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Introduction to optimal design of experiments

• Design of experiments: A collection of methods for selecting a
small number of trials (conditions under which the experiment is
performed) in order to obtain as much valuable information as
possible.

We will consider the linear regression model on an experimental
domain X. For each design point x ∈ X representing experimental
conditions, we can observe a random variable

Y (x) = β′f(x) + ε(x),

where f : X→ Rm is a known vector of regression functions, β ∈ Rm

is an unknown vector of parameters, and ε(x) is an unobservable
random error. An “optimal design” is a method of choosing the
conditions x1, x2, ... ∈ X in an optimal way to gain the largest amount
of information about the unknown parameter β of the model.



Notation
• Ξ ... the set of all approximate designs on X (finitely supported

probabilities on X)
• M(ξ) ... the information matrix of ξ ∈ Ξ (the “larger” M(ξ) the

more “informative” is the design ξ)
• Φ : Sm

+ → [0,∞) ... an optimality criterion (information function,
measuring the “size” of information matrices)

• ΦD(M) = det1/m(M) ... the criterion of D-optimality
• Φc(M) = (c′M−c)−1 for c ∈ L(M) ... the criterion of c-optimality

• ξ∗ = argmaxξ∈ΞΦ(M(ξ)) ... the Φ-optimal design
• eff(ξ|Φ) = Φ(M(ξ))/Φ(M(ξ∗)) ... the efficiency of ξ (measures

how good is ξ compared to the Φ-optimal design ξ∗)

During the last half a century, researchers have amassed a vast
number of analytic results about optimal designs for all kinds of
regression models with respect to many optimality criteria. There also
exist several algorithms for numerical construction of optimal design.
Monograph: A. Pázman “Foundations of optimum experimental design”, Springer 1986



Key result 1
Harman R (2004): Minimal efficiency of designs under the class of
orthogonally invariant information criteria, Metrika, Volume 60, No. 2,
pp. 137-153

Theorem
Let ξ ∈ Ξ be an arbitrary design, let O be the set of all information
functions depending only on the eigenvalues of the information
matrix, and, for all M ∈ Sm

+ , let ΦEk (M) be the sum of the k largest
eigenvalues of M, k = 1, ...,m. Then

inf
Φ∈O

eff(ξ|Φ) = min
k=1,...,m

eff(ξ|ΦEk ).

Allows us to calculate a measure of criterion-robustness of a given
design, and sometimes construct the most criterion-robust design in
the class O of all reasonable optimality criteria that measure the
quality of the designs by a “size” of the confidence ellipsoid,
independently on its rotation and a shift.



Key result 1
Related publications of R. Harman:
• Harman R (2004): Lower bounds on efficiency ratios based on

Φp-optimal designs, in: Proceedings from the conference
“Advances in Model-Oriented Design and Analysis” (Heeze,
Netherlands 2004), Physica-Verlag, pp. 89-96

• Harman R (2008): Equivalence theorem for Schur optimality of
experimental designs, Journal of Statistical Planning and
Inference, Volume 138, Issue 4, pp. 1201-1209

• Filová L, Harman R, Klein T (2011): Approximate E-optimal
designs for the model of spring balance weighing with a constant
bias, Journal of Statistical Planning and Inference, Volume 141,
Issue 7, pp. 2480-2488

• Work in progress with L. Filová and J. Michaliková.

Cited in: Canadian Journal of Statistics, Kybernetika, Collecting Spatial Data: Optimum
Design of Experiments for Random Fields (Springer), Boletı́n de Estadı́stica e
Investigación Operativa, etc.



