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A METHOD HOW TO DELETE POINTS WHICH

DO NOT SUPPORT A D-OPTIMAL DESIGN

Radoslav Harman

ABSTRACT. For linear regression models with uncorrelated errors, we describe

a method of deletion of design points, which do not support any D-optimal design

measure. The key idea is to construct a suitable set of matrices, which contains

the information matrix corresponding to an optimal design. A combination of this

method with iterative algorithms speeds up computations, and leads to designs

in a more concentrated form.

1. Introduction

Suppose that we intend to perform experiments with real-valued observations

y

i

modeled by the linear regression formula

y

i

= f

T

(x

i

)� + "

i

;

where i 2 N is the index of an observation, � is an unknown parameter from R

p

,

and the values x

i

are chosen from a compact experimental domain X � R

m

. For

any choice of x

i

, the errors "

i

are assumed to be uncorrelated, with zero mean

and the same �nite variance �

2

. We also assume that the function f(�) : X! R

p

is continuous on X .

As is usual, by an (asymptotic) experimental design we understand a prob-

ability measure � �nitely supported on X , such that the value �(x) indicates

the relative proportion of the measurements which should be taken in x 2 X

(see, e.g., [1], p.17). By the symbol � we denote the set of all designs on the

experimental domain X . Without loss of generality we can assume that � = 1

and de�ne the information matrix M(�) associated with a design � 2 � as

M(�) =

X

x;�(x)>0

�(x)f(x)f

T

(x) :
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It can be shown that the set M =

�

M(�) : � 2 �

	

of all information matrices

associated with designs on X is convex and compact (cf. [1], p. 29, p. 60).

To design an experiment in an optimal way, we will use the criterion of

D-optimality: �: S

+

! R; de�ned

�(M) =

�

� ln detM forM 2 S

++

;

1 forM 2 S

+

nS

++

;

where S

+

and S

++

denote the set of all semipositively, resp. positively de�nite

matrices of type p � p . The function � is continuous and convex on S

+

and

strictly convex on S

++

([1], pp. 78{81).

A design �

�

is said to be D-optimal, if it minimizes �

�

M(�)

�

over all � 2 �,

or equivalently if det

�

M(�

�

)

�

= sup

�2�

det

�

M(�)

�

. The symbol �

�

shall denote

the set of all D-optimal designs. The properties of � and M imply that there

always exists at least one D-optimal design. Assuming that M\ S

++

6= ; , it

also follows that all the D-optimal designs have the same information matrix,

which we denote by M

�

and call the D-optimal information matrix.

The problem of �nding an asymptotic D-optimal design has gained much

attention in the experimental design literature. The main problem of existing

iterative algorithms is their slow convergence, especially for a large dimension of

the parameter. Also, the support of the design measures obtained in the iterative

process does not have a tendency to shrink, that is the output of a programwhich

implements these algorithms contains many points with small weights, or groups

of points, which are very close together.

The aim of this article is to show a geometrically based method which allows

us remove some unnecessary points of the experimental domain, that is some

of the points of X , which can not support any D-optimal design measure. We

remark that the iterative algorithms used for construction of a D-optimal design

need to scan the experimental domain in every iteration. (This is best seen if

X is �nite.) Therefore, if we were able to restrict our attention to a set which

is smaller than X , we would, as a rule, gain an increase in the speed of the

algorithm.

One possible approach is to delete the points x 2 X , such that f(x) does

not belong to the boundary of the set conv

�

�

f(x) : x 2 X

	

[

�

�f(x) : x 2 X

	

�

(where conv means the convex hull; cf. [2] and [1], p. 56). However, it turns

out that in majority of commonly used models this method only removes small

parts of X , and does not help us use the knowledge gained during the iterative

process of computation of a design. Moreover, the method is di�cult from the

computational point of view.
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In this article we propose a di�erent method which does not have these dis-

advantages. The main idea of the method is formulated in the following simple

proposition:

Proposition 1. Let P � S

++

be a set containing M

�

. If

sup

M2P

f

T

(x)M

�1

f(x)< p

for some x 2 X , then x does not support any D-optimal design, i.e., for all

�

�

2 �

�

:

�

�

�

x 2 X : sup

M2P

f

T

(x)M

�1

f(x) < p

	

= 0 :

In particular, if M

�

2 P = conv

�

Q

1

; : : : ;Q

r

	

for some Q

1

; : : : ;Q

r

2 S

++

,

and if max

i=1;:::;r

f

T

(x)Q

�1

i

f(x) < p , then x 2 X does not support any D-optimal

design.

P r o o f . If �

�

is a D-optimal design then �

�

-almost all points from X satisfy

the condition f

T

(x)M

��1

f(x) = p (cf. [4], Theorem 1c), which entails the �rst

part of the proposition. The second part is a consequence of the fact that the

function  

x

:M! f

T

(x)M

�1

f(x) is convex on S

++

(see [1], p. 62).

