY méa kone¢ni strednit hodnotu a plati

E(aX +bY) =aE(X)+bE(Y).

Veta 7.4 (Veta o transformdcii). Nech X je spojitd ndhodné premennd s hustotou f. Nech
g je po Castiach spojita funkcia taka, ze g(X) je spojita, alebo diskrétna nahodné premenna.
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Nech naviac existuje koneény integral [*_|g(z)|f(z)dz. Potom ndhodné premenna g(X) ma
kone¢n1 stredni hodnotu a plati:

Pre spojiti ndhodnid premennt X definujeme disperziu rovnako ako pre diskrétnu ndhodnt
premennt (definicia 5.3). Platia pre fiu rovnaké vzfahy ako vo vete 5.4.

Ak spojitd nah. premennd X méa hustotu f a kone¢nu stredni hodnotu, tak nahodnéa
premennd (X — F(X))? je spojita a plati

o D(X) = [C (v = BE(X))*f(w)dx,
o D(X)= [ 22f(x)de — (E(X))%

ak st prislu$né integraly konec¢né.

7.3 Zakladné typy spojitych ndhodnych premennych

7.3.1 Rovnomerné rozdelenie

Definicia 7.3 (Rovnomerné rozdelenie). Hovorime, ze ndhodna premennd X mé rovnomerné
rozdelenie na intervale (a,b), ak je X spojitd ndhodna premenna s hustotou

flr) = s prex € (a,)

a f(r) = 0 pre z ¢ (a,b). Tato skutocnost zna¢ime X ~ R(a,b). Ak X ~ R(0,1), tak
hovorime, ze X ma Standardizované rovnomerné rozdelenie.

Veta 7.5. Nech X ~ R(a,b). Potom pre distribu¢ni funkciu F' ndhodnej premennej X plati

Oprez <a
F(xz) = ¢ (r—a)/(b—a) pre x € (a,b)
1 pre z > b.

Naviac, ak ¢,d € R, ¢ > 0, tak ¢cX +d ~ R(ca+ d,cb + d). Specialne, )b{__(f ~ R(0,1).

Dokaz. Dokaz je jednoduché cvicenie. O
Veta 7.6. Nech X ~ R(a,b). Potom E(X) = (a+b)/2a D(X) = (b—a)?/12.
Dékaz. Dokaz je jednoduché cvicenie. O

Rovnomerné rozdelenie sa pouziva napriklad na generovanie realizacii nadhodnych premen-
nych z inych typov rozdeleni pomocou vhodnych transformécii.
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Obr. 7.1: Hustota pravdepodobnosti a distribu¢na funkcia ndhodnych premennych X; ~
Exp(1) (Cervend) a Xy ~ Exp(2) (modra).

7.3.2 Exponenciidlne rozdelenie

Definicia 7.4 (Ezponencidlne rozdelenie). Hovorime, ze ndhodna premenna X ma exponen-
cidlne rozdelenie s parametrom A > 0, ak je X spojitd ndhodnéa premenné s hustotou

1
f(x) = Xe_””/A pre z > 0

a f(z) =0 pre x < 0. Tuto skutocnost zna¢ime X ~ Exp(\).

Veta 7.7. Nech X ~ Ezp()\). Potom pre distrib. funkciu F' ndhodnej premennej X plati

Fla) Oprex <0
€Tr) =
1—e =/ pre x > 0.

Naviac, ak ¢ > 0, tak ¢X ~ Exp(c)).
Doékaz. Dokaz je jednoduché cvicenie. O
Veta 7.8. Nech X ~ Exp(\). Potom E(X) = Xa D(X) =\

Dékaz. Najprv odvodime strednit hodnotu a disperziu pre X; ~ Ezp(1). Pouzijuc metodu
per-partes dostavame

E(X;) = /00 xf(z)dr = /OO re “dr = [—xe‘ﬂgo + /OO e “dr = 1.
— 50 0 0

E(X12) = / xzf(x)dx = / e dr = [—x%‘ﬂgo +/ 2ue Cdx = 2.
—o0 0 0

Takie D(X)) = E(X2) — (E(X)))?=2—1=1.
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Ak X, ~ Ezp(\) pre A > 0, potom X, /A ~ Exp(1), podla vety 7.7. Z vlastnosti disperzie
a strednej hodnoty, s pouzitim vztahov F(X;) =1 a D(X;) = 1 dostavame

E(Xy) = AE(Xx/A) = X a D(X,) = A2D(Xy/A) = A%
O

Veta 7.9. Nech kladna ndhodna premennd U mé rozdelenie R(0,1) a nech A > 0. Potom
—An(U) ~ Exp(\).

Dékaz. Ukazeme, ze ak X = —In(U), tak X ~ Exp(l). Nech Fx je distribu¢né funkcia X a
nech Fy je distribu¢na funkcia U. KedZe Fy(u) = u pre u € [0, 1], mame pre kazdé = > 0:
Fx(x) =P X <z]=P[-In(U) <z|=P[U >e " =1—Fy(e ™) =1 — e ". Pouzijic vetu
7.7, mozeme dokaz uzavriet. n

Exponencidlne rozdelenie sa pouZiva v teérii spolahlivosti na modelovanie doby bezporu-
chovej ¢innosti zariadeni, v teérii hromadnej obsluhy na modelovanie doby medzi prichodmi
zakaznikov do systému obsluhy, v neurofyziol6gii na modelovanie doby medzi prichodmi im-
pulzov na neurénovt bunku a podobne.

7.3.3 Paretovo rozdelenie

Definicia 7.5 (Paretovo rozdelenie). Hovorime, ze ndhodna premenna X ma Paretovo roz-
delenie s parametrami a, k > 0, ak je X spojitda ndhodna premenné s hustotou

a+1
ro =5 (5) ooz

T
a f(x) =0 pre x < k. Tato skuto¢nost znaéime X ~ Par(a, k).
Veta 7.10. Nech X ~ Par(a, k). Potom pre distribu¢na funkciu F' ndhodnej premennej X
plati

0 <k

Flz) = pre x <

1 — (k/z)™ pre x > k.

Dékaz. Dokaz je jednoduché cvicenie. O

Veta 7.11. Nech X ~ Par(a, k), prifom a > 1. Potom E(X) = 2% (Pre a € (0,1] m4
ndhodna premennéa s rozdelenim Par(a, k) nekoneént strednit hodnotu.)

Doékaz. Dokaz je jednoduché cvicenie. O]

Paretovo rozdelenie sa niekedy pouziva na modelovanie doby, za ktori vykon&d CPU urcity
proces, na modelovanie velkosti suborov na internetovych serveroch a podobne.
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Obr. 7.2: Hustota pravdepodobnosti a distribu¢na funkcia ndhodnych premennych X; ~
N(0,1) (¢ervend) a Xy ~ N(0,4) (modra).

7.3.4 Normalne rozdelenie

Definicia 7.6 (Normdlne rozdelenie). Nech p € R a 0 > 0. Hovorime, ze ndhodna premenna
X m4a norméalne rozdelenie s parametrami u a o2, ak je X spojitd ndhodna premennd s
hustotou

1 _(@—w)?
e 202

fz) =

pre vietky x € R. Tuto skuto¢nost zna¢ime X ~ N(u,0?%). Ak X ~ N(0, 1), tak hovorime, Ze
X mé Standardizované (alebo tiez normalizované) normélne rozdelenie. Distribu¢ni funkciu
nahodnej premennej X s rozdelenim N (0, 1) budeme ozna¢ovat symbolom ®.

2mo

Poznamka 7.1. Pre hustotu f normélneho rozdelenia je mozné ukizat platnost f_oooo f(x)dx =
1 pomocou takzvaného Poissonovho integralu

/ e dy = N

—00

Pomocou tohoto vysledku a zékladnych metod integrovania je mozné ukéazat, ze pre akékolvek
parne m > 2 plati
oo
/ a"e” 2y = /27 (m — 1),
—0o0

—x2/2

Pre neparne m je funkcia z™e neparna, preto

/ e 2dy = 0.

Pomocou predchadzajucich vztahov uréime strednt hodnotu a disperziu normélneho rozdele-
nia (pozri vetu 7.13).
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Normélne rozdelenie mé tstredné postavenie v teoretickej aj aplikovanej teoérii pravdepo-
dobnosti a matematickej Statistike (budeme sa s nim ¢asto stretavat az do konca prednasky).

Distribu¢ni funkciu normélneho rozdelenia s akymikol vek parametrami vieme jednoducho
vyjadrit pomocou ® - distribu¢nej funkcie rozdelenia N (0, 1), ako ukazuje nasledovna veta.
Samotné ® je Specidlna funkcia, ktora je ”prijemna analyticky” (je hladka, rastica, symetricka
v zmysle ®(—x) = 1 — ®(z)). Hodnoty ®(z) je mozné ziskat z tabuliek, alebo vypocitat
numericky, napriklad ako ciasto¢né sucty vhodnych nekonecnych radov. Viac podrobnosti
mozno najst na strdnkach www.mathworld.com pod heslom "Normal Distribution Function”.

Veta 7.12 (Linedrna transformdcia a $tandardizdcia normdlneho rozdelenia). Nech X ~
N(u,0%) anech a,b € R, a # 0. Potom aX + b ~ N(au + b, a’0?). Specialne

X —p
g

~ N(0,1).

Ak je F distribu¢na funkcia ndhodnej premennej X, tak

€xr —

F(x)=9® ( M) pre kazdé x € R.

Dékaz. Priamo z vety 7.2 dostavame, Ze hustota fy ndhodnej premennej ¥ = aX + b je v
kazdom y € R:
1 (y —b—ap)®
T o L P\ T e
V2r|alo 2a%0

Z definicie normalneho rozdelenia teda mame Y ~ N(au + b,a*0?). Druht cast tvrdenia
dostaneme volbou a =1/0 a b= —p/o a kedze (X —pu)/o ~ N(0,1), tak

fr(y)

F(z) = PIX <] = P[(X —p)/o < (z—p)/o] = ((z — n)/0).
Tym sme ukézali aj poslednu ¢ast tvrdenia. m

Priklad 7.2. Z dlhodobych Statistik o konkrétnom uzivatelovi vieme, 7e pri vzdialenom pri-
hl4seni sa na server ma pocet sektorov na disku, na ktoré zapisuje alebo ktoré precita, priblizne
normalne rozdelenie so strednou hodnotou 500 a disperziou 152. Monitorovaci program nam
oznamil, Ze pri poslednom prihlaseni doslo k zapisu alebo ¢itaniu na 535 sektoroch. Aka je
pravdepodobnost, ze doslo k zneuzitiu tohto konta?

Hl'adajme pravdepodobnost P[X > 535], kde ndhodna premenna X oznacuje pocet sek-
torov na disku.

535 — 500

P[X >535] =P |U >
[X > 535] [U_ =

} —1—®(35/15) ~ 0.01,

kde U je ndhodna premennd so Standardizovanym normalnym rozdelenim.
Veta 7.13. Nech X ~ N(u,0?). Potom E(X) = a D(X) = o2

Dékaz. Najprv ur¢ime E(Xy;) a D(Xo1) pre ndhodnt premennt X,; ~ N(0,1). Podla
vysledkov uvedenych v poznamke 7.1 mame

1 o
E(Xo1) = E/ ze™"2dw = 0,
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1 o
E(Xg,1) = E/ 22e " Py = 1.

Preto D(Xo1) = E(X§,) — (E(X041))* = 1.
Ak X ~ N(p,0?), tak (X — u)/o ~ N(0,1), podla vety 7.12. Preto

0=E(X —p)/o) = (EX) = p)/o,
1= D((X — p)/o) = D(X)/o
Z tychto rovnosti dostavame pozadované vztahy pre F(X) a D(X). O

Priklad 7.3. (Detekcia signdlu.) PrenaSame binarny signal S, ktory moze byt bud -1 alebo 1.
Komunika¢ny kanal tento signél zasumi aditivnym normalnym Sumom X s nulovou strednou
hodnotou a disperziou 2. Prijima¢ usudi, Ze bol preneseny signal +1 (alebo -1), ak sa doiiho
dostane hodnota va¢sia ako 0 (alebo mensia ako 0). Aka je pravdepodobnost chyby?

RieSenie: K chybe dochadza, akje S = —1 a Sum je aspon 1, vtedy S+ X =X —1>0
alebo ak S =1 a Sum je mensi ako -1, vtedy S + X < 0. Pravdepodobnost chyby v prvom
pripade je

P(Xz1):1—P(X<1)=1—P(X_“<1_“>:1—@(1_“)= —cb(l).

o o o o
V druhom pripade je pravdepodobnost vdaka symetrii rovnaka.

Prakticky vyznam normalneho rozdelenia ukazuji takzvané centralne limitné vety, ktoré
hovoria, ze za istych podmienok postupnosti si¢tov ndhodnych premennych konverguja k
norméalnemu rozdeleniu.

Veta 7.14 (Integrdlna Moivrova-Laplaceova veta). Nech p € (0,1) a nech X, Xs,... st
nahodné premenné, X,, ~ Bin(n,p) pre kazdé n € N. Nech = € R. Potom

X, —np
np(1 —p)

lim P

n—o0

<z| = ().

Predchadzajica veta sa pouziva na aproximéciu pravdepodobnosti tykajicich sa bino-
mického rozdelenia v tom zmysle, ze rozdelenie Bin(n,p) je mozné aproximovat rozdelenim
N(np,np(1 — p)) v pripade, 7e n je “velké” a p nie je “blizko” nuly ani jednotky.

7.4 CvicCenia
Uloha 7.1. Nahodna premenna X ma distribu¢ni funkciu tvaru

0ak x <0
Flx)=<cr?ak0<z <1
lakx>1

Urcte:
a) konstantu ¢ tak, aby F'(x) bola distribu¢nou funkciou,

b) hustotu pravdepodobnosti ndhodnej premennej X,
¢) pravdepodobnost P[X € (1/3,1/2)].
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Uloha 7.2. Pre distribu¢ni funkciu F nahodnej premennej X plati: F(z) = 22/2 + 2 + 1/2
ak ¥ € (—1,0) a F(x) = —2?/2+ 2+ 1/2 ak z € (0,1). Najdite hustotu, strednt hodnotu a
disperziu ndhodnej premennej X.

Uloha 7.3. Nahodna premenna mé hustotu

cxak0<z<l1
flx)=<2—zakl1l<z<2
0 ak z ¢ [0, 2]

Urcte:

a) konstantu c tak, aby f(x) bola hustotou pravdepodobnosti,
b) distribu¢nu funkciu F'(x),

¢) pravdepodobnost P[1 < X < 2].

Uloha 7.4. Nech a,b € R, pricom a > 1,b > 0. Nahodnéa premenna X ma distribu¢ni funkciu
F(z) =0prez <ba F(zx) =1— (b/x)* pre x > b. Urcte hodnoty a,b. Najdite hustotu a
strednt hodnotu nahodnej premennej X.

Uloha 7.5. Nech u,A € R, kde A > 0 a nech spojitd nadhodné premenna X mé hustotu
flx)=(A—|z—pl)/A%prex € [u— A, u+ Al a f(x) =0 inak. Najdite distribu¢nia funkciu,
stredni hodnotu a disperziu X.

