
Abstract. Consider the linear regression model with uncorrelated errors and
an experimental design n. In the article, we address the problem of calcu-
lating the minimal efficiency of n with respect to the class O of orthogonally
invariant information criteria, containing all Kiefer’s criteria of /p-opti-
mality, among others. We show that the O-minimal efficiency of n is equal
to the minimal efficiency of n with respect to a finite class of criteria which
generalize the criterion of E-optimality. We also formulate conditions under
which a design is maximin efficient, i.e. the most efficiency-stable for criteria
from O. To illustrate the results, we calculated the O-minimal efficiency of
/p (in particular D, A and E) optimal designs for polynomial regression on
½�1; 1� up to degree 4. Moreover, for the quadratic model we explicitly
constructed the O-maximin efficient design.

Key words: Optimal design; Efficiency of designs; E-optimality; Maximin
design; Polynomial regression.

MSC 2000: 62K05

1 Introduction and model assumptions

A common situation in design of experiments is that general, statistically
motivated considerations lead to