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Note 1: This text is used as a classroom handout. Please, do not cite it. If you need to 

cite a real paper on DE, see, e.g., https://doi.org/10.1016/j.swevo.2016.01.004 and 

the references summarized in the survey paper. 

Note 2: It may help if the student is familiar with the principles of the simulated 

annealing algorithm (SAA), the genetic algorithm (GA), and the particle swarm 

optimization algorithm (PSOA). 

 

As usual, we will consider a real-valued objective (or fitness) function f defined on a set 

X of feasible solutions. For the standard version of DE, X is required to be the space of 

m-dimensional vectors composed of real numbers. The reason of this requirement is 

that the fundamental principle of DE is based on shifting feasible solutions by vectors. 

However, we do not need to assume anything about the properties of f. In this text, 

we assume the aim is to minimize f. 

The classical version of DE has 3 parameters: DE is a population metaheuristic, and its 

first parameter is the population size Np≥4. The second parameter is F (0≤F≤2), which 

can be viewed as a mutation intensity parameter and is usually called differential 

weight in the context of DE. We also need a third parameter CR (0≤CR≤1), which is 

called the crossover probability.    

The initial population is usually generated at random over a box inside X. Given the 

actual population x1, … ,xNp, DE forms the new population as follows:  

For each i=1, … ,Np: randomly generate a base vector a and two shift vectors b, c. The 

vectors a, b, c must all be members of the current population and all four vectors xi, a, 

b, c, must be distinct. Use a, b, c to form the donor vector  

y = a + F * (b – c),  

which can be viewed as a mutation of a; note that this mutation is implicitly respecting 

the size and shape of the population.  Next, compute a challenger z via the uniform (or 

binomial) crossover of xi and y, that is, each component of z is independently inherited 

from xi with probability 1-CR and from y with probability CR. To ensure that z is not 
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the same as xi, one random component of y is assigned to z with probability 1. Replace 

xi with z if f(z)<=f(xi); in the opposite case, discard z as a failed attempt to improve the 

position of xi. 

 

DE exhibits some similarities to other heuristic optimization methods.  

SAA:  

DE resembles the SAA in the sense that both algorithms generate candidate solutions 

that may or may not be accepted, depending on the relation of the objective function 

values of the current feasible solution and a “candidate” solution. However, DE 

“greedily” accepts an improving solution, while the SAA uses a subtler principle of 

acceptance. Also, DE modifies the entire population of feasible solutions, while in the 

SAA we only have a single feasible solution at each iteration. 

PSOA: 

DE is like the PSOA in the sense that both algorithms can be viewed as sequential 

vector shifts of the positions of each member of the population. However, in DE the 

rules for shifts are simpler and substantially different than in the PSOA; for instance, 

DE does not utilize the historically best positions of the particles but the actual 

positions of randomly selected members, as well as the actual size and shape of the 

entire population. (Note that some versions of DE do utilize the best of all available 

feasible solutions.) 

GA: 

As for similarities with the GA, DE uses operations that can be viewed as mutation and 

recombination. However, the mutation in DE adaptively changes with the properties 

of the population (this is sometimes called self-referential mutation), which is not 

usual in GAs. Moreover, DE first performs the mutation of a base vector, and then 

recombines the mutated base vector with the feasible solution that we consider for 

update. In a sense, this is the opposite order compared to the GAs.       

 

The behaviour of DE strongly depends on the choice of Np, F and CR. The usual initial 

choices are Np=10*n, F=0.5 and CR=0.5, but it often helps to run the optimization with 

various combinations of the parameters, because some combinations can be much 

more effective than others, and the best combination of parameters may depend on 

the problem.  

 