Uloha 7.6. Bod B volime rovnomerne ndhodne na kruznici so stredom v (0,0) a polomerom
1. (T.j. B volime na hranici kruhu so stredom v (0,0) a polomerom 1 a to tak, Ze uhol uréeny
bodmi (1,0), (0,0), B ma rovnomerné rozdelenie na intervale [0, 27].) Nech S znamena obsah a
trojuholnika uré¢eného bodmi (—1,0), (1,0), B. Najdite distribu¢nit funkciu, hustotu a strednu
hodnotu ndhodnej premennej S.

Uloha 7.7. Bod B volime rovnomerne nadhodne na jednotkovej kruznici v rovine. Nech L
znamené vzdialenost bodu B od bodu (1,0). Najdite distribuénia funkciu, hustotu a strednu
hodnotu nadhodnej premennej L.

Uloha 7.8. Nech X ~ Exp()\), kde A > 0. a) Ukazte, Ze nahodnd premenna | X | (doln4 cel
Cast X)) ma geometrické rozdelenie. b)[di| Néjdite distribu¢na funkciu, hustotu a strednu
hodnotu ndhodnej premennej Y = =¥,

Uloha 7.9. Nech ndhodna premenné X mé normalizované normélne rozdelenie. Najdite hus-
totu ndhodnych premennych

a) e*;

b) X2

c) [X];

d) v/[X].

Uloha 7.10. Vo §tvorci ndhodne rovnomerne nezavisle vygenerujeme 4000 bodov. Pomocou
aproximacie binomického rozdelenia normalnym odhadnite pravdepodobnost, Ze menej ako
3000 z tychto bodov padne do kruhu, ktory je vpisany danému Stvorcu. Vysledok zapiSte
pomocou P - distribu¢nej funkeie rozdelenia N (0, 1).

Uloha 7.11. Ukazte, Ze exponencialne rozdelenie "neméa paméit”, t.j. dokazte, ze ak X ~
Ezp(A) a 0 < a < b, potom P([X > 0b]|[X >a]) = P[X >b—al.
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Uloha 7.12. Rozmer vyrabanej saéiastky ma priblizne normalne rozdelenie so strednou hod-
notou p = 1000 mm. Vyrobok povazujeme za dobry, ak sa jeho rozmer nelisi od 1000 mm o
viac ako 1 mm. Aka musi byt disperzia rozmeru stuc¢iastok, aby pomer nepodarkov neprekra-
¢oval 1 percento? Vysledok vyjadrite pomocou kvantilovej funkcie ®~! rozdelenia N (0, 1).



Kapitola 8

Nahodné vektory

V pravdepodobnostnych modeloch nas ¢asto zaujima viac ndhodnych premennych sicasne.
Tieto ndhodné premenné pochadzaju z rovnakého pravdepodobnostného priestoru a to, aké
hodnoty nadobuda jedna z nich, je ¢asto ovplyvnené hodnotami ostatnych. Aby sme mohli s
takymito skupinami ndhodnych premennych pohodlne pracovat, zavedieme pojem ndhodného
vektora.

8.1 VSeobecné ndhodné vektory

Definicia 8.1 (Ndhodny vektor). Nech X7, ..., X,, st ndhodné premenné na spolo¢nom prav-
depodobnostnom priestore. Potom X = (X,..., X,,)” nazyvame m-rozmernym nahodnym
vektorom.

Priklad 8.1. HadZeme dvomi kockami. Definujme nasledujice nahodné premenné:
U: maximum padnutych ¢isel

V' stcet padnutych c¢isel

Rozdelenie nahodného vektora (U, V')’ potom moézeme popisat nasledovnou tabulkou:

U/V] 2 3 4 5 6 7 8 9 10 11 12
1 [1/36
2 2/36 1/36
3 2/36 2/36 1/36
1 2/36 2/36 2/36 1/36
5 2/36 2/36 2/36 2/36 1/36
6 2/36 2/36 2/36 2/36 2/36 1/36

Riadkové, resp. stlpcové sucty v tejto tabulke zodpovedaju marginalnym pravdepodob-
nostiam pre ndhodnd premennt U, resp. V.

Definicia 8.2 (Distribucnd funkcia ndhodného vektora). Distribu¢nou funkciou ndhodného
vektora X = (X1, ..., X,,)T nazyvame funkciu F' : R™ — R, ktora je definovana

F(x)=P[X; < x1,..., X < X, pre vietky x = (xl,...,xm)T e R™

Je mozné ukéazat, ze distribu¢na funkcia F' m-rozmerného ndhodného vektora X jedno-
znatne urcuje pravdepodobnost P[X € B] pre akukolvek m-rozmerntt borelovski mnozinu
B.

93
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Veta 8.1 (Zdkladné vlastnosti distribucnej funkcie ndhodného vektora). Nech F je distribu¢na
funkcia m-rozmerného ndhodného vektora X. Potom plati:

1. 0 < F(x) <1 pre vSetky x € R™

2. F je neklesajuca a spojita zlava v kazdej premenne;j

3. limy,  aseo (21, y2) =1

4. limg, oo F(z1,...,2) =0prekazdé i =1,...m a &y, ..., 01, Tit1, ..., Ty € R

Doékaz. Tieto vlastnosti sa dokdzu analogicky ako zakladné vlastnosti distribucnej funkcie
jednorozmernej ndhodnej premenne;j. O]

Veta 8.2 (Existencia nah. vektora s danou distribu¢nou funkciou). Nech funkcia F': R™ — R
splia vietky §tyri vlastnosti z vety 8.1. Potom existuje pravdepodobnostny priestor a nahodné
premenné X;,...X,, na tomto pravdepodobnostnom priestore také, ze F' je distribu¢nou
funkciou ndhodného vektora X = (Xi,..., X,,)T.

Distribu¢né funkcia ndhodného vektora (Xi,...,X,,)T jednozna¢ne ur¢uje distribu¢neé
funkcie ndhodnych premennych X, ..., X, (marginalne distribuéné funkcie), ako ukazuje
nasledujica veta. Distribu¢né funkcie ndhodnych premennych X, ..., X,, vSak nemusia jed-
noznac¢ne ur¢ovat distribu¢na funkciu nahodného vektora (X, ..., X,,)7.

Veta 8.3 (Margindlna distribucnd funkcia). Nech Fx je distribuéné funkcia ndhodného vek-
tora X = (X1,...,X,,)T anech 1 <i; < ... < i < m. Potom pre distribu¢nt funkciu Fy
nahodného vektora Y = (X; X;)T plati

17
Fy(ziy, .., x;,) = im Fx (21, ..., Ty,
kde limitu berieme pre z; — oo pre v8etky i ¢ {iq, ..., 01}

Dékaz. Dokaz je jednoduché cvicenie. O]

8.1.1 Diskrétne ndhodné vektory

Definicia 8.3 (Diskrétny ndhodny vektor). Nahodny vektor X = (X1, ..., X,,)T nazgyvame
diskrétny, ak je spocitatelny jeho obor hodnot

X(Q) ={(z1,....,zp) ER" 12, € X;(Q),Vi=1,...,m}.

Definicia 8.4 (Strednd hodnota diskréineho ndhodného vektora). Nech X = (Xy,..., X,,)7T
je diskrétny nahodny vektor a nech existuje stredna hodnota kazdej (diskrétnej) nahodnej
premennej X; pre ¢ = 1, ..., m. Potom povieme, Ze ndhodny vektor X ma strednti hodnotu

E(X) = (E(X1),..., B(Xn)"

Veta 8.4 (Linearita strednej hodnoty ndhodného vektora). Nech X;, Xy stt m-rozmerné dis-
krétne ndhodné vektory a nech existuje kone¢na stredna hodnota (kazdej komponenty) néa-
hodnych vektorov Xi,X,. Nech A, B st matice typu k£ x m. Potom Y = AX; + BX, je
k-rozmerny diskrétny nahodny vektor, ktory ma kone¢nu strednt hodnotu dand vztahom

E(Y) = AE(X,) + BE(X>)
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Dékaz. Nech X; = (X1, ..., Xim)? pre i = 1,2. Potom j-tu komponentu Y; vektora Y mo-
zeme pre kazdé j € {1, ..., k} zapisat nasledovne:

}/;' == Aj71X171 + ...+ Aj,le,m -+ Bj71X271 + ...+ Bj,mXQ,m
Z linearity strednej hodnoty diskrétnych ndhodnych premennych (Veta 5.2) dostavame
E(%) - Aj,lE(Xl,l) —|— + Aj7mE(X17m) + BjJE(XQJ) + —|— Bjij(sz)

Maticovy zépis platnosti predchadzajicej rovnosti pre kazdé j = 1,...,k je prave E(Y) =
AE(X;) + BE(X»). O

Veta 8.5 (Strednd hodnota funkcie diskrétneho ndhodného vektora). Nech m-rozmerny né-
hodny vektor X nadobuda vektory (x;),.; s nenulovou pravdepodobnostou a nech g : R™ — R
je spojita funkcia. Potom strednd hodnota diskrétnej ndhodnej premennej g(X) existuje a je
konecna vtedy a len vtedy, ked existuje a je kone¢na suma ), ; g(x;) P[X = x;]. V takomto

pripade plati:
Z 9(xi) P[X = x]

8.1.2 Spojité ndhodné vektory

Definicia 8.5. Nech X = (X1,..., X,,)T je nahodny vektor s distribu¢nou funkciou Fx. Nech
existuje integrovatelna funkcia f : R™ — [0, 00) taka, ze

Fx(xy,...,x / f t1, .oyt )dty...dt,, pre vietky zq, ...z, € R

Potom hovorime, ze X je spojity ndhodny vektor a f je hustota X.
Veta 8.6. Nech X je m-rozmerny spojity ndhodny vektor s hustotou f. Nech B C R™ je

borelovskd mnozina. Potom
PX e B]= / / f(t1, ooyt dty ... dtpy,

Priklad 8.2. Nech nahodny vektor X = (X7, X3) je dany hustotou

~J 1 ak (x1,29) €0, 1] x [0,1]
for,22) = {o inak.

N4jdite pravdepodobnost, Ze X nadobtida hodnoty zo $tvorca [0, 1/2]2.

11

12 1/2 12 1/2 1
PIX €1[0,1/2] x [0,1/2]] / Fan, 39)daydas — / / dridry = S5 =

Veta 8.7. Nech X = (X,..., X,,)T je m-rozmerny spojity ndhodny vektor s hustotou f.
Potom je pre kazdé ¢ = 1,...,m ndhodna premennd X; spojitd s hustotou danou v bode
x; € R predpisom

fz($z> = / Ce / f(l’l, ey Im>dﬂ?1 Ce dﬂ]ifldﬂfﬂ,l ce dl’m
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Definicia 8.6 (Strednd hodnota spojitého ndhodného vektora). Nech X = (X1, ..., X,,)T je
spojity nahodny vektor a nech existuje stredna hodnota kazdej (spojitej) nahodnej premenne;
X; pre ¢ = 1,...,m. Potom povieme, Ze ndhodny vektor X ma strednti hodnotu

E(X) = (E(Xl)v S 7E(Xm))T

Veta 8.8 (Linearita strednej hodnoty spojitého ndhodného vektora). Nech Xi, Xy st m-
rozmerné spojité ndhodné vektory a nech existuje koneéné stredna hodnota (kazdej kompo-
nenty) ndhodnych vektorov X;, Xs. Nech A, B st matice typu k X m, pricom Y = AX; 4+ BX;
je spojity alebo diskrétny nahodny vektor. Potom Y ma kone¢ni stredni hodnotu danu vzta-
hom

E(Y) = AE(Xy) + BE(X>)

Veta 8.9 (Strednd hodnota funkcie spojitého ndhodného vektora). Nech m-rozmerny spojity
nahodny vektor X ma hustotu f. Nech g : R™ — R je spojita funkcia také, ze g(X) je spojita
néh. premenna. Potom stredné hodnota ndhodnej premennej g(X) existuje a je kone¢na vtedy
a len vtedy, ked existuje a je koneény integral [*° ... [% g(@1, ..., xm) (21, ..., T ) d@y ... dTp,.
V takomto pripade plati:

BE(g(X)) :/_Z.../_Zg(xl,...,mm)f(xl,...,xm)dxl...dxm

8.2 Nezavislost nahodnych premennych

Definicia 8.7. Budeme hovorit, Ze ndhodné premenné Xy, ..., X,, su zdruZene nezavislé, ak
pre vSetky x1,...,x, € R plati

P[X1<£E1,,Xn<$n]:P[Xl<$l]P[Xn<ﬂfn]

alebo, ekvivalentne, ak
Fx(zq,...,2,) = Fx,(21) ... Fx, (x,)

kde Fx je distribu¢na funkcia ndhodného vektora X = (Xi,...,X,,)T a Fy, je distribu¢na
funkcia ndhodnej premennej X; pret =1,...,n.

Veta 8.10. Nahodné premenné X,..., X, su zdruZene nezavislé vtedy a len vtedy, ked pre
akykoIvek vyber mnozin By,..., B, € B plati

P[X; € By,...,X,, € B)|=P[X; € By]... P[X,, € B,]

Veta 8.11 (Nezdvislost diskrétnych ndhodngch premenngch). Nech Xy, ... X, st diskrétne
nahodné premenné. Potom Xi,...,X, st nezavislé vtedy a len vtedy, ked pre akékolvek
realne ¢isla x4, ..., z, plati

P[Xy=xy,...,X, =z, = P[Xj =] ... P[X,, = z,)]

Dékaz. Dokaz je jednoduché cvi¢enie (pozri rieenie tulohy 8.6, ¢ast b). O
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Veta 8.12 (Nezdvislost spojitijch ndh. premenngch). Nech ndhodné premenné Xy, ..., X,
st spojité s hustotami fi, ..., f,. Ak su Xi,..., X, nezavislé, tak funkcia f : R* — [0, 00)
definovana

f(z1, .y xn) = fi(x)... fu(zy) (8.1)

je hustotou nadhodného vektora X = (X7, ..., X,,)T. Naopak, ak pre nejaka hustotu f nahod-
ného vektora X a hustoty fi, ..., f, ndhodnych premennych X, ..., X, plati (8.1), potom st
nahodné premenné X, ..., X, nezavislé.

Priklad 8.3. Komunika¢ny kanal sa sklada zo série uzlov, pricom vzdy i-ty uzol predava
jednobitovi informéaciu na vstup i+1-vému uzlu. Na ¢-tom uzle dochadza s pravdepodobnostou
p; k chybe, ktora sa prejavi tym, ze na vystupe tohoto uzla bude opac¢ny bit ako na jeho
vstupe. Naviac, chyby na jednotlivych uzloch sa vyskytuji navzajom nezéavisle. Napiste vzorec
udavajuci pravdepodobnost, Ze bit na vstupe prvého uzla bude rovnaky ako bit na vystupe
n-tého uzla. (Porovnajte s prikladom 3.6.)

