Príklad 1

anc <- read.table("http://www.iam.fmph.uniba.sk/ospm/Filova/vsa/ancova.csv", header=TRUE)
anc$Tr<-factor(anc$Tr)
summary(anc)
##        y               x         Tr    
##  Min.   :16.46   Min.   : 5.30   1:10  
##  1st Qu.:21.70   1st Qu.:10.80   2:10  
##  Median :26.42   Median :13.65   3:10  
##  Mean   :26.19   Mean   :13.47         
##  3rd Qu.:30.94   3rd Qu.:15.97         
##  Max.   :35.10   Max.   :19.70
plot(y~x,anc,pch=unclass(Tr)+14,col=unclass(Tr),main=NULL, cex=2)
legend(5,35,legend=c("Tr1","Tr2","Tr3"),pch=c(15,16,17),bty="n")

with(anc,plot(Tr,y,ylab="y"))

with(anc,stripchart(y~Tr,vertical=T,method="jitter",xlab="Treatments",ylab="y",cex=2,pch=16,col=c("red","green","blue")))

par(mfrow=c(1,1))

Konštrukcia modelu

ancova.mod<-lm(y~Tr+x,anc)
(ancova.sum<-summary(ancova.mod))
## 
## Call:
## lm(formula = y ~ Tr + x, data = anc)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.31237 -0.13680 -0.00477  0.07676  0.42176 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  7.62227    0.13422   56.79   <2e-16 ***
## Tr2          2.47947    0.08150   30.42   <2e-16 ***
## Tr3          5.06206    0.08179   61.89   <2e-16 ***
## x            1.19237    0.00907  131.46   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1801 on 26 degrees of freedom
## Multiple R-squared:  0.999,  Adjusted R-squared:  0.9989 
## F-statistic:  8718 on 3 and 26 DF,  p-value: < 2.2e-16

1. testovanie interakcií

int.model<-lm(y~Tr+x+x:Tr,anc)
anova(ancova.mod,int.model)
## Analysis of Variance Table
## 
## Model 1: y ~ Tr + x
## Model 2: y ~ Tr + x + x:Tr
##   Res.Df     RSS Df Sum of Sq      F Pr(>F)
## 1     26 0.84304                           
## 2     24 0.77306  2  0.069981 1.0863 0.3535

2. testovanie efektov ošetrení

reg.model<-lm(y~x,anc)
anova(reg.model,ancova.mod)
## Analysis of Variance Table
## 
## Model 1: y ~ x
## Model 2: y ~ Tr + x
##   Res.Df     RSS Df Sum of Sq      F    Pr(>F)    
## 1     28 125.194                                  
## 2     26   0.843  2    124.35 1917.5 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Príklad: Rohwer

Pozrieme sa opäť na Rohwerove dáta a budeme uvažovať socioekonomický status ako ďalšiu premennú. Máme teda MANCOVA model:

library(heplots)
## Loading required package: car
## Loading required package: carData
## 
## Attaching package: 'heplots'
## The following object is masked from 'package:rgl':
## 
##     arrow3d
rohwer.mod <- lm(cbind(SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss,data=Rohwer)
Anova(rohwer.mod)
## 
## Type II MANOVA Tests: Pillai test statistic
##     Df test stat approx F num Df den Df    Pr(>F)    
## SES  1   0.37853  12.1818      3     60 2.507e-06 ***
## n    1   0.04030   0.8400      3     60  0.477330    
## s    1   0.09271   2.0437      3     60  0.117307    
## ns   1   0.19283   4.7779      3     60  0.004729 ** 
## na   1   0.23134   6.0194      3     60  0.001181 ** 
## ss   1   0.04990   1.0504      3     60  0.376988    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(rohwer.mod)
## Response SAT :
## 
## Call:
## lm(formula = SAT ~ SES + n + s + ns + na + ss, data = Rohwer)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -45.280 -20.398   1.931  20.989  55.933 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  7.03114   14.49293   0.485  0.62929   
## SESLo       -8.79782    6.80842  -1.292  0.20108   
## n            1.60529    1.04506   1.536  0.12961   
## s            0.02573    0.88033   0.029  0.97678   
## ns          -2.62735    0.87939  -2.988  0.00402 **
## na           2.10585    0.88816   2.371  0.02086 * 
## ss           0.92983    0.83498   1.114  0.26975   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 26.31 on 62 degrees of freedom
## Multiple R-squared:  0.2951, Adjusted R-squared:  0.2269 
## F-statistic: 4.326 on 6 and 62 DF,  p-value: 0.001044
## 
## 
## Response PPVT :
## 
## Call:
## lm(formula = PPVT ~ SES + n + s + ns + na + ss, data = Rohwer)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -22.3731  -8.0421   0.4398   7.8716  20.4794 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  48.226302   5.856889   8.234 1.55e-11 ***
## SESLo       -16.877211   2.751420  -6.134 6.60e-08 ***
## n             0.002326   0.422329   0.006 0.995623    
## s            -0.351086   0.355760  -0.987 0.327546    
## ns           -0.298858   0.355381  -0.841 0.403607    
## na            1.293741   0.358925   3.604 0.000624 ***
## ss            0.478906   0.337433   1.419 0.160830    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.63 on 62 degrees of freedom
## Multiple R-squared:  0.6283, Adjusted R-squared:  0.5924 
## F-statistic: 17.47 on 6 and 62 DF,  p-value: 1.022e-11
## 
## 
## Response Raven :
## 
## Call:
## lm(formula = Raven ~ SES + n + s + ns + na + ss, data = Rohwer)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8459 -2.2031  0.0092  1.8676  8.1445 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 12.332441   1.589339   7.759 1.03e-10 ***
## SESLo       -1.585773   0.746632  -2.124   0.0377 *  
## n            0.014854   0.114604   0.130   0.8973    
## s            0.181169   0.096540   1.877   0.0653 .  
## ns           0.111556   0.096437   1.157   0.2518    
## na          -0.009702   0.097399  -0.100   0.9210    
## ss          -0.004464   0.091567  -0.049   0.9613    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.885 on 62 degrees of freedom
## Multiple R-squared:  0.2108, Adjusted R-squared:  0.1344 
## F-statistic: 2.759 on 6 and 62 DF,  p-value: 0.01924
heplot(rohwer.mod, col=c("blue", "black"), lwd=2, cex=1.2)

colors <- c("red", "blue", rep("black",5), "#969696")
pairs(rohwer.mod, col=colors,hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")),cex=1.3, lwd=c(2, rep(3,5), 4))

colors <- c("pink", "blue", rep("black",5), "#969696")
heplot3d(rohwer.mod, col=colors,hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")))

You must enable Javascript to view this page properly.