Naturally, we would use the full potential of the proposition if we knew M

�

,

simply setting P = fM

�

g . However, we rarely can �nd the value of M

�

exactly.

Nevertheless, as we show in the next section, we are able to construct a poly-

hedral set P = convfQ

1

; : : : ;Q

r

g � S

++

containing M

�

without knowing the

value of M

�

. This set shall only depend on an information matrix M

0

=M(�

0

) ,

which is \close" to M

�

, i.e., on a suboptimal design �

0

.

2. Construction of the polyhedral set P

In this section, we will describe a method of construction of a polyhedral set

P � S

++

containing the D-optimal information matrix M

�

.

Choose any matrix M

0

=M(�

0

) 2 S

++

. It is clear that M

�

is an element of

C

M

0

=

�

A 2 S

+

: det(A) � det(M

0

)

	

:

Next, for �

�

2 �

�

we can write

trM

�

M

�1

0

= tr

 

X

x; �

�

(x)>0

�

�

(x)f(x)f

T

(x)M

�1

0

!

=

X

x;�

�

(x)>0

�

�

(x)f

T

(x)M

�1

0

f(x) � sup

x2X

f

T

(x)M

�1

0

f(x) ;
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which means that M

�

also belongs to

H

M

0

(c) = fS 2 S : trSM

�1

0

� c+ pg ;

where c = sup

x2X

f

T

(x)M

�1

0

f(x) � p � 0. (S is the set of all symmetric matrices

p� p .)

Notice that H

M

0

(c) has a simple geometric interpretation: it is the minimal

half-space in S from all the half-spaces which contain M and which have the

normal vector equal to r lndet(M

0

) =M

�1

0

(for de�nition of r see [1], p. 81).

Consider the set

B

M

0

(c) = C

M

0

\ H

M

0

(c) :

This set is closed, convex, and contains M

�

. Moreover, B

M

0

(c) is bounded,

which is a simple consequence of a proposition proven in the sequel.

Let us introduce the following function:

'

M

0

: S ! S ; '

M

0

(S) =M

�1=2

0

SM

�1=2

0

:

One can see that the function '

M

0

is linear, regular (i.e., bijective), '

M

0

(S

++

) =

S

++

, and '

M

0

(M

0

) = I . This function allows us normalize the problem, be-

cause '

M

0

(C

M

0

) = C

I

, '

M

0

�

H

M

0

(c)

�

= H

I

(c) , resp. '

M

0

�

B

M

0

(c)

�

= B

I

(c) ,

which is easy to check. Therefore, it is enough to study the set

B

I

(c) =

�

A 2 S

+

: det(A) � 1 and tr(A) � p+ c

	

:

Lemma 2. Let p � 2 . Then for any A 2 B

I

(c) , such that tr(A) = p + c :













A�

�

1 +

c

p

�

I













� r

p

(c) ; where r

p

(c) =

r

p� 1

p

c

2

+ (p

2

� p)c :

P r o o f . Let A 2 B

I

(c) , tr(A) = p + c , A =U�U

T

, where U is the

orthonormal matrix of eigenvectors of A , and � = diag(�

1

; : : : ; �

p

) , where

�

1

; : : : ; �

p

are corresponding eigenvalues of A . The inequality 1 � det(A) =

Q

k

�

k

and the relation between geometric and arithmetic means implies that for

any i 6= j , i; j 2 f1; : : : ; pg :

1 �

 

(�

i

�

j

)

Y

k 6=i;k 6=j

�

k

!

p�1

�

1

p� 1

 

(�

i

�

j

) +

X

k 6=i;k 6=j

�

k

!

:

Summing up all the

�

p

2

�

inequalities for i < j , and noticing that

P

i<j

P

k 6=i;k 6=j

�

k

=

�

p�1

2

�

P

i

�

i

we obtain:

�

p

2

�

(p � 1) �

�

p� 1

2

�

X

i

�

i

�

X

i<j

�

i

�

j

:
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From the previous inequality, the equality tr(A

2

) =

P

i

�

2

i

=

�

P

i

�

i

�

2

�2

P

i<j

�

i

�

j

,

and tr(A) =

P

i

�

i

= p+ c , we get:













A �

�

1 +

c

p

�

I













2

= (p+ c)

2

� 2

X

i<j

�

i

�

j

� 2

�

1 +

c

p

�

(p+ c) + p

�

1 +

c

p

�

2

� (p+ c)

2

� 2

 

�

p

2

�

(p� 1)�

�

p� 1

2

�

(p+ c)

!