Riesenie.! Pre i = 1,...,n nech X; je ndhodna premenna, ktora nadobudne hodnotu —1
ak na uzle ¢ dojde k chybe a hodnotu 1, ak na uzle i nedojde k chybe, ¢ize P[X; = —1] = p;,
PX; =1 =1-p; a BE(X;) = P[X; = 1] — P[X; = —1] = 1 — 2p,. V&imnime si tiez, ze
nasa hfadana pravdepodobnost je P[X = 1], kde X = [[;_, X;, pricom X je tiez ndhodna
premenna nadobidajica len hodnoty —1 a 1, takze E(X) = P[X = 1] — P[X = —1], z
¢oho dostavame P[X = 1] = E(X)/2 + 1/2. S vyuZitim nezavislosti nahodnych premennych
X1, ..., X, a vety 8.13 teda dostavame

E(LL,X) 1 I, P 1 T, =2p) 1
2

= —:—+—:— —

2 2 2 2 2

Veta 8.13 (Strednd hodnota sicinu nezdvislych nah. premenngch). Nech X; a X, st nezavislé,
obe diskrétne alebo obe spojité nahodné premenné s kone¢nou strednou hodnotou. Potom
X1 X5 je diskrétna, resp. spojitd nadhodna premenné s konec¢nou strednou hodnotou a plati

E(X1X,) = E(X1)E(Xs)

Doékaz. Dokaz urobime len pre diskrétne ndhodné premenné X;, X5. Pre jednoduchost ozna-
¢ime ako A; obor hodnét X, t.j. A; = X;(Q2) pre ¢ = 1,2. Nahodna premenna 7 = X; X5
je zrejme diskrétna, lebo jej obor hodnot Z(Q) je spocitatelnd mnoZina sacinov z = 12,
kde x; € X1(Q) a z9 € X3(Q). Uvedomime si, ze pre kazdé z € Z(Q) mame P[Z = z] =
> P[X) = x1, Xy = x9], kde stcet berieme pre vSetky dvojice z; € X1(Q2) a x5 € X5(Q2), pre
ktoré plati 129 = z. Naviac, z nezavislosti X; a Xy vieme, 7e P[X| = x1, Xy = x9] = P[X; =
x1]P[ X5 = x3|; pozri tlohu 8.6, ¢ast b. Mame teda:

E(X\Xp) =E(Z)= Y 2P[Z=z= > ) muP[Xi=2,X;=m]=

2€Z(R2) T1€A1 T2€A2
Z Z $1I2P[X1 = Il]P[Xz = LUQ] = Z .Cl]lp[Xl = .131] Z .CL’QP[XQ = .132] =
x1E€A1 T2€A2 x1E€A; r2€A2
E(X1)E(X>).

!Toto elegantné riegenie navrhol §tudent FMFI UK Stanislav Takag.
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7 predchadzajicej vety okamzite plynie, Ze pre n-ticu Xi, ..., X,, nezavislych nahodnych
premennych, ktoré maji koneéna stredni hodnotu, plati E(][;_, X;) = [[, E(X;). Toto
tvrdenie mé znadny teoreticky vyznam, avSak je ho mozné vyuzit aj na rieSenie prikladov,
ako ukazeme v dalom.

Veta 8.14 (Disperzia sictu nezdvislych ndhodnijch premenngch). Nech X; a X5 st nezavislé,
obe diskrétne alebo obe spojité ndhodné premenné s konec¢nou disperziou. Potom X; + X5 je
diskrétna, resp. spojitd ndhodna premennd s konec¢nou disperziou a plati

D(X1 + X3) = D(X1) + D(Xs)

Dokaz. 7 definicie disperzie, linearity strednej hodnoty a vety 8.13 mame: D(X; + X3) =
E((X,+X2)2) = (B(X14+X2))? = B(X?)+2E(X, X)+E(X3)— (B(X1)*—2( E(X1) E(X,)) -
(E(X2))? = (B(X?) — (E(X1))?) + (B(X3) — (E(X2))?) + 2(B(X1X2) — E(X1)E(Xy)) =
D(X1) + D(Xa). m

Priklad 8.4. Cas vypoc¢tu T znahodneného algoritmu ma distribuéna funkciu F(t) = 9,
kde t € (0,1) a ¢ je kladna konstanta. Nech Y je (ndhodna) doba vypoctu tohoto algoritmu
na dvoch nezavislych procesoroch, t.j. Y = min{T3, T}, kde 11,75 st nezavislé ndhodné
premenné s distribu¢nou funkciou F'. Pre ndhodnt premenntu Y urcte distribuéni funkciu,
hustotu a stredni hodnotu.

Riesenie: Pre distribu¢na funkciu Fy nahodnej premennej Y a pre akékolvek kladné y €
(0,1) plati

Fy(y) = Pmin{T},Tr} <y| = P([Th <ylU[Ta <y]) =1 - P[Th >y, Tr > y| =

L—P[ 2 ylPT >yl =1-(1-F(y)*=1-(1-1)%

Hustotu dostaneme derivovanim: fy (y) = 25(1 — t°)t9~%, opit pre y € (0, 1); inde je samoz-
rejme fy(y) = 0. Nakoniec dostavame

E(Y) = /01 tfy (t)dt = 20 /01 0 —tPdt =25((6 + 1) — (26 + 1)7Y).

Jeden z moznych zapisov je
262

(26+1)(6+1)

E(Y) =

Definicia 8.8 (Kovariancia ndhodngch premenngch). Nech Xi, X5 stt ndhodné premenné s
konec¢nou disperziou, obe diskrétne alebo obe spojité. Kovarianciou ndhodnych premennych
X1, X5 nazyvame hodnotu

cov(X1, X3) = E(X1X2) — E(X1)E(X>)

Ak X, X, st premenné s kone¢nou disperziou, tak je mozné dokazat, Ze aj nahodna
premennd X, X, ma kone¢nu stredni hodnotu.

Vijpocet kovariancie v tvare sumy: Nech 2-rozmerny nahodny vektor X = (X, X5) nado-
buda hodnoty (x;),.; s nenulovou pravdepodobnostou. Potom podla vety o strednej hodnote
funkcie nahodného vektora moZzeme stredné hodnoty a kovarianciu X;, X, vypodcitat podla
vztahov
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o B(X1) =) ic;(xih P[X =x]
o B(Xy) = i (x:)2P[X = x;]
o E(X1Xp) =) c(xi)1(x:)2 P[X = x;]

kde (x;); a (x;)2 su komponenty vektora x;.

Viypocet kovariancie v tvare integralu: Majme spojity 2-rozmerny nahodny vektor X =
(X1, X2)T s hustotou f. Potom podla vety o strednej hodnote funkcie spojitého nahodného
vektora mozeme stredné hodnoty a kovarianciu Xi, X, vypocitat podla vztahov

f f x;if(x1, x9)dx1dxe Pre i = 1,2
° B(X1X,) = f f 122 f (1, x2)dw das

Veta 8.15 (Zdkladné vlastnosti kovariancie). Nech X, X5 st ndhodné premenné s kone¢nou
disperziou, obe diskrétne alebo obe spojité. Potom plati

1. cov(Xy, X3) = cov(Xy, Xj)

(
2. cov(X;, X;) = D(X;) prei=1,2
3. cov(Xy,Xs) = E((X1 — E(X4))(X2 — E(X3)))
(

4. cov(aXy 4+ b,cXs 4+ d) = a.c.cov(Xy, X3) pre kazdé a,b,c,d € R
5. (CO'U(Xl,XQ))2 S D(Xl)D(XQ)
6. cov(Xy, Xo) =0 ak su Xq, Xy nezavislé

Dékaz. Prvé styri rovnosti plyni priamo z definicii a z linearity strednej hodnoty. Dokazeme
tvrdenie 5). Pripomenme 7e podla Cauchyho nerovnosti plati pre akékoI'vek redlne ¢isla a;, b;,
=1 (0, ab)” < S0 a? S b7

Nech nahodny vektor X = (X1, X5)” nadobuda vektory (x;),.; s nenulovou pravdepodob-
nostou. Pouzijuc vetu o strednej hodnote transformécie nah. vektora a Cauchyho nerovnost
mame

(cou(X1, X»))* = (Z((Xz’)l — E(X1))((x:)2 — E(X3)) P[X = Xi]) <

el

D ((xi)1 = E(X1))*P[X = x;] Y ((x:)2 — E(X»))’P[X = x;] = D(X1)D(X>)

i€l iel
Posledné tvrdenie plynie priamo z definicie kovariancie a vety 8.13. O
Definicia 8.9 (Kovariancénd matica ndhodného vektora). Nech X = (X1,..., X,,)? je na-

hodny vektor a nech existuje kone¢na disperzia kazdej ndhodnej premennej X; pret =1, ...,m.
Potom povieme, ze nahodny vektor X mé kone¢nu kovarianénu maticu Cov(X), pri¢om i, j-tu
komponentu tejto matice definujeme

(Cov(X));,; = cov(X;, X;)
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Veta 8.16 (Kovariancénd matica linedrnej transformdcie ndhodného vektora). Nech X =
(X1,..., Xn)7T je diskrétny nahodny vektor s kone¢nou kovarianénou maticou Cov(X), nech
A je matica typu k x m a nech b € R¥. Potom Y = AX + b je diskrétny nahodny vektor s
kone¢nou kovarian¢nou maticou a plati

Cov(Y) = ACou(X) AT

Dokaz. To, 7e Y = AX 4+ b je diskrétny nadhodny vektor, plynie z tlohy 8.3. Naviac, j-tu
komponentu Y; vektora Y mozeme pre kazdé j € {1, ..., k} zapisat nasledovne:

Y} = Aj71X1 + ...+ Aj7me + bj

kde A;, je prvok matice A v j-tom riadku a r-tom stipci a b; je j-ta komponenta vektora b.
7 definicie kovariancie, kovarian¢nej matice a z linearity strednej hodnoty Tahko overime, Ze
pre kazdé i, 5 € {1, ..., k} plati:

(Cov(Y))ij = cov(Y;,Y;) = cov(Ain Xa+ ... + Ay Xon + 05, A Xa + o+ A Xy + b)) =
>y AipAjscov(X, X)) = (ACou(X)AT),

Tym je dokaz dokonceny. O]

Veta 8.17 (Zdkladné vlastnosti kovariancnej matice). X = (X1,..., X,,)T nech je nahodny
vektor s kone¢nou kovarianénou maticou C'ov(X). Potom matica Cov(X) je symetrickd, po-
zitivne semidefinitné, s disperziami ndhodnych premennych X, ..., X,, na diagonéle.

Dékaz. Symetrickost Cov(X) a vztah (Cov(X));; = D(X;) plynt z definicie kovar. matice a
prvych dvoch vztahov vo vete 8.15. Pozitivnu semidefinitnost matice Cov(X) dokazeme takto:
Nech a € R™ je Tubovolny vektor. Z nezapornosti disperzie ndhodnej premennej a’X a z

vety o kovarian¢nej matici linedrnej transformécie nahodného vektora méame 0 < D(a?X) =
Cov(a’X) = a’Cov(X)a. Tym je pozitivna semidefinitnost Cov(X) dokazana. O

Definicia 8.10 (Korelaéng koeficient). Nech X; a X, st obe diskrétne, alebo obe spojité
nadhodné premenné s kone¢nou disperziou. Korela¢nym koeficientom (alebo stru¢ne korelaciou)
nadhodnych premennych X, X5 nazyvame hodnotu

cov( Xy, Xy)
VD(X1)y/D(X>)

Ak p(Xi, X3) = 0, potom hovorime, ze X;, Xy st nekorelované.

p(Xth) =

Veta 8.18 (Zdkladné vlastnosti korelacného koeficientu). Nech X; a X5 su obe diskrétne,
alebo obe spojité nahodné premenné s kone¢nou a nenulovou disperziou. Potom plati:

1. p(X1, X5) = p(Xa, X7)

2. p(aX; +b,cXs 4+ d) = p(Xy, Xs) pre kazdé a > 0,¢ > 0,b,d € R
3. p(X1, Xy) € [-1,1]

4. p(X1,X2) =0 ak st X;, Xy nezavislé

Dékaz. Dokaz vsetkych casti tvrdenia plynie priamo z definicie korelacie a zékladnych vlast-
nosti kovariancie. O
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8.3 Zakladné typy rozdeleni nahodnych vektorov

8.3.1 Multinomické rozdelenie

Priklad 8.5. Hadzeme n guli¢iek do m krabic, pricom pravdepodobnost, ze nejaké gulicka
padne do j-tej krabice je p;, 7 = 1,...,m a plati p; > 0, Z;”:lpj = 1. Zostrojme ndhodny
vektor X = (X3,...,X,,) tak, ze ndhodna premenna X, bude reprezentovat vysledny pocet
guliciek v j-tej krabici. Aké rozdelenie pravdepodobnosti ma nahodny vektor X7

Definicia 8.11 (Multinomické rozdelenie). Nech X = (X1,..., X,,)T je nahodny vektor.
Nech n € N a nech py,...,p, st nezdporné realne ¢isla také, ze Z;”:lpj = 1. Nech plati

!
n. k

PXi=ky,..., Xy =ky] = ﬁplflpl% S

pre vietky tie ki,...,k, € {0,1,...,n}, ktoré splhaju Z;”Zl k; = n. Potom hovorime, zZe
nahodny vektor X ma multinomické rozdelenie s parametrami n, pq, ..., p,,. Tito skutocnost
znacime X ~ Mult(n, p1,...,Dm)-

Veta 8.19 (Vztah multinomického a binomického rozdelenia). Nech X = (Xy,..., X,,,)T ~
Mult(n,pi,...,pm). Potom X; ~ Bin(n,p;) pre kazdé j =1,...,m.

Dokaz. Nech X = (Xy,..., X,,)T ~ Mult(n,p1,...,pm). DokdZeme, ze X; ~ Bin(n,p;). Pre
kazdé ki € {0,1,...,n} plati

PXi=h]=) PXi=h....X Zk,': PP P
pricom v8ade v tomto dokaze sumujeme cez tie ko, ..., k, € {0,1,...,n}, ktoré spliaji

> g kj =n — ki. Z multinomického rozvoja

— ky)!
_ n—k 1 ko K
(1=p)" ™ = (P24 ...+ pm)" ™ § o P
dostavame
n‘p1 — k)l k o\ g —k
PlX, =k]|= E Pot .. pim = 1 —p)™
[ 1 1] kl n_kl | kQ k ' 2 pm kl pl ( pl)
Tvrdenie X; ~ Bin(n,p,;) mozeme dokazat analogicky pre kazdé j =1,... m. ]

Predpokladajme, Ze robime n nezavislych experimentov, pricom vysledkom kazdého z
tychto experimentov je prave jedna z m roéznych moznosti a to zakazdym s pravdepodob-
nostami pi,...,pm. Ak pre j = 1,...,m bude X, znamenat pocet tych experimentov, ktoré
skondili j-tym vysledkom, potom X = (X1,..., X;,))T ~ Mult(n,pi,...,pm).

Vsimnite si, Ze ak ozna¢ime ako V;; ndhodni premenni, ktord nadobuda 1, ak skoncil i-ty
experiment vysledkom j a 0 inak, potom pre kazdy vyber indexov ji, jo,...,Jn € {1,...,m}
st nadhodné premenné Vi, ,...,V,; mnezavislé. Naviac, pre kazdé j = 1,...,m plati X; =
Vij + ..o+ Ve
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Veta 8.20 (Strednd hodnota a kovarianénd matica multinomického rozdelenia). Nech X ~
Mult(n,p1,...,pm). Potom pre strednt hodnotu vektora X plati E(X) = (npy,...,npn,)" a
pre kovarianént maticu Cov(X) plati

(Cov(X)),; =npj(l—p;) pre j=1,...,m

(Cov(X))x = —npjpr pre j,k € {1,...,m} ,j #k.

Dékaz. Vlastnost E(X;) =np; a (Cov(X));; = D(X,;) = —np;(1 —p;) pre j =1, ..., m plynie
z viet 8.19 a 5.6.