Key result 2
Harman R, Pronzato L (2007): Improvements on removing
non-optimal support points in D-optimum design algorithms, Statistics
& Probability Letters, Volume 77, Issue 1, pp. 90-94

Theorem
Let ξ ∈ Ξ, let M(ξ) be regular and let d(x , ξ) = f′(x)M−1(ξ)f(x) for all
x ∈ X. Let ε = maxx∈X d(x , ξ)−m. If x0 ∈ X is such that

d(x0, ξ) < m
(

1 + ε/2−
√
ε(4− 4/m + ε)/2

)
,

then x0 does not support any D-optimal design.
Enables removing a large amount of “useless” support points from
the experimental domain which speeds up the D-optimum design
algorithms (e.g., the multiplicative algorithm). The improvement in
efficiency can in some cases be several orders of magnitude. It can
also be used to speed up algorithms for constructing minimal volume
ellipsoid containing a given set of points.



Key result 2

Related publications of R. Harman:
• Harman R (2003): A method how to delete points which do not

support a D-optimal design, Tatra Mt. Math. Publ. 26, pp. 59-67
• Harman R, Trnovská M (2009): Approximate D-optimal designs

of experiments on the convex hull of a finite set of information
matrices, Mathematica Slovaca 59, No. 6, pp. 693–704

Cited in: Annals of Statistics (2x), Computational Statistics and Data Analysis (2x),
Journal of Statistical Planning and Inference (2x), Statistics and Computing, An
Introduction to Optimal Designs for Social and Biomedical Research (Wiley), etc.



Key result 3
Harman R, Jurı́k T (2008): Computing c-optimal experimental designs
using the simplex method of linear programming, Computational
Statistics & Data Analysis, Volume 53, Issue 2, pp. 247-254

Theorem
Let ξ ∈ Ξ, c ∈ Rm and let F = (f1, ..., f2k ), where
fj = f(xj ), fj+k = −f(xj ) for j ∈ {1, . . . , k}. Then the design ξ is
c-optimal if and only if ξ(xj ) = αj + αj+k for all j = 1, ..., k and for
some solution (α′,h)′ ∈ R2k+1 of the linear programming problem:

max
{

h
∣∣∣∣( F −c

1′2k 0

)(
α
h

)
=

(
0m
1

)
, α ≥ 02k ,h ≥ 0

}
.

Thus, the results of LP can be used to formulate statements about
c-optimality. Permits using the algorithms of LP to find the c-optimal
designs, which overcome other c-optimal design algorithms.
Cited in: Journal of Statistical Planning and Inference, Computational Optimization and
Applications, Signal Processing Letters, Proceedings of Compstat 2010



Key result 4
Harman R, Štulajter F (2011): Optimal sampling designs for the
Brownian motion with a quadratic drift, Journal of Statistical Planning
and Inference, Volume 141, Issue 8, pp. 2750–2758

Theorem
Consider a linear regression model X (ti ) =

∑m
j=1 βj fj (ti ) + ε(ti ) where

i = 1, ...,n, t1 < · · · < tn and cov(ε(ti1 ), ε(ti2 )) = u(ti1 )v(ti2 ) for i1 < i2.
Then the element (r , s) of the information matrix for the parameter
β = (β1, ..., βm)′ is given by

(M)r ,s =
fr (t1)fs(t1)

u(t1)v(t1)
+

n∑
i=2

(
fr (ti )
v(ti )
− fr (ti−1)

v(ti−1)

)(
fs(ti )
v(ti )
− fs(ti−1)

v(ti−1)

)
(

u(ti )
v(ti )
− u(ti−1)

v(ti−1)

) .



Key result 4

Simplifies constructing exact optimal designs for the models with a
specific correlation structure of errors. It has been used to prove exact
optimality of equidistant sampling designs in several models, involving
the Wiener and Ornstein-Uhlenbeck covariance structure of errors.

Related publication of R. Harman:
• Harman R, Štulajter F (2009): Optimality of equidistant sampling

designs for a nonstationary Ornstein-Uhlenbeck process, In:
Proceedings of the 6th St.Petersburg Workshop on Simulation,
pp. 1097-1101

• Work in progress with F. Štulajter and V. Lacko



Thank you for attention.