� 2

�

1+

c

p

�

(p+ c) + p

�

1+

c

p

�

2

=

p� 1

p

c

2

+ (p

2

� p)c :

Proposition 3. Let p � 2 . Then B

I

(c) is a subset of R = conv(R

�

[ R

�

) ,

where

R

�

=

(

A 2 S :













A �

�

1 +

c

p

�

I













� r

p

(c) ; and tr(A) = p + c

)

;

and

R

�

= R

�

�

c

p

I :

P r o o f . It is simple to verify the proposition for c = 0. Let c > 0, A 2

B

I

(c) , R

�

= A+

�

1+

c

p

�

I�

�

1

p

tr(A)

�

I , R

�

= R

�

�

c

p

I , and � =

1

c

�

p+c�tr(A)

�

.

Notice that tr(R

�

) = p+c , and R

�

� A in Schur ordering, therefore det(R

�

) �

det(A) � 1. Consequently, the previous lemma entails R

�

2 R

�

, and hence

also R

�

2 R

�

. Obviously � 2 [0; 1], because p � tr(A) � p + c . Moreover,

�R

�

+(1��)R

�

= R

�

� �

c

p

I = A , as is easy to check.

The set R forms a multi-dimensional cylinder, because the k =

1

2

p(p+1)�1

dimensional circles R

�

and R

�

are parallel. Hence, we are able to encase R

into a convex polyhedral set generated by 2k+2 = p(p+1) symmetric matrices

R

1

; : : : ;R

2k+2

, where R

1

; : : : ;R

k+1

are vertices of a simplex circumscribing

R

�

, and R

k+2

= R

1

+

c

p

I; : : : ;R

2k+2

= R

k+1

+

c

p

I are vertices of a simplex

circumscribing R

�

. (Naturally, this construction is a compromise between the

volume and the number of vertices; we can construct a polyhedral superset of

R with somewhat smaller volume but with more vertices.)

It is obvious that we can construct the matrices R

1

; : : : ;R

2k+2

as follows:

R

i

= kr

p

(c)A

i

+ I ; R

i+k+1

= R

i

+

c

p

I for i = 1; : : : ; k + 1 ;
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where A

1

; : : : ;A

k+1

correspond to the vertices of a regular simplex circum-

scribed by the unit sphere in the k dimensional linear space I

?

\ S , that is

A

1

; : : : ;A

k+1

are symmetric matrices which satisfy: hA

i

;A

j

i = tr(A

i

A

j

) =

�1=k for all i 6= j , hA

i

; Ii = tr(A

i

) = 0, and kA

i

k

2

= tr(A

2

i

) = 1 for all

i = 1; : : : ; k + 1.

Transforming the vertices R

1

; : : : ;R

2k+2

by '

�1

M

0

, and summarizing all the

considerations above, we obtain the following theorem:

Theorem 4. Let M

0

2 M\ S

++

, k =

1

2

p(p + 1)� 1 ,

c = sup

x2X

f

T

(x)M

�1

0

f(x) � p ; and r =

r

p� 1

p

c

2

+ (p

2

� p)c :

Next, let A

1

; : : : ;A

k+1

be a set of symmetric matrices of the type p� p which

satisfy: hA

i

; Ii = 0 , kA

i

k = 1 ,




A

i

;A

j

�

= �1=k for all i 6= j , i; j = 1; : : : ; k+1 .

De�ne

P = conv

�

Q

1

; : : : ;Q

p(p+1)

	

;

where

Q

i

= krM

1=2

0

A

i

M

1=2

0

+M

0

; Q

i+k+1

= Q

i

+

c

p

M

0

for i = 1; : : : ; k+1 :

Then

M

�

2 P :

Moreover, if kr < 1 then

P � S

++

:

P r o o f . The fact that M

�

2 P follows from the Proposition 3 and the

considerations above. We shall prove that kr < 1 implies P � S

++

. Clearly, it

is enough to guarantee that A

i

+I are positive semide�nite for all i = 1; : : : ; k+1.

To prove this, we denote the eigenvalues of A

i

by 


1

; : : : ; 


p

then 1 = tr(A

2

i

) =

P

j




2

j

, which means 


j

� �1 for all j = 1; : : : ; p . But the eigenvalues of A

i

+ I

are 


1

+ 1; : : : ; 


p

+ 1. Consequently, the symmetric matrix A

i

+ I has all the

eigenvalues nonnegative, hence it is positive semide�nite.

An important fact to notice is that M

0

!M

�

implies c! 0 which in turn

guarantees that r

p

(c) ! 0. Therefore, the condition kr < 1 shall be satis�ed

if M

0

is close enough to M

�

, and we shall have P � S

++

. Also, the diameter

of P converges to 0 as M

0

! M

�

, although the convergence is relatively slow:

diamP . constant �

p

c for the values of c approaching 0.