Dokézeme, 7e (Cov(X));r = —np;pk pre pevné j # k. Nech X; = Vj;+ ...+ V},; pre kazdé
j =1,...,m ako v predchadzajticej poznamke. Potom

(Cov(X))kx = cov(X;, Xi) = cov(Vij + ... + Vo, Vi + oo + Vi) =

n n

> cov(Vig, Vi) = > cov(Vig, Vie) + Y cov(Vig, Vi) = Y _ cov(Viy, Vi),

i,l=1 1#£l =1 =1

kde posledna rovnost plynie z toho, Ze Vi;, Viy st nezévislé ak i # [, teda  ,,;, cov(Vi;, Vi) = 0.
Avsak j # k, preto V;; Vi, = 0 pre kazdé i, takze

cov(Vij, Vir) = E(Vi;Vie) — E(Vij) E(Vik) = —p;pe-

Tym je dokaz ukonceny. O

8.3.2 Mnohorozmerné normalne rozdelenie

Definicia 8.12 (Reguldrne mnohorozmerné normdlne rozdelenie). Nech p € R™ a nech ¥
je pozitivne definitna (t.j. regularna pozitivne semidefinitnd) matica typu m x m. Nech X =
(X1,..., X)) je spojity ndhodny vektor s hustotou

f(x) = (2m)""2(det )" exp <—%(X — ) ST (x - u))

Potom hovorime, ze X ma regularne m-rozmerné normalne rozdelenie s parametrami y a
Y. Tato skuto¢nost zna¢ime X ~ Ny, (i, X).
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Veta 8.21. Nech X ~ N,,,(u, X)), kde p € R™ a 3 je pozitivne definitnd matica typu m x m.
Nech b € R¥, nech A je matica typu k x m a hodnosti k. Potom nahodny vektor AX + b ma
k-rozmerné regularne normalne rozdelenie Ni(Ap + b, ALAT). Speciélne, ak volime k = 1,
A=(0,..,0,1,0,...,0) (jednotka je na i-tej pozicii) a b = 0 tak dostavame: X; ~ N (u;, (X)4).

Veta 8.22. Nech X = (Xy,..., X,,)T ~ N,(i,2), kde p € R™ a ¥ je pozitivne definitna
matica typu m x m. Potom E(X) = p a Cov(X) = X.

Doékaz. Najprv predpokladajme, ze 3 je jednotkova matica a p je nulovy vektor. Z definicie
normalneho ndhodného vektora a vety 8.21 vidime, ze pre hustotu f vektora X a hustoty f;
komponent X; ndhodného vektora X plati:

m m

1

2 2 1 2
flxy,.,zm) = Wexp(—(x1 +...+2x7)/2) = }:[1 mexp(—xi/Z) = Hfz(%)

=1

Na zaklade vety 8.12 usudzujeme, ze Xi,...,X,, s nezavislé a preto cov(X;, X;) = 0 ak
i # j. Kedze X; ~ N(0,1), tak E(X;) =0 a cov(X;, X;) = D(X;) = 1. Preto E(X) =0 a
Cov(X) = I. Teraz predpokladajme, 7e p € R™ a 3 je akdkoI'vek pozitivne definitna matica
typu m x m. Nech ¥71/2 je odmocnina z matice X!, t.j. takd pozitivne definitna matica, 7e
Y129 -12 = v71 (Existencia takej matice sa §tandardne ukazuje v teérii matic.) Podla vety
8.21 méa nahodny vektor ¥~'/2(X — u) rozdelenie N (0, ) a podla prvej casti dokazu, podla
vety o linearite strednej hodnoty a vety o kovarian¢nej matici linedrnej transformacie méame
rovnosti:
0=EE (X - p) =3"2EX) - p),
I =Cov(S7Y3(X — p)) = 2 V2Cou(X)n Y2,

z ktorych dostavame tvrdenie vety. O]
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Veta 8.23. Plati ekvivalencia nasledovnych dvoch vyrokov:
A) X, ..., X,,, st nezavislé ndhodné premenné, pricom X; ~ N (p;, 02);
B) Néhodny vektor X = (X1, ..., X,,,)T ma rozdelenie N,,(u,X), kde p = (pt1, .., o) 2 2 je

i 2 i v 107,...,0 i ale.
diagonalna matica s prvkami 0%, ..., 02, na diagonale

Dokaz. Veta sa da jednoducho ukézat pomocou viet 8.21 a 8.12. [

8.4 (Cvicenia

Uloha 8.1. Nahodny vektor (X,Y) ma zdruZent hustotu tvaru

o) = k(x +vy) ak (z,y) € S
f(x.) {Oak(x,y)%S,

kde S je $tvorec ohraniceny priamkami x = 0, z = 3, y = 0 a y = 3. Urcte koeficient k tak,
aby f(x,y) bola hustota. Vypoditajte marginalne hustoty ndhodnych premennych X a Y a
pravdepodobnost, Ze nahodny vektor (X,Y) padne do Stvorca S; ohrani¢eného priamkami
r=1Lx=2,y=1ay=2,

Uloha 8.2. Zdruzena hustota ndhodného vektora (X,Y)’ ma tvar

f@.y) 8ryak 0<y<ax <l
x? - .
Y 0 ak inak,

Vypocitajte marginalne hustoty ndhodnych premennych X a Y.

Uloha 8.3. Presvedéte sa o platnosti nasledovnych tvrdent:

a) X = (X1,...,X,,)7 jediskrétny nahodny vektor vtedy a len vtedy, ked samotné X, ..., X,,
st diskrétne ndhodné premenné;

b) Ak je X = (X1,..., X,,)T diskrétny ndhodny vektor a g : R™ — R* je akdkol'vek funkcia,
tak g(X) je tiez diskrétny nahodny vektor. Specialne X;+ X, ako aj X; X, prei,j € {1,...,m}
st diskrétne nahodné premenné.

Uloha 8.4. Nech m =2, X = (X,Y)" a B = [a,b) x [c,d). Ukizte, 7e plati
P[X € B] = F(b,d) — F(a,d) — F(b,c) + F(a,c).

Uloha 8.5. Nech X7, ..., X, st zdruZene nezavislé nahodné premenné (v zmysle horeuvedenej
definicie). Ukazte, Ze potom st zdruzene nezavislé aj nahodné premenné X;,, X;,, ..., X;, pre
akékolvek indexy 1 < iy < iy < ... <1 < n.

Uloha 8.6. Dokazte implikaciu ”=" vo vete 8.10 pre tieto §pecialne pripady:

a)n =2, B; =la,b), By = [c,d) a X1, X5 st akékol'vek nezavislé nahodné premenné. (Mozete
pouzit tvrdenie z tlohy 8.4.)

b) n =2, By = {1}, By = {22} a X;, X5 su diskrétne nezavislé ndhodné premenné.

Uloha 8.7. Z interpretacie binomického rozdelenia plynie, Ze ndhodna premenna X, s rozde-
lenim Bin(n,p) je sucet n nezavislych nahodnych premennych s rozdelenim Alt(p). Pomocou
tohto faktu ukéazte, ze Veta 7.14 je dosledkom vety 9.4.
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Uloha 8.8. Budeme podéitat sucet nezavislych nahodnych ¢isiel X7, ..., X1900, ktoré pred spoci-
tanim zaokrihlime na celé ¢isla Y, ..., Yigoo. Diferencie D; = X;—Y;, pre v8etky ¢ = 1, ..., 1000,
st nezavislé ndhodné premenné s rovnakym rozdelenim so strednou hodnotou 0 a disperziou
1/12. Preto podl'a centralnej limitnej vety mozno celkovi chybu suc¢tu Err = Zgﬂo D;, kto-
rej sa dopustime zaokriahlovanim, aproximovat normalnym rozdelenim. Pomocou distribu¢ne;j
funkcie ® rozdelenia N (0, 1) zapiSte pravdepodobnost udalosti [|Err| < 10], t.j., Ze absolitna
hodnota rozdielu suc¢tu zaokrihlenych ¢isiel sa od suc¢tu povodnych ¢&isiel nebude liSit o viac
ako 10.

Uloha 8.9. Nech X ~ Ny(i, %), kde

= H1 Ay — U% pPo103
M2 pPO102 U% ’

pricom X je regularna. Presvedcte sa, Ze potom hustota X je dana vzfahom:

1 (w1 —m)*  plar — )1 — ) n (22 — p12)?
1—p? 2072 0109 203 ’

fx(71,29) = ¢t exp (—

kde ¢ = 2wo1094/1 — p2.



Kapitola 9

Zakony velkych ¢isiel a centralna limitna
veta

Veta 9.1 (Markovova nerovnost). Nech Z je diskrétna alebo spojitd ndhodna premenna s
kone¢nou strednou hodnotou, ktord nadobtida nezaporné hodnoty. Potom pre kazdé ¢ > 0
plati:

E(Z)

c

P[Z > ¢] <

Dokaz. Nech Z je diskrétna ndhodna premenna nadobudajica hodnoty (z;)ie;. Dalej nech
J={iel:z>c} Mame

E(Z)=Y zPlZ=2)>)Y #uPlZ=2xz>cY PlZ==x]=cP[Z>d
iel ieJ ieJ
, z ¢oho dostavame priamo tvrdenie vety.
Ak Z je spojitd ndhodnéa premenné s hustotou f, méame

E(Z) = /OOO 2f(2)dz > /:O 2f(2)dz > /:O cf(2)dz = cP|Z > (]

, z ¢oho dostavame priamo tvrdenie vety. O

Priklad 9.1. PoSta denne spracuje 10000 listov. Ak& je pravdepodobnost, Ze zajtra budu
musiet spracovat aspon 15000 listov?
Nech nahodna premennd X oznacuje pocet listov, ktoré sa na posSte spracuji. Potom zo
zadania prikladu vieme, ze E(X) = 10000. Pouzitim Markovovej vety dostavame
10000 2

PX>1 < —=-.
Xz 5000}_15000 3

Veta 9.2 (éeby:?evova nerovnost). Nech X je diskrétna alebo spojitd ndhodna premenna s
kone¢nou disperziou (t.j. aj s konec¢nou strednou hodnotou). Potom pre kazdé a > 0 plati:

D(X)

PlIX —E(X)| >a] < 2

66
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Doékaz. Veta je dosledkom Markovovej nerovnosti 9.1 ak v nej zvolime Z = (X — E(X))? a
c=a’ O

Priklad 9.2. Pomocou éebyéevovej nerovnosti vypocitajme horné ohranicenie pre pocet lis-
tov, ktoré bude musiet posta spracovat, ak navySe vieme, ze D(X) = 10000:

P[X > 15000] = P[X — 10000 > 5000] < P[(X — 10000 > 5000) U (X — 10000 < —5000)] =
10000 1

= P[|X —10000| > 5000] < = .
l 2 = 50002 2500

Priklad 9.3. Nech p je percento volicov podporujucich nejakého kandidata vo voIbach. Spy-
tame sa n ndhodne (rovnomerne nezavisle z celej populéacie) vybranych respondentov, ¢ by
daného kandidata volili a zaznamename K, kladnych odpovedi. Nakol'ko presne vieme odhad-
nut p? Odpoved kazdého respondenta mozeme chapat ako ndhodnd premennia X; ~ Alt(p).
7 Cebyéevovej nerovnosti mame

rl—p) _ 1

Pl|K, —p| > ¢ < :
! plzel< ne = 4ne?

V8eobecnejSou formou éebyéevovej nerovnosti je tzv. slaby zakon velkych ¢isel.

Veta 9.3 (Slaby zdkon velkjch cisiel). Nech X, Xy, ... st nezévislé (diskrétne alebo spojité)
nahodné premenné, pricom D(X,) < o? pre nejaké 02 < oo a kazdé n € N. Nech X,, =
L3 1 X;. Potom pre akékol'vek e > 0 plati:

lim P[|X, — BE(X,)|>¢ =0

n—0o0

Dékaz. 7 predpokladov tvrdenia, vety 5.4 (resp. ekvivalentu tejto vety pre spojité premenné)
a vety 8.14 dostavame

o= (1375 - o () < 53 owx) <ot

. Dokaz mozeme ukoncif pouzitim CebySevovej nerovnosti (Veta 9.2). O

Veta 9.4 (Centrdlna limitnd veta). Nech X, Xy, ... si nezavislé ndhodné premenné s rov-
nakym rozdelenim (t.j. s rovnakou distribu¢nou funkciou), kone¢nou strednou hodnotou a
nenulovou a konec¢nou disperziou. Nech S, = Z?:1 X, a nech

_ S" — E(Sn)
~ /D(S,)

n

pre kazdé n € N. Nech Fy, je distribu¢né funkcia ndhodnej premennej Y,, a ® nech je distri-
bu¢né funkcia rozdelenia N (0, 1). Potom plati

lim Fy, (x) = ®(z) pre vSetky z € R

n—oo
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Dokaz. Dokaz tejto vety presahuje ramec prednésky. O

Vsimnite si, 7e predchadzajicu vetu mozeme formulovat aj nasledovne: Nech X7, Xo, X3, ...
s nezavislé ndhodné premenné s rovnakym rozdelenim, kone¢nou strednou hodnotou p a
kone¢nou disperziou o2, kde o > 0. Potom

ToX— 1 *
lim P [M < x} = —/ e 2t pre vSetky x € R
n—o00 \/EO' V2T J oo

Priklad 9.4. Na pamifovej karte mame volnych 330 MB. Ak4 je pravdepodobnost, Ze sa na
iiu zmesti 300 fotografii s priemernou velkostou 1 MB a disperziou 0.52?

< 330 — 300 -1
—0.5v/300

Priklad 9.5. Vieme, Ze pocet chyb na 1000 riadkov kédu mé Poissonovo rozdelenie so stred-
nou hodnotou 5. Ak4 je pravdepodobnost, Ze v tridsiatich 1000-riadkovych programoch bude
viac ako 170 chyb?

Ozna¢me nahodnou premennou X; pocet chyb v i-tom programe, teda X; ~ Po(5). Potom,
ak S je celkovy pocet chyb v 30 programoch, S ma priblizne normélne rozdelenie so strednou
hodnotou a varianciou 30 - 5. M&dme teda

P[S <330 =P {U } — ®(3.46) ~ 0.9997.

170 — 150
v/ 150

Priklad 9.6. Do lietadla nalozime 300 kusov batoziny, pricom hmotnost jedného kusu ba-
toziny je ndhodna premenné s rovnomernym rozdelenim na intervale od 10 do 100 kg. Aka
je pravdepodobnost, ze celkovd hmotnost batoziny v lietadle presiahne 17000 kg? Priblizna
odpoved na tuto otazku dostaneme pomocou centralnej limitnej vety: chceme vypocitat
P[S300 > 17000], kde S3q0 je stucet hmotnosti 300 kusov batoziny. Stredn& hodnota a dis-
perzia hmotnosti jedného kusu batoziny je

104100
N 2

P[S >170] = P {U > } =1 — ®(2.45) ~ 0.05.

m =55, 0% = (100 — 10)?/12 = 675

Potom mame

17000 — 300 - 55
V300 - 675

P[Ss00 < 17000] = & ( ) ~ 0.8667,

a teda

9.1 Cvicenia

Uloha 9.1. Letecka spolo¢nost predala 410 leteniek na let, v ktorom je 400 miest. Vypocitajte
pravdepodobnost, ze kazdy cestujici bude mat kde sediet, ak vieme, Ze cestujtci so zaktipenou
letenkou pride na check-in s pravdepodobnostou 0.96.

Uloha 9.2. Dve agentary na prieskum verejnej mienky vykonavaju prieskum volebnych pre-
ferencii kandidata, kazda na vzorke 1000 voli¢ov. Urcéte hornt hranicu pravdepodobnosti, Ze
odhad preferencii u oboch agenttr sa bude odlisovat’ o viac ako 5%.
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Uloha 9.3. Vo volbach st dvaja kandidati, pricom prieskum verejnej mienky na vzorke 1500
volicov ukézal, ze 52% volicov podporuje prvého kandidata a 48% volicov podporuje druhého
kandidata. Aka je pravdepodobnost’, Zze prieskum spravne odhadol vitaza volieb?

Uloha 9.4. Uvazujme prieskum preferencii medzi dvomi kandidatmi, priom podla pries-
kumu verejnej mienky vykonaného na n respondentoch prvého kandidata podporuje 100p%
voli¢ov a druhého kandidata podporuje 100(1-p)% voli¢ov. Aké velké musi byt n, aby sme so
spolahlivostou aspoii 95% vedeli urc¢it skuto¢ny vysledok volieb s chybou mensou ako 3%?

Uloha 9.5. Poistoviia poistila 1000 osob. Pravdepodobnost timrtia v priebehu jedného roka
je pre kazdého z nich 0,005. Zistite, s akou pravdepodobnostou bude poitovia ziskova, ak
poistné je 22 eur a poistna suma je 7000 eur.

Uloha 9.6. Pravdepodobnost narodenia chlapca je 0,515. Aké je pravdepodobnost, ze medzi
10000 novorodencami bude viac dievcat ako chlapcov?



Kapitola 10

(Generovanie nahodnych premennych a
vektorov

10.1 Generovanie realizicii nAhodnych premennych

V tejto kapitole predpokladame, Ze vieme sekvenc¢ne generovat nezavislé realizicie z rovnomer-
ného rozdelenia na intervale (0, 1). V praxi obvykle postacuje postupnost "pseudonahodnych”
Cisiel ziskanych napriklad pomocou §pecialnych (deterministickych) kongruencnych generato-
rov. Rozsiahlou tedriou kongruencnych generatorov sa v8ak nebudeme hlbsie zaoberat (nie-
ktoré zékladné pojmy boli spomenuté na prednaske).

Definicia 10.1 (Kvantilovd funkcia). Nech F': R — [0, 1] je distribu¢né funkcia. Kvantilovou
funkciou distribu¢nej funkcie F' nazyvame funkciu G : (0,1) — R definovanu

G(y) =sup{z € R: F(z) <y} pre vietky y € (0,1)

Ak je distribu¢né funkcia F spojitd a rastica na celom R, potom prislusna kvantilova
funkcia G je inverzna funkcia k F'.

Veta 10.1 (Metdda inverznej transformdcie). Nech F' je distribu¢nd funkcia a nech G je kvan-
tilova funkcia funkcie F. Nech ndhodna premenna U mé rozdelenie R(0,1). Potom ndhodné
premennd G(U) ma distribu¢ni funkciu F.

Dokaz. Dokaz pre vieobecnt distribucni funkeiu je technicky zdlhavy. Uvedieme si len dokaz
pre pripad, Ze funkcia I je spojitd a rastica na celom R. V takomto pripade G = F~!
(inverzna funkcia). Nech U ~ R(0,1). Potom pre distribu¢ni funkciu Fy ndhodnej premenne;j
Y = G(U) a pre kazdé y € R plati:

Fy(y) = PIY <] = PIGWU) < y) = PIU < F(y)] = Fu(F(y)) = F(y)
pretoze distribu¢na funkcia Iy premennej U splia Fyr(u) = u pre kazdé u € [0, 1]. ]

Priklad 10.1 (Generovanie rozdelenia Exp(\)). Distribu¢né funkcia rozdelenia Ezp()) je
F(z) =0prex < 0a F(x) = 1—e ** pre 2 > 0. Kvantilova funkcia je G(y) = —An(1—y) pre
y € (0,1), ¢ize podTa predchadzajucej vety plati: Ak U ~ R(0,1), tak —Ain(1—U) ~ Exp(\).
Kedze aj 1 — U ~ R(0, 1), tak dostavame tvrdenie vety 7.9: —An(U) ~ Exp(\)

70
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Priklad 10.2. Nech m € N. Uvazujme distribu¢ni funkciu F(z) = 0 pre z <0, F(z) = 2™
pre x € (0,1) a F(z) = 1 pre x > 1. (Tato distribu¢na funkcia charakterizuje rozdelenie
euklidovej normy m-rozmerného ndhodného vektora s rovnomernym rozdelenim vo vnatri m-
rozmernej gule so stredom v pociatku siradnicovej ststavy a polomerom 1.) Ked7e kvantilova
funkcia je G(y) = y'/™ pre y € (0, 1), tak podla vety 10.1 dostavame: Ak U ~ R(0, 1), potom
UY™ ma distribuéna funkeiu F.

Priklad 10.3 (Generovanie diskrétneho rozdelenia s koneéngm nosicom). Nech py,po, ..., ppn
st nezaporné Cisla také, ze Y p; = 1 a nech 2y < 3 < ... < z,,. Uvazujme distribu¢nt fun-
keiu F(z) =0prez <z a F(z) =), . pipre x > x1. (F je distribuénd funkeia diskrétnej
nahodnej premennej, ktord nadobtda hodnoty x4, ..., x,, s pravdepodobnostami pq, ..., p,. Ta-
kéto je napriklad binomické, alebo hypergeometrické rozdelenie.) Kvantilova funkcia takejto
distribu¢nej funkcie je G(y) = x1 ak 0 < y < p; a G(y) = x} ak Zf:ll pi <y < Ele p; pre
k = 2,...,n. Realizacie prislusnej diskrétnej ndhodnej premennej preto mozeme generovat ako
G(U), kde U ~ R(0,1).

Konkrétnejsie, interval (0,1) rozbijeme na intervaly I, = (0,p1), Is = [p1,p1 + p2), I3 =
[p1+D2, P1+D2+D3),rs In = [1—pn, 1). Ak realizacia u € (0, 1) ndhodnej premennej U ~ R(0,1)
padne do intervalu I, tak z;, mozeme povazovat za realizaciu diskrétnej ndhodnej premenne;j
s distribu¢nou funkciou F.

Veta 10.2 (Zamietacia metdda). Nech f h : R — [0,00) st dve funkcie hustoty, ktoré st
kladné na intervale I C R a inde nulové, pri¢om

c=sup{f(z)/h(z) :z€l} < oo

Nech Yi,Uy, Y5, Us, ... st nezavislé ndhodné premenné, pricom Y7, Ys, ... maja hustotu h a
Uy, U, ... maju rozdelenie R(0,1). Oznacme

N =min{n € N: c.h(Y,)U, < f(Yn)}
Potom nédhodné premenné Yy mé hustotu f.

Dékaz. Pre jednoduchost urobime doékaz len pre tento pripad: I = (0,1) a h je hustota
rozdelenia R(0,1), t.j. h(z) =1 pre z € (0,1), h(x) =0 pre x ¢ (0,1).
ZvolIme Tubovolné z € (0,1). Zrejme plati

PlYy <z =U P[Yny <z, N=Fk|=U2,P[Yy < z,N = k.
Kedze pre akékol'vek k& ma nahodny vektor (Y, Up)T dvojrozmerné rovnomerné rozdelenie

na mnozine [0,1] x [0,1], je P[Yy < z,cUx < f(Yy)] rovna ploche mnoziny B, = {(y,u) €
0,1] x [0,1] :y < za cu < f(y)}, teda
1 z
PlYy < z,cUp < f(Yi)] = E/ fly)dy =r,.
0
Preto P[Y; < 2, N = 1] = P[Y) < z,c.U; < f(Y1)] =r, apren > 2 je P[Y, < z,N

]ﬂ] = P[Yk < Z,C.Ul > f(le),...,C.Uk,l > f(kal),C.Uk < f(Yk)] = P[Yk < Z,C.Uk <
FYOIP[c.Uy > f(Y1)]...P[c.Up_1 > f(Yi1)] = r.(1 —ry)k~1. Takze

o0

PlYn <z|=r, (1-— 1/c)k*1 =r,c= /OZ f(y)dy.

k=1
7 toho plynie, Ze f je hustota Yy. O
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Najcastejsie pouzivany $pecidlny pripad predchadzajicej vety je nasledovny: f je ohra-
ni¢end hustota kladna len na intervale I = (a,b), kde a,b su kone¢né ¢isla a h je hus-
tota rozdelenia R(a,b). V tomto pripade plati N = min{n € N:d.U, < f(Y,)}, kde d =
sup{f(x):x € l}.

Priklad 10.4. Uvazujme hustotu f(z) = (8/7)y/xv/1—x pre z € (0,1) a f(z) = 0 pre
z ¢ (0,1). (Jedna sa o tzv. beta-rozdelenie s parametrami 3/2 a 3/2.) Ak zvolime h hustotu
rovnomerného rozdelenia na intervale (0, 1), tak realizaciu z rozdelenia s hustotou f dostaneme
nasledovne:

Budeme generovat nezavislé realizacie Y1, Uy, Ys, Us, ... z rozdelenia R(0, 1) az pokym nena-
stane pripad (4/m)U, < f(Y,). V tomto okamihu bude Y, reprezentovat realizaciu z rozdelenia
s hustotou f.

Priklad 10.5 (Generovanie z normdlneho rozdelenia zamietacou metddou). Pomocou za-
mietacej metody je mozné generovat aj realizacie z rozdelenia N(0,1) (a nasledne, vhodnou
linearnou transforméaciou, aj z rozdelenia N (u, 0?)).

Uvazujme najprv hustotu f(z) = /2/m x e /2 pre & > 0 a f(z) = 0 pre < 0, ¢o
zodpoveda hustote ndhodnej premennej | X|, ak X ~ N(0, 1). Zvolime za h hustotu rozdelenia
Exp(1), t.j. h(zr) = e ® pre « > 0 a h(z) = 0 pre x < 0. Pomocou §tandardnych metod
matematickej analyzy vypocitame, Ze ¢ = sup{f(x)/h(x): x>0} = y/2¢/m. Podmienka
urcujuca index n akceptovanej realizéicie je

V2T x e U, < \/2/m x e Vi,

¢o je mozné ekvivalentne zapisat v tvare
Un < exp (—(Y, — 1)*/2)

Vygenerovat realizaciu premennej z rozdelenia s hustotou f mozeme teda nasledovne: generu-
jeme nezavislé realizacie Yy, Uy, Ya, Us, ..., pricom Y7, Y5, ... majua rozdelenie Exp(1) a Uy, Us, ...
maji rozdelenie R(0,1). Akonahle bude splnené U,, < exp (—(Y,, —1)?/2), bude Y =Y, ko-
necnym vysledkom.

Pomocou realizicie Y s hustotou f moézeme vygenerovat realiziciu z rozdelenia N(0, 1)
jednoducho tak, ze Y vynasobime s pravdepodobnostou 1/2 hodnotou —1 a s pravdepodob-
nostou 1/2 hodnotou 1 (t.j. ¢islu Y dame nahodné znamienko).

Veta 10.3 (Bozov-Millerov generdtor normdlneho rozdelenia). Nech U,V st nezavislé na-
hodné premenné s rozdelenim R(0,1). Nech

X =+v/=2ln(U)cos(2rV) aY = /—2ln(U)sin(27V)
Potom X a Y st nezavislé ndhodné premenné, obe s rozdelenim N (0, 1).
Veta 10.4 (Generovanie Poissonovho rozdelenia). Nech X, Xy, ... st nezavislé premenné
s rozdelenim Exp(l) a N = min{n e N:> " X; > A}. Potom N — 1 ~ Po()). Ekvi-
valentne: Nech Uy, Us, ... su nezavislé ndhodné premenné s rozdelenim R(0,1). Nech N =

min {n € N: [, U; < e *}. Potom N — 1 ~ Po()).

Veta 10.5 (Generovanie geometrického rozdelenia). Nech p € (0,1) a nech U ~ R(0,1).
Potom

[In(U)/In(1 = p)| ~ Geo(p)
kde |.| oznacuje dolni celu ¢ast.



Pravdepodobnost a Statistika, FMFI UK, predbezna verzia 6.10.2017

Ziadna z uvedenych metdd generovania zo $pecifickych typov rozdeleni (v tomto, ani v
predchédzajicom odstavci) nie je vo vSeobecnosti najrychlejsia. Najrychlejsie zname metody
st obvykle algoritmicky velmi komplikované (napriklad vyuzivaju rozsiahle tabulky Special-
nych konstént), ich programova implementacia je zdlhava a oplati sa iba v pripade, 7Ze je
potrebné generovat obrovské pocty realizécii.

10.2 Generovanie realizacii nahodnych vektorov

Veta 10.6. Nech X ~ Mult(n,pi,...,pm), kde p1,...;pm > 0. Potom X; ~ Bin(n,p).
Nech dalej ki, ...,k € {0,1,...,n} st take, ze 337", kj = n. Nech i € {2,3,...,m}. Oznacme
n; = Z;n:l k?j ar = pz/ Z;n:z pj' POtOHl

P[XZ = kl|Xl = ]{,‘17 - 7Xi—1 o ki—l] — (Z’L> rkz(l _ Ti)ni—ki

Predchadzajica veta znamend, Ze "podmienené rozdelenie” ndhodnej premennej X; za
podmienky [X; = ki,...,X; 1 = ki1 je rozdelenie Bin(3 7", kj,pi/ > j",; p;). Realizaciu
(ki, ..., km)T nahodného vektora X ~ Mult(n,py,...,pm) teda vygenerujeme tak, Ze najprv
vygenerujeme realizaciu k; z rozdelenia Bin(n, p;), potom vygenerujeme realizaciu ks z rozde-
lenia Bin(n — ki, ps/ Z;n:z p;), potom realizaciu k3 z rozdelenia Bin(n — ki — ko, p3/ Z;”ZS p;)
a tak dalej.

Veta 10.7. Nech X1, ..., X,, st nezavislé ndhodné premenné s rozdelenim N (0, 1). Nech u €
R™ a nech ¥ je pozitivne definitn4 matica typu m x m. Predpokladajme, 7e ¥ = CCT, kde
C je matica typu m x m. Potom nahodny vektor Y = C(X,..., X;,,)T + u ma rozdelenie

N1, 2).
Doékaz. Veta je jednoduchym doésledkom viet 8.21 a 8.23. O

Maticu C z predoslej vety je mozné urcit viacerymi metdédami; obvykle sa vSak pou-
ziva dolna trojuholnikovd matica, ktord je mozné z matice ¥ vypodcitat relativne rychlym
algoritmom a naviac mierne zjednodusuje aj vypocet stc¢inu C(Xj, ..., X,,)T. Taktto dolnt
trojuholnikovii maticu vypoé&itame napriklad pomocou nasledovného algoritmu (prvky matice
¥ ozna¢ime s;; a prvky matice C' oznadime c¢;;)

1 Prvkom matice C' nad diagonélou prirad hodnotu 0.

2 c11 < /511 a pre i = 2 az m vykonaj: ¢;1 < s;1/cn

4 Cop ¢+ /S99 — 4

5 Pre i = 3 az m vykonaj:

5.1 Pre j =2 az i — 1 vykonaj: ¢;; < (8;5 — Zi;ll CikCik)/Cjj

i—1 9
5.2 ¢; Sii — k=1 Cik

6 Vysledok: C'
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Veta 10.8. Nech G,,(r) je m-rozmerna gula so stredom v pociatku stiradnicovej ststavy a
polomerom r > 0:

Nech Xi,..., X, U st nezéavislé ndhodné premenné, pricom X; ~ N(0,1) a U ~ R(0,1).
Potom nédhodny vektor

Y =r() X)X, X)”
=1

mé rovnomerné rozdelenie na hranici (povrchu) gule G,,(r) a ndhodny vektor Z = UY™Y
mé rovnomerné rozdelenie na vo vnutri (t.j. na) Gy, (r).