The matrices A

1

; : : : ;A

k+1

in the Theorem 4 only depend on the number p

of parameters, so we need to compute them only once. Moreover, there exists a

very fast (�nite) iterative method how to �nd a set of such matrices, as we will

outline.
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Consider the following system of 2k equalities (the symbols a

1

; : : : ; a

k

,

d

1

; : : : ; d

k

represent unknowns): a

1

= 1, a

1

d

1

= �

1

k

, and d

2

1

+� � �+d

2

i�1

+a

2

i

= 1,

d

2

1

+ � � �+ d

2

i�1

+ a

i

d

i

= �

1

k

for i = 2; : : : ; k . It is not di�cult to show that this

system has a unique vector of solutions (�

1

; : : : ; �

k

; �

1

; : : : ; �

k

) 2 R

2k

, such that

�

i

� 0 for all i = 1; : : : ; k and that the solutions satisfy: �

2

1

+ � � �+ �

2

k�1

��

2

k

=

�

1

k

. Notice that it is simple to derive the solutions if we keep the order of calcula-

tions given by a scheme �

1

! �

1

! �

2

! �

2

! � � � ! �

k

! �

k

. Thus, for p = 2

(k = 2) we get the vector of solutions

�

1;

p

3=2;�1=2;�

p

3=2

�

, for p = 3 (k =

5) we obtain 1=10 �

�

10;

p

96;

p

90;

p

80;

p

60;�2;�

p

6;�

p

10;�

p

20;�

p

60

�

,

etc.

Let B

1

; : : : ;B

k

be any orthonormal basis of I

?

\S . The method of construc-

tion of scalars �

i

and �

i

guarantees that we can construct the vertices of the

simplex as: A

1

= �

1

B

1

, A

i

= �

1

B

1

+ � � � + �

i�1

B

i�1

+ �

i

B

i

, for i = 2; : : : ; k ,

and A

k+1

= �

1

B

1

+ � � �+ �

k�1

B

k�1

� �

k

B

k

.

For example, if p = 2 (k = 2) we can choose

B

1

=

1

p

2

�

1 0

0 �1

�

; B

2

=

1

p

2

�

0 1

1 0

�

;

and the method described above gives

A

1

=

1

p

2

�

1 0

0 �1

�

; A

2

=

1

2

p

2

�

�1

p

3

p

3 1

�

; A

3

=

1

2

p

2

�

�1 �

p

3

�

p

3 1

�

:

The computation of the matrices Q

i

from the Theorem 4 is thus algorithmi-

cally simple and fast. Consequently, according to the Proposition 1, the matrices

Q

i

can be used to delete those points from the experimental domain, which can

not support any D-optimal design.

3. An example how to use the deletion method

As an illustrative example we have chosen the problem of a D-optimal design

for the linear regression model given by the formula

y = �

1

x + �

2

x

2

+ �

3

x

3

+ " ;

where the values x are from X = f0; 0:1; 0:2; : : : ; 4:9; 5:0g .

For the computation of a D-optimal design, we will use an algorithm, which

is specially suited for a discrete design space ([3]). We shall begin with the

uniform initial design �

0

; �

0

(x) = 1=51 for all x 2 X . Then we shall perform

the iterations setting �

n+1

(x) =

1

p

�

n

(x)

�

f

T

(x)M(�

n

)

�1

f(x)

�

for all x 2 X at

the step number n = 0; 1; 2; : : :
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Notice that in any iteration of the algorithm we have �

n

(x) > 0 for all

x 2 Xnf0g . It means that the algorithm (resp. a computer program) must take

all the points (except of 0) into account at any iteration, even when the majority

of weights of �

n

are negligibly small. Naturally, the computations with very

small positive values take approximately as much time as those with large real

numbers. The method described in the previous paragraphs allows us remove

many such points, and consequently speed up the computations.

0

1

2

3

4

5

1000 2000 3000 4000 5000 6000 7000

Figure 1

More precisely, we incorporated a modi�cation to the algorithm, such that

at every 100th step, we remove in accord with the Proposition 1 all the points

x 2 X for which max

i=1;:::;12

f

T

(x)Q

�1

i

f(x) < p , where the matrices Q

i

are de�ned

in the Theorem 4. After each removal of points from the support of �

n

, we

standardized the remaining measure to 1.

At the Figure 1 we see which points were removed (grey dots) and kept (black

dots) at each iteration. (The vertical axis corresponds to X and the horizontal

axis represents the number of iterations.) Notice that we �nally arrived at a

3-point support, which is the smallest size possible. After the last deletion, the

convergence of weights was very rapid, shortly arriving at the optimal design|

the uniform probability on f1:4; 3:6; 5:0g|within the limits of the numerical

precision of the software.

While the overall speed of convergence was observed to be higher using the

deletion method, the number of iterations needed to obtain a given precision
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was almost the same as for the unmodi�ed algorithm (except of the very �nal

stage with the support identi�ed by the deletion method exactly). The deletions

usually remove points with very small weights, hence they do not change the

quality of a design signi�cantly.
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