Dékaz. Veta plynie z rotaénej symetrie hustoty rozdelenia N,,(0, ) a z faktu, Zze ak ndhodny
vektor mé& rovnomerné rozdelenie vo vnitri G,,(1), tak jeho Euklidova norma mé rovnaké
rozdelenie ako U™ pre U ~ R(0,1). O

Existuje viacero alternativnych, ¢asto efektivnejsich sposobov ako generovat nahodné vek-
tory rovnomerne na povrchu G,,(r), alebo na G,,(r), najmé pre dimenzie m = 2,3 (ak vyne-
chame trividlny pripad m = 1).

Zo sirokého spektra roznych metod spomenieme napriklad nasledovné "zamietacie” metody
pre m = 2,3. Generujme X, Y7, Xo, Y5, ... ako nezavislé realizacie z rozdelenia R(—1,1), az
kym prvykrat nenastane pripad X2 +Y? < 1. Oznatme X = X,,,Y =Y,,. Potom plati:

e (X,Y)” mé rovnomerné rozdelenie na Go(1)
e (X2+YHV2(X,Y)T m4 rovnomerné rozdelenie na hranici G(1)

o (X2+4+Y?)"1(X2—-Y?2 2XY)" ma rovhomerné rozdelenie na hranici Go(1)

o 2XV1—-X2-Y22YV/1—-X2-Y21-2(X?+Y?%)T m4 rovnomerné rozdelenie na
hranici Gs(1).

Veta 10.9. Nech S,,(h), h > 0, je m-rozmerny simplex typu:

S (h) = {(xl, )T ER™ Zml < haux; >0 pre vietky i = 1, ...,m}

i=1

Predpokladajme, ze Uy, ..., U, st nezavislé ndhodné premenné s rozdelenim R(0,1) a nech
Y1, ..., Y, je usporiadanie tychto ndhodnych premennych od najmensej po najvac¢siu. Defi-
nujme Z, =Y, a Z; = Y; — Y;_; pre i = 2,...,m. Potom ndhodny vektor Z = h.(Z, ..., Zn)T
mé rovnomerné rozdelenie na simplexe S,,(h).

Doékaz. Technicky presny dokaz pre vieobecné m je zdlhavy, avsak zakladna myslienka je
jednoduché; popiSeme ju pre m = 2 a h = 1. V tomto pripade generujeme Uy, Us nezévisle
rovnomerne na intervale (0, 1), teda bod U = (Uy, Us)? pad4 rovnomerne nahodne do $tvorca
S = (0,1) x (0,1). Ak U padne do trojuholnika 7" = (0,0), (0,1), (1,1), tak polozime Y =
(Y1,Y3)T = U, ak padne U do trojuholnika S \ 7', tak Y dostaneme preklopenim bodu U
okolo priamky y = x. Je teda zrejmé, ze Y mé rovnomerné rozdelenie na trojuholniku 7'. Z
Y dostaneme Z = (7, Z,)" uz len jednoduchym lineArnym zobrazenim transformujicim 7T
na simplex Sy(1). O
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Vetu 10.9 je mozné pouzit na generovanie realizacii s rovnomernym rozdelenim na akom-
kol vek simplexe (napr. na Tubovolnom nedegenerovanom trojuholniku v R?) pomocou vhodne;
linearnej transformécie. Takisto nie je tazké pouzit predchadzajicu vetu na generovanie rea-
lizacii ndhodnych vektorov s rovnomernym rozdelenim na ohrani¢enej polyedrickej mnozine
v R™, ak pozname rozklad tejto mnoziny na vseobecné simplexy.



Kapitola 11

Zaklady teérie informacie

11.1 InforméAcia

V tejto kapitole sa pokusime kvantifikovat pojem informacie.

Definicia 11.1. Uvazujme pravdepodobnostny priestor (€2, 8, P) taky, ze |Q2] = m. Pod in-
forméaciou obsiahnutou v udalosti £ budeme rozumiet veli¢inu

I(E) = —logy(P(E)).
Informaciu budeme merat v bitoch.

Vsimnime si, 7e [ je klesajicou funkciou P(FE), t.j. ak pre E, F € 8: P(FE) < P(F), potom
I(E) > I(F). Tiez plati, ze ak E, F sa nezavislé, potom I[(ENF) = I(E)+I(F) a pre vietky
Ee€8jel(F)>0.

Poznamka 11.1. V tejto kapitole budeme pod oznacenim log(z) rozumiet logaritmus so
zakladom 2.

Priklad 11.1. Uvazujme nahodni premenna X ~ Alt(1/2). Mame
I(X=0)=1(X=1)=—logy(1/2) = 1.

Teda vyberom jednej z dvoch rovnako pravdepodobnych moznosti ziskame jeden bit informa-
cie.

11.2 Entropia

Ak mame diskrétnu ndhodni premenni, ktord nadobtuda hodnoty {x1, ..., x,} s pravdepodob-
nostami py, ..., pp, nevieme s urc¢itostou povedat, aké velké su informécie I(p;) := I(X = z;),
i=1,...,n. Mozeme teda aj informéciu I(X) chiapat ako ndhodnt premennt. Stredna hod-
nota tejto ndhodnej premennej sa nazyva entropia.

Definicia 11.2. |Entropia]. Nech X je diskrétna ndhodna premenné, ktora nadobuda hodnoty
{z1,...,2,} s pravdepodobnostami py,...,p,. Potom entropiou H premennej X nazyvame
‘mieru neurcitosti’

H(X)=E(I(X))= —Zpilogpi

76
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V pripade, ze p; = 0, definujeme p; logp; = 0. V§imnime si, Zze hodnota entropie nezavisi
na tom, aké hodnoty nadobtida ndhodna premenna X, ale len na ich pravdepodobnostiach.

Priklad 11.2. Majme ndhodn(i premenni

uy s pravdepodobnostou 1/4
X =< wuy s pravdepodobnostou 1/2
ug s pravdepodobnostou 1/4
Potom
1 1

1 1 1 1

Entropia nadobtuda hodnoty 7 intervalu [0,logn|. Minimum nastava, ak pre niektoré
j € {1,....,n} je pj = 1, teda P[X = z;] = 1. Naopak, maximalnu hodnotu entropie
dostaneme pre p; = 1/n, i = 1,...,n, teda ak X nadobuda v8etky hodnoty s rovnakou
pravdepodobnostou.

Veta 11.1. Nech X je diskrétna ndhodna premenné, ktora nadobtda hodnoty {z1,...,z,}
s pravdepodobnostami pq, ..., p,. Potom:

1. H(X) > 0 a rovnost nastava prave vtedy, ked existuje také z, 7e P[X =z] = 1.
2. H(X) <log(n) a rovnost nastava prave vtedy, ked X ma rovnomerné rozdelenie.

Dékaz. 1. Nezépornost je zrejma z definicie entropie. Aby H(X) = 0, musi byt p;logp; = 0
pre vSetky 7. To ale znamena, Ze existuje nejaké k, pre ktoré je p, = 1.
2. Predpokladajme najskor, ze p; > 0 pre vSetky i. Z definicie mame

H(X) —log(n) = —ﬁ (sz In p; +ln(n)> = —ﬁ (sz ln(pm)> =

i (20 ) <t (20 )
< mé) <i1 <% —m)) = 0.

Pouzili sme vztah In(z) <z — 1. Rovnost v tomto vztahu plati prave vtedy, ked x =1, a
teda v nasom pripade 1/(pn) —1=0,tj. p;=1/n,i=1,...,n. ]

11.3 ZdruZena a podmieneni entropia

Definicia 11.3. Nech X a Y st dve diskrétne ndhodné premenné definované na rovnakom
pravdepodobnostnom priestore, X nadobtuda hodnoty {zi,...,z,} s pravdepodobnostami
P1,---,Pn, Y nadobuda hodnoty {yi,...,yn} s pravdepodobnostami ¢, ...,¢y,. Ozna¢me
zdruzené pravdepodobnosti p;; = P[X = z;,Y = vy;], i = 1,...,n, j = 1,...,m. Potom
definujeme zdruzend entropiu

i=1 j=1
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Vsimnite si, ze H(X,Y) = H(Y, X).
Aby sme vedeli lepSie popisat vztah medzi zavislostou ndhodnych premennych a entropiou,
zavedieme pojem podmienenej entropie.

Definicia 11.4. V kontexte predchadzajicej definicie ozna¢me podmienené pravdepodobnosti
p;i = PlY = y;|X = 2;]. Potom podmienenou entropiou Y za podmienky X = z; nazyvame

Hy(Y) == pjilog(pji).
=1

H;(Y) meria naSu mieru neurcitosti o Y, ak vieme, ze nastala udalost X = z;. Uvazujme
teraz ndhodna premennt H (Y'), ktora nadobtda hodnoty Hy(Y),..., H,(Y') s pravdepodob-
nostami py,...,p,; H(Y) je teda funkciou X.

Definicia 11.5. Pod podmienenou entropiou nadhodnej premennej Y pri danej X budeme
rozumiet

Hx(Y)=E(H(Y)) = ZpiHi<Y)'

Veta 11.2.

n m

Hx(Y)=-— Z Zpij log(pji)-

i=1 j=1
Veta 11.3. Ak X a Y st nezavislé, potom Hx(Y) = H(Y).
Priklad 11.3.

Veta 11.4. H(X,Y) = H(X) + Hx(Y).

Dékaz.

n m n m n m

H(X,Y)=— Z ZPU log(pjipi) = — Z Zpij log(pji) — — Z sz‘j log(pi)-

i=1 j=1 i=1 j=1 i=1 j=1
[

Dosledok 11.1. Ak X a Y st nezavislé ndhodné premenné, potom H(X,Y) = H(X)+H(Y).

11.4 Relativna entropia a vzajomna informacia

Videli sme, 7e Hx(Y') je miera informacie Y, ktord nie je obsiahnuta v X. Teda informéacia
Y, ktora je obsiahnutéa aj v X, potom je H(Y) — Hx(Y).

Definicia 11.6 (Vzdjomnd informdcia). Nech X a Y st dve diskrétne ndhodné premenné
so zdruzenym rozdelenim p;; = P[X = z;,Y = y;], i = 1,...,n, j = 1,...,m. Vzajomnou
informaciou X a Y nazyvame

I[(X,Y)=H(Y) - Hx(Y).
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Veta 11.5 (Viastnosti vzdjomnej informdcie). 1.

V=303 e (22)

i=1 j=1

2. I(X,Y) = I(Y, X)
3. Ak X a Y s nezavislé, potom I(X,Y) = 0.

Doékaz. Dokazy tvrdeni 2 a 3 st trividlne.
1LHY)=- Z;nzl g;log(q;) = — 321, 27:1 pijlog(g;) a odtial

[( Zzpu log q] Zzpm 10g pj|’L
=1 j=1 =1 j=1
Dosadenim pj;; = p;;/p; dostavame pozadované tvrdenie. O
Priklad 11.4.

Definicia 11.7 (Kullback-Leiblerova vzdialenost). Relativna entropia alebo Kullback-Leiblerova
vzdialenost medzi dvoma rozdeleniami pravdepodobnosti p a ¢ je definovana ako

p(z) p(X)
D(p| q) Zp o)~ Brlee %)

Poznamka 11.2. V predchadzajicej definicii OIOgg =0 aplog § = oo.

Relativna entropia je miera vzdialenosti medzi dvoma rozdeleniami pravdepodobnosti
alebo miera ’straty’ pri predpoklade spravnosti rozdelenia ¢, ak je v skuto¢nosti spravne
rozdelenie p.

Veta 11.6. Nech p(x), ¢(z) si dve rozdelenia pravdepodobnosti. Potom D(p || ¢) > 0 a
rovnost nastava prave vtedy, ked p(z) = ¢(x) pre vSetky x.

x) > 0}. Potom

)
) => p(x)log i<logzp(x)]%§10gzq(l’)=0-

€A TEA T

Dékaz. Oznac¢me A = {z :p

pl‘
D(pllq)=-) pl e

€A

—_— o~

~—

Kedze t — logT je striktne konkévna funkcia, rovnost nastava len ak % =1 O

Priklad 11.5.
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11.4.1 Princip maximalnej entropie

Nech X je diskrétna ndhodna premennd, ktora nadobtuida hodnoty {zi,...,z,} s pravde-
podobnostami py,...,p,. Predpokladajme, ze o X vieme, 7e F(X) = K, kde K je nejaka
konstanta. Ak K # %Z?zl x;, vieme, Ze X nem4 rovnomerné rozdelenie.

Hladajme maximum entropie H(X) vzhladom na ohranicenia > .  p; =1, > pix; =
K.

Maximalizujeme teda funkciu (n + 2) premennych

L(p1,- -, pi A i) = = > pilog(pi) + A (Zm — 1> + <Zmz— - K) :
=1 =1 =1

kde A a p st Lagrangeove multiplikatory.
Ak tuto funkciu zderivujeme podla premennych a derivaciu polozime rovnu 0, dostavame
vyjadrenie pre p;:
pi=expln(2)A — 1+ In2Qux;, i=1,...,n.

Pretoze Y., p; = 1, musi platif

A= ﬁ (1 —1In <Z exp ln(2)u$i>> (11.1)

i=1
a odtial dostavame tzv. Gibbsovo rozdelenie
~expln(2)px;
BT epn@ur;
Gibbsovo rozdelenie je teda prirodzenou alternativou k rovnomernému rozdeleniu, ak po-
zname len strednii hodnotu ndhodnej premenne;j.

=1,...,n. (11.2)

11.5 Entropy rate

V pripade postupnosti n ndhodnych premennych je prirodzené pytat sa, ako rastie entropia s
rastdcim n.

Definicia 11.8. Miera entropie ndhodného procesu {X;} je definovana ako

H(S) = lim ~H(X,, ..., X,)

n—oo M,
Priklad 11.6. Nech X, X5, ... st nezavislé a rovnako rozdelené ndhodné premenné. Potom
H(Xy,...,X, H(X
H(S) = fim AWK Xn) o B XY
n—00 n n—o0 n

Veta 11.7. Ak je {X;} stacionarny markovovsky retazec, potom
H(S) = lim H(Xn|Xn_1, e ,Xl) = lim H(Xn’Xn_l) = H(X2|X1),
n—oo n—oo
kde podmienenti entropiu pocitame pri danom stacionarnom rozdeleni 7, teda
1,
Priklad 11.7. Entropia markovovského retazca z prikladu 6.4 je
q

H(S) = H(X,|X;) = Z%qH(q) o ),
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11.6 Cvicenia

Uloha 11.1. Nech S = Y;_, 01/k* Uvazujme ndhodnt premenni X taku, 7e P[X = k] =
1/S k2 pre k = 1,...,10. Najdite H(X).

Uloha 11.2. Hadzeme vyvaZenou mincou az pokial nepadne hlava. Najdite entropiu nahodnej
premennej X, ktord reprezentuje pocet hodov v tomto experimente.



Kapitola 12

Linearny regresny model

12.1 Rozdelenia pravdepodobnosti odvodené od normal-
neho rozdelenia

Definicia 12.1. Nech X7, ..., X st nezavislé ndhodné premenné s rozdelenim N (0, 1). Potom
rozdelenie ndhodnej premennej Z = ZL X? nazyvame chikvadrat rozdelenie s k-stupnami
volnosti. Zna¢ime Z ~ 3.

D4 sa ukazaf, ze Z ~ x? vtedy a len vtedy, ked je Z spojita ndhodna premenna s hustotou
danou predpisom
Sk/2-1—2/2
F(2) = STy
2k12T(k/2)
pre z >0 a f(z) =0 pre z < 0. Vo vyjadreni tejto hustoty je I' takzvana gama funkcia, pre
ktort plati I'(1/2) = \/m apre kazdé k e N: T'(k) = (k—1)! aT'(k+1/2) = ‘2/—,?(% — 1! Pre
nase potreby vSak nie je tvar hustoty rozdelenia x3 dolezity.

Veta 12.1. Nech Z ~ x3. Potom F(Z) =k a D(Z) = 2k.

Dokaz. Ak Z ~ X3, potom Z = S X2 kde X, ..., X}, st nezavislé nahodné premenné
s rozdelenim N(0,1). Kedze E(X?) = D(X;) + (E(X;))? = 1+ 0 = 1, tak plati E(Z) =
SF | E(X?) = k. Na odvodenie disperzie Z pocitajme: E(X}) = [° x4\/%7@*"”2/2dx =3
(pozri poznamku 7.1). To znamen4, ze D(X?) = B(X}) — (E(X?))? =3 — 1 = 2. S pouzitim
vety 8.14 dostavame D(Z) = S5 | D(X?) = 2k, O

Definicia 12.2. Nech Y, Z st nezéavislé nahodné premenné, pricom Y ~ N(0,1) a Z ~

X:. Potom rozdelenie ndhodnej premennej T = Y/\/Z/k nazyvame t-rozdelenie (alebo aj
Studentove rozdelenie) s k-stupiiami volnosti. Znac¢ime T' ~ tj.

Podobne ako v pripade rozdelenia x3, nie je pre naSe potreby dolezité poznat tvar hustoty
rozdelenia t;. Uvedieme ho len v tejto poznamke:

k+1

_T((k+1)/2) A
fe) = VTkL(k/2) <1+ k)

pre vietky ¢t € R. Rozdelenie t; sa nazyva Cauchyho rozdelenie a z teoretického hladiska
je zaujimavé napriklad tym, Ze nemé strednt hodnotu. Pre k > 2 rozdelenie ¢, méa strednu
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hodnotu 0. Disperzia rozdelenia ¢ je kone¢na pre k > 3 a rovna k/(k — 2), ¢o vSak nebudeme
dokazovat. Je tiez mozné ukazat, ze pre k — oo konverguju hustoty rozdeleni ¢, k hustote
rozdelenia N(0,1).

12.2 Nahodny vyber a vyberové charakteristiky

Mame koneénti mnozinu ¢isel {y1, ..., yn}, ktoré sme ziskali meranim nejakej veli¢iny v danej
populacii (napr. krvny tlak u pacientov uzivajicich konkrétny liek).

Definicia 12.3. Nech Y, ..., Y,, st nezavislé ndhodné premenné, vSetky s rovnakym rozdele-
nim danym distribu¢nou funkciou F'. Potom hovorime, Ze ndhodné premenné Y7, ..., Y,, tvoria
nahodny vyber rozsahu m z rozdelenia s distribu¢nou funkciou F.

Aby sme v skratke popisali tento, ¢asto rozsiahly, sibor dat, pouzivame sihrnné charakte-
ristiky. Nacastejsie pouzivanou charakteristikou polohy je vyberovy priemer a charakteristikou
variability vyberovy rozptyl.

Definicia 12.4. Nech Y7, ..., Y,,, m > 2 tvoria ndhodny vyber (z nejakého rozdelenia). Nech
Y:liy a 52:LZ(Y-—Y)2
m L 7 7

Potom nahodnt premennt Y nazveme vyberovy priemer a ndhodnt premennt S? vyberovy
rozptyl ndhodnych premennych Y7, ..., Y,,.

Veta 12.2. Nech Yy, ...Y,, tvoria ndhodny vyber z rozdelenia N (i, 0?), pricom m > 2. Nech
Y je vyberovy priemer a S? je vyberovy rozptyl ndhodného vyberu Y7, ...,Y,,. Potom plati:

Y~ N(u,o*/m)  E(Y)=pu

m —1)5?
oD e, B =0

Y —
T:TN\/EN%A

Dokaz. Ak Yi, ..., Y, tvoria ndhodny vyber z rozdelenia N(u,0?), potom pre nahodny vektor
Y = (V... Y,  plati: Y ~ N, (F6,0%I),kde 0 = pa F = (1,1,...,1)T. Mame teda §pecidlny
pripad vety 12.5 s k£ = 1. VSimneme si, Ze

0=(FTF)'FTY =Y

a Zze ndhodna premenna S? z vety 12.5 je prave vyberovy rozptyl nahodného vyberu Y7, ..., Y,,.
Tym dostédvame tvrdenie o rozdeleni a strednej hodnote Y a S2. Posledné tvrdenie dostaneme
tak, ze vo vete 12.5 polozime ¢ = 1. O
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12.3 Linearny regresny model

12.3.1 Linearny regresny model priamkou
Priklad 12.1. Chceme urdit zavislost medzi davkou radiacie a zmensovanim nadoru v nasle-

dovnej situécii:

x: davka radiacie ‘ 1 2 3 4 5
y: velkost nadoru ‘ 14 11 10 85 6.5

Predpokladajme,ze zavislost sa riadi jednoduchym linedrnym modelom
yx;) = 0o + b12; + &,

kde ¢; je ndhodnéa chyba ¢-teho merania.

Nagim cielom je urcit neznamy vektor 6 = (6y,6;)T tak, aby vysledna priamka ¢o naj-
viac zodpovedala meraniam. Chceme teda minimalizovat Stvorce odchylok nasej priamky od
nameranych hodnot, a teda najst také é, aby platilo

5
f = arg min z;) — (0 + 012;))%
sy lucr) — (o 0o

Definicia 12.5. Ak Y7, ..., Y,, je postupnost nezavislych ndhodnych premennych, pricom Y; ~
N(az; + b,0?), kde z1,....,7,, € R, a,b € R a 0 > 0, tak hovorime, %e¢ ndhodné premenné
Y1, ..., Y,, splhaju linearny regresny model priamkou s normalnymi a nezavislymi chybami s
kongtantnym rozptylom o?.

Vsimnite si, Ze Y1, ..., Y,, splitaju predpoklady prechadzajucej definicie vtedy a len vtedy,
ked Y; = ax; +b+¢;, kde "chyby merani” €1, ..., €, tvoria ndhodny vyber z rozdelenia N (0, c?).

Veta 12.3. Nech Yy, ..., Y,,, m > 3 je postupnost nezavislych ndhodnych premennych, pricom
Y; ~ N(az; + b,0%), kde x1,...,r,, € R nie sa vsetky rovnaké, a,b € R, 02 > 0. Nech
T =(1/m)> ", x;. Definujme nasledovné ndhodné premenné:

N 2@1 Yi(w; — 7) v 2 1 — N 7\2
a= =5 — b=Y —azr, S°=——)> (Y;—ax;—0b)
> i (@i — @) ;

m— 2

Potom plati:

kde
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Doékaz. Tvrdenie vety je priamym dosledkom vety 12.5. Skuto¢ne, ak oznac¢ime Y = (Y1, ..., ¥,,)?
a 0= (a,b)’, potom plati: Y ~ N,,(F0,02I), kde

T T x g
o 1 2 ... m
= ( 1 1 ... 1 )
Vsimnime si, Ze ak x1, ..., T, nie st vSetky rovnaké, tak hodnost matice F' je k = 2. Mecha-
nickym vypoctom sa Tahko presvedéime, ze plati
(a,0)" = (FTF)'FTY

d'alej 7e nahodné premenné S? v tejto vete a vo vete 12.5 st (pre nase Specifické F') rovnaké
a ze

1 m —mx
FTpy-t = m
EE = s e ( A )

Takto z vety 12.5 priamo dostavame rozdelenie a stredné hodnoty (a, B)T a S%. Posledny vyrok
dostaneme tak, Ze vo vete 12.5 polozime ¢ = (1,0)%. O

K predpisom pre a a b je moZné dospiet pomocou takzvanej metody najmensich stvorcov,
t.j. @ a b minimalizujt sacet Y .* (V; — az; — b)?. Nahodné premenné a, b sa preto nazyvaju
odhady koeficientov a, b pomocou metddy najmensich stvorcov (MNS-odhady).

12.3.2 Zakladna veta o lineArnom regresnom modeli

Vo v8eobecnosti, ak v bodoch &, ..., x,, nameriame data yi,..., ¥y, lineArnym regresnym
modelom nazyvame vztah
yi = f7(2:)0 + &5,

kde f je dana vektorova funkcia, 0 = (6,...,0;)" je vektor nezndmych parametrov a pre
nahodné chyby plati E(g;) = 0, D(e;) = 02 a cov(g;, ;) = 0 pre i # j. NaSou tdlohou je z dat
odhadnut priebeh regresnej funkcie x — f7(x)0.

Veta 12.4. Nech F je matica typu m x k, pricom k < m a hodnost matice F je k, § € RF.
Potom minimaliza¢ny problém

mé prave jedno rieSenie

0=(FTF)'FTY
Veta 12.5. Nech pre nahodny vektor Y = (Y7, ..., Y,,)T plati:
Y ~ N,.(F8,0%I)

kde F je matica typu m x k, pricom k < m a hodnost matice F je k, dalej § € R¥, 0> >0 a
I je jednotkova matica typu m x m. Nech

0=(FTF)'FTY
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52:%“3{—%

m —

Potom plati

pre kazdy nenulovy vektor ¢ € R¥.

Veta 12.6. Nech Y1:,..Y1,,,, Y21, ..., Yo, s zdruZene nezavislé ndhodné premenné. Pre
i = 1 aj pre i = 2 nech Y;,,...Y,,,, tvoria ndhodny vyber z rozdelenia N(u;, 0?), pricom
m; > 2,02 > 0 anech Y; a S? st vyberovy priemer, resp. vyberovy rozptyl daného ndhodného
vyberu. Oznatme m = mq + msy a

1
§2 — — ((m1 —1)S7 + (mg — 1)5%)
Potom plati:
(m — 2)5?
0_2 ~ Xm—2 E(SQ) = 02
Yi —Y; — —
! 5 — (111 — pi2) ~t o

S\ e+ s

Dokaz. Veta je $pecidlnym pripadom tvrdenia 12.5 pre Y = (Yi1,..Y1m,, You, o, Yo, )7,
m=m +m27 k= 27 0= (,U/hMQ)T

P 1 -~ 10 --- 0\7*
“\o .- 01 --- 1

(vIavo hore je m; a vpravo dole je my jednotiek) a pre ¢ = (1, —1)7. O



Kapitola 13

Bodové a intervalové odhady parametrov
Statistickych modelov

13.1 Bodové odhady

Definicia 13.1 (Nevychyleny bodovy odhad parametra). Nech © C RF je parametricky
priestor a nech {Fy : R™ — [0,1];0 € ©} je parametricka trieda distribuénych funkecii. Nech
gi : R™ — R je taka funkcia, Ze pre kazdé 6 € © plati: Ak nahodny vektor (X7, ..., X,,)T ma
distribu¢nt funkciu Fy, tak ndhodna premenna T; = ¢;(Xj, ..., X;,) mé stredni hodnotu 6.
Nahodna premennu 7; potom nazyvame nevychyleny odhad parametra 6;.

Definicia 13.2. Hovorime, ze odhad T je rovnomerne lepsi ako odhad T', ak Dy(T™) < Dy(T)
pre vSetky 6 € ©.

Definicia 13.3 (Konzistentny odhad). Odhad T,,, ktory dostaneme na zaklade nahosného
vyberu rozsahu n, nazyvame konzistentny, ak

Ve >0V0: lim B[|T, — 0] < e = 1.
n—oo

13.1.1 Metéda maximalnej vierohodnosti

Definicia 13.4. Nech z1,...,x, je realizicia ndhodného vyberu z rozdelenia s FPy[X = z]
alebo s hustotou f (35;6). Odhadom parametra # metdédou maximalnej vierohodnosti roz-
umieme ti hodnotu #, ktord maximalizuje vierohodnostna funkciu

(0) - Py[X1 = x1] -+ B[ X,, = x,] pre diskrétne rozdelenie
) fla;0) - fan; 0) pre spojité rozdelenie.

Funkcia vierohodnosti L je teda zdruZzena hustota Xy,..., X, chidpand ako funkcia 6:

n

L(xz;0) = [ [ f(x::6)

=1

0 = arg max L(x;0)
Vécsinou je lahsie narabat s prirodzenym logaritmom tejto funkcie (tzv. log-likelihood)

[(x;0) =1n L(z;0)

87
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Priklad 13.1. Mame realizaciu x1,...,x, z alternativneho rozdelenia s parametrom p &€
(0,1). Odhadnite tento parameter metédou maximalnej vierohodnosti.

L(Qi;p) = P[Xl = xl] ’ P[Xn = xn] :pzxi(l —p)nizxi

Logaritmus vierohodnostnej funkcie je

l(z;p) =InL(z;p) =Y x;lnp+(n—Y a;)In(l - p)

Aby sme urcili maximum, polozime derivaciu rovnu 0:
I'(x;p) = EZx+LZx =0=p= 121‘
) p 7 1 . p 3 n T

13.2 Intervalové odhady

Definicia 13.5 (Interval spolahlivosti). Nech © C R* je parametricky priestor, nech

{Fy : R™ — [0,1];0 € ©} je parametricka trieda distribu¢nych funkcii a nech o € (0,1). Nech
g ' R™ =5 Rag": R™ = R st také funkcie, Ze g, < ¢* na celom R* a pre kazdé § € O plati:
Ak néhodny vektor (X7, ..., X,,,)T ma distribu¢na funkciu Fp, tak

P[g*(le 7Xm) <; < g*<X1, 7Xm)] =1—«
Potom povieme, ze (ndhodny) interval

[g*<X17 ...,Xm),g*<X1, ,Xm)]

je 100(1 — «a)-percentnym intervalom spolahlivosti pre parameter 6;.

13.2.1 Odhady parametrov ndhodného vyberu z N(u,o?)

Veta 13.1. Nech Yi,...,Y,, je nahodny vyber z rozdelenia N(u,0?), kde m > 2, p € R,
0% > 0, nech Y je vyberovy priemer a S? je vyberovy rozptyl ndhodného vyberu Yi, ..., Y,,.
Potom Y je nevychyleny odhad parametra p, S? je nevychyleny odhad parametra o2. Naviac,
pre a € (0,1) je

_ i} S
[V =AY +A,], kde A, = t, (1 - o/2) =

100(1 — «)-percentny interval spolahlivosti pre parameter y a

(m—-1)8* (m—1)5?
X1 (1= /2) X3, (/2)

100(1 — «)-percentny interval spolahlivosti pre parameter 2.

Dokaz. Veta je dosledkom vety 12.2 a definicii intervalov spolahlivosti a kvantilov. O

Poznamka 13.1. Vsimnite si, Ze dlzka intervalu spolahlivosti klesé s rasticim “poc¢tom po-
zorovani’ m, ale rastie so zmensujicou sa hodnotu «, t.j. ak rasti naSe poziadavky na spo-
T'ahlivost tohoto intervalu.
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Priklad 13.2. V analyze bezpecnosti siete sa testoval ¢as potrebny na prenos paketov apli-
kécie v pevnej a bezdrotovej sieti. Najdite 95%-ny interval spolahlivosti pre rozdiel strednych
hodnoét, ak mame k dispozicii nasledovné tdaje:

vyb.priemer smer. odchylka velkost vyberu
pevna siet 2.000 6.299 436 Riesenie:
bezdrotova siet 11.520 9.939 344
6.2992  9.9392
11.520 — 2. + 1. =95241.22
520 000 96\/ 136 + 1l 9.5

13.3 Odhady parametrov linedArneho regresného modelu
priamkou

Veta 13.2. Nech Yy, ..., Y,,, m > 3 je postupnost nezavislych ndhodnych premennych, pricom
Y; ~ N(az; + b,0%), kde x1,...,2,, € R nie su vietky rovnaké, a,b € R, 0> > 0. Nech
T = (1/m)Y ", x; anech x € R. Nech a, b a S? st ndhodné premenné definované vo vete

12.3 Potom a je nevychyleny odhad parametra a, b je nevychyleny odhad parametra b a S?
je nevychyleny odhad parametra o?. Naviac, pre o € (0,1) je

tm—2(1—a/2)S
\/ZZ L2 —mz?

100(1 — av)-percentny interval spolahlivosti pre parameter a,

[0 — A, + A, kde A, =

f2

_ 72
i— 1£B,L mx

b—Ab,bJrAb} kde Ay = tyo(1 — a/2) \/ + 5

100(1 — «)-percentny interval spolahlivosti pre parameter b,

[ (m —2)52 (m—Q)SQ}
Xon—2(1 = /2)" X3, o(/2)

100(1 — «)-percentny interval spolahlivosti pre parameter o2 a pre akékolvek z € R je

[ax+B—Ax,ax+é+Am}, kde

(r — x)?
Ay =ty 2)
2 a/ \/ Zz lxz_mx2

100(1 — av)-percentny interval spolahlivosti pre hodnotu ax + b.

Doékaz. Veta je dosledkom vety 12.3 a definicii intervalov spolahlivosti a kvantilov. O

Poznamka 13.2. Uvazujme znacenie z predchadzajtcej vety. Potom mnozina
H— {(:p,y)T eR?:ax+b— A, §y§d:1:+l;+Ax}

sa nazyva pas spolahlivosti pre hodnoty ax + b. Péas spolahlivosti je najuZsi v bode z = 7 a
rozSiruje sa pre r — 00 a r — —00.
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13.4 Cvicenia

Uloha 13.1. 100 nahodne vybranych programatorov sme sa spytali, ¢i je C+-+ ich oblibeny
programovaci jazyk a 15 z nich odpovedalo kladne. Najdite 95%-ny interval spolahlivosti pre
podiel programatorov, ktorych oblibenym jazykom je C+-+.

Uloha 13.2. Do siete posleme 500 paketov v ¢ase medzi 10 a 11 hodinou a zistime priemerné
oneskorenie 0.8s so smerodajnou odchylkou 0.1. Pre 200 paketov v ¢ase medzi 22 a 23 hodi-
nou sme zistili priemerné oneskorenie 0.5s so smerodajnou odchylkou 0.08. Zostrojte 99%-ny
interval spolahlivosti pre rozdiel medzi oneskoreniami.

Uloha 13.3. Merali sme vysku 12 roznych deti vo vekoch od 7 = 18,25 = 19, ..., 215 = 29
mesiacov. Predpokladame, Ze stredna vyska (v danom vekovom rozmedzi) méa linearny trend v
zavislosti od veku, pricom individualne odchylky od strednej vysky majt norméalne rozdelenie s
rozptylom nezavislym od veku. Formélne: pre dieta vo veku x; je namerané vyska y; realizaciou
nahodnej premennej Y; = az; + b + ¢;, kde ¢, ~ N(0,0?). Néjdite regresnti priamku az + 13,
kde @ a b st odhady parametrov a,b metodou najmensich Stvorcov. Plati: zzl x; = 282,
S a2 = 6770, Y12,y = 961, 312, yiw; = 227516,

Uloha 13.4. Meriame rychlost pohybujiceho sa objektu v ¢asoch ¢; = i sekand, pre i =
1,2,3,4,5. Z fyzikidlnej podstaty problému a vlastnosti meracich zariadeni vieme, Ze namerana
rychlost objektu v ¢ase t je nahodné premenna s rozdelenim N (at + b, 0%), kde a je zrychlenie
objektu, b je jeho podiato¢na rychlost a o? je konstanta charakterizujica chybovost merani.
Naviac vieme, Ze merania st navzajom nezavislé. Konkrétne namerané hodnoty rychlosti boli
v = 99,27; vy = 108,80; v3 = 119,39; vy = 128,30 a vs = 139,88 m/s. Plati: Zle v; =
595,64 a Z?Zl t;v; = 1887,64. Najdite odhad a zrychlenia a b pociatoc¢nej rychlosti metodou
najmensich stvorcov.

Uloha 13.5. Za uc¢elom testovania $pecialnej vahy sme vykonali 10 nezavislych vazeni zavazia,
ktorého hmotnost je presne 1 gram. V kazdom vazeni viha ukéazala mierne odlisny vysledok.
7 vysledkov sme vypocitali vyberovy priemer 1,004581 gramu a vyberovy rozptyl 0,000119
g?. Predpokladame, Ze vysledky jednotlivych merani maji normélne rozdelenie N (u, 0?). Vy-
konajte test hypotézy Hy : =1 vo¢i Hy : p # 1 na hladine vyznamnosti a = 0, 1. Vieme, Ze
95-percentny kvantil Studentovho rozdelenia s 9-timi stuphiami volnosti je t9(0,95) ~ 1, 833.



Kapitola 14

Testovanie Statistickych hypotéz

14.1 VsSeobecny tvod k testovaniu Statistickych hypotéz

Majme dany pravdepodobnostny model na rozdelenie dat Yi,...,Y,, vyjadreny (napriklad)
systémom distribu¢nych funkcii {F(-,0);0 € ©}, kde © C R¥ je parametricky priestor. To
znamend, Ze vieme, Ze nahodny vektor pozorovani Y = (Y1, ..., Y,,)T ma distribuéni funkciu
F(-,0%) pre nejaké fixné, "skuto¢né”, no nezname 6* € ©. Uvazujme "nulovi” hypotézu Hy, 7Ze
skutocné 0* patri do mnoziny 6y C © a "alternativnu” hypotézu H;, Ze 0* nepatri do ©g, ¢o
symbolicky zna¢ime

H0:9€@ovoéiH1:6¢@o

Nagim cielom je skonstruovat procediru (nazyvana Statisticky test), ktorej vstupom buda
realizacie ndhodnych premennych Y, ...,Y,, a vysledkom bude bud ” Hy nezamietame”, alebo
" Hy zamietame”, s vlastnostou:

Ak hypotéza H, plati, tak (z pohladu pred ziskanim realizacii ndhodnych premennych
Y1, ..., Y,,) nastane vysledok "zamietame H,” s vopred zvolenou pravdepodobnostou a.

Pravdepodobnost «, t.j. pravdepodobnost, ze H, zamietneme napriek tomu, ze Hj je
platné, nazyvame chyba 1. druhu daného testu a test s chybou 1. druhu rovnou a nazy-
vame test "na hladine vyznamnosti” . Hodnota a sa najcastejSie voli 0,05. V matematickej
Statistike je predpis pre test so zadanou chybou 1. druhu « obvykle takyto:

Ak g(V1,...,Y,,) € W, tak vysledok testu je ”Hy zamietame”, inak je vysledok testu ” Hy
nezamietame”.

Pritom funkcia g : R — R a mnozina W, C R st zvolené tak, aby platilo
Plg(Y1,....,Y) € W,] = .

V takomto pripade nazyvame mmnozinu W, kritickou oblastou pre Statistiku (funkciu dat)
T=g(Y1,...Y) atest Hy: 60 € ©y voci Hy : 0 ¢ ©p na hladine vyznamnosti a.

Pre danu hypotézu Hj je obvykle mozné skonstruovat velké mnoZstvo roznych testov na
hladine vyznamnosti «. Takéto testy sa pritom mozu podstatne lisit a to tym, aka maja
takzvani chybu 2. druhu, t.j. s akou pravdepodobnostou vratia vysledok ” Hy nezamietame”,
ak Hj neplati. Chybami druhého druhu sa vSak nebudeme zaoberat.
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Definicia 14.1 (Kwvantil). Nech X je nadhodnéa premennd s distribu¢nou funkciou F. Nech
G je kvantilova funkcia distribu¢nej funkcie F a nech p € (0,1). Potom ¢islo G(p) nazveme
p-kvantilom (alebo 100p-percentnym kvantilom) nahodnej premennej X. Pre ndhodnu pre-
mennt X s rozdelenim x? a ¢; oznacujeme p-kvantil symbolom x3(p), resp. tx(p).

Ekvivalentna, ale nazornejsia definicia kvantilu x(p) je nasledovna: Nech ndhodna pre-
mennd Z mé rozdelenie xi. Potom x%(p) je to (jednozna¢ne urcené) redlne &islo, pre ktoré
plati P[Z < x2(p)] = p. Podobne, ak ndhodna premenna 7' méa rozdelenie t, tak t1(p) je to
(jednozna¢ne ur¢ené) redlne ¢islo, pre ktoré plati P[T' < tx(p)] = p.

Hodnoty x2(p) alebo t;(p) obvykle ziskame z tabuliek, alebo pomocou vhodného Statistického
(numerického) programu. Tieto hodnoty nie je vo vSeobecnosti jednoduché vypoéitat.

14.2 Testovanie hypotéz o strednej hodnote a disperzii

Pre model Y7, ...,Y,, ndhodného vyberu z norméalneho rozdelenia N(u,0?) moZeme testovaf
hypotézy o strednej hodnote p aj disperzii 02 pomocou nasledovnej vety.

Veta 14.1. Nech Yi,...,Y,, je ndhodny vyber z rozdelenia N(u,0?), kde m > 2, u € R,
02 >0, Y je viberovy priemer a S? je vyberovy rozptyl ndhodného vyberu Y;,...,Y,, a nech
a € (0,1).

Nech pg € R. Pre test hypotézy

Ho : = po voci Hy @ p # o
na hladine vyznamnosti «, je mnozina
Wy = (=00, —tm-_1(1 —a/2)) U (ty-1(1 — a/2),0)

kritickou oblastou Statistiky

Y;’MO\/E

Nech 2 > 0. Pre test hypotézy
Hy: 0% = of voii Hy : 0% > o}
na hladine vyznamnosti «, je mnozina
Wo = (infl(l - a), OO)
kritickou oblastou $tatistiky

(m—1)52

2
)

Doékaz. Veta je dosledkom vety 12.2, definicie Statistického testu a kvantilov. O
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14.3 Testovanie hypotézy o rozdiele strednych hodnot

Pre dva nezavislé ndhodné vybery z normalneho rozdelenia sa najcastejsie testuje hypotéza
tykajica sa rozdielu p; — po strednych hodnét, obzvlast hypotéza py — po = 0 ze ndhodné
vybery nevykazuju statisticky vyznamny rozdiel strednych hodnot.

Veta 14.2. Uvazujme rovnaké predpoklady a znacenie ako vo vete 12.6.
Nech a € (0,1) a Ay € R. Pre test hypotézy

Ho @ piy — pra = Ao vol&i Hy @ py — g # Ay
na hladine vyznamnosti «, je mnozina
Wy = (=00, —tm—o(l — a/2)) U (t;_o(1 — a/2),0)

kritickou oblastou $tatistiky

S e Y
1 1
S\t

Dokaz. Veta je priamym dosledkom vety 12.6, definicie Statistického testu a kvantilov. O]

14.4 Testovanie hypotézy o sklone regresnej priamky

Ak modelujeme pozorovania Yi, ..., Y, linedrnym regresnym modelom priamkou (definicia
12.5), mozeme v principe testovat mnoho hypotéz tykajicich sa parametrov a,b, alebo dis-
perzie o2 odchylok. Aviak obvykle sa testuje hypotéza o sklone regresnej priamky, t.j. o pa-
rametri a. Obzvlast ¢asto sa testuje konkrétne hypotéza a = 0, t.j. hypotéza, Ze pozorovania
Y nevykazuju Statisticky vyznamny rastici (alebo klesajtci) trend pri zmene hodnét x.

Veta 14.3. Uvazujme rovnaké predpoklady a znacenie ako vo vete 12.3.
Nech a € (0,1) a ag € R. Pre test hypotézy

Hy:a=agvoti Hi :a# ag
na hladine vyznamnosti «, je mnozina
W, = (=00, —tm—o(l — a/2)) U (tyo(1 — a/2),0)

kritickou oblastou $tatistiky

Doékaz. Veta je dosledkom vety 12.3, definicie Statistického testu a kvantilov. O]
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14.5 Cvicenia

Uloha 14.1. V roku 1882 vykonal Michelson 23 nezévislych merani rychlosti svetla, pricom
priemer nameranych hodnot bol T = 299756, 2 km/s a vyberovy rozptyl merani vysiel S? =
11473, 54. Mozeme predpokladat, Ze merania zodpovedali realizacidm nezavislych nahodnych
premennych s normalnym rozdelenim N(u,0?). Na hladine vyznamnosti o = 0,05 testujte
hypotézu, ze Michelsonove merania neboli zatazené vychylkou strednej hodnoty, t.j. testujte,
ze p = 299792,5 km/s, ¢o je "presnd” rychlost svetla ur¢enid modernymi metédami. Vieme,
Ze t22<0, 975) = 2, 074.

Priklad 14.1. Z velkého suboru rezistorov rovnakého typu a nominalnej hodnoty sme vybrali
16 kusov. Na zéaklade dlhodobych skisenosti moézeme predpokladat, ze v zakladnom subore
maji hodnoty odporu rezistorov v kQ rozdelenie N (u, 0?), aviak p a 02 st nezname. Vyberovy
priemer odporu vybratych rezistorov je 9,3 k2 a vyberovy rozptyl 6,25 (kQ)2.

a) Urcte realizaciu 99-percentného intervalu spolahlivosti pre parameter p.

b) Urcte realizaciu 99-percentného intervalu spolahlivosti pre parameter o2.

c) Na hladine vyznamnosti a = 0, 1 testujte hypotézu, ze p = 10 k.

d) Na hladine vyznamnosti a = 0,1 testujte hypotézu, ze o® = 4 (k)2

Potrebné kvantily sa nasledovné: t15(0,995) = 2,95, t15(0,95) = 1,75, x35(0,995) = 32, 80,
X35(0,95) = 25,00, x35(0,005) = 4,60, x?5(0,05) = 7, 26.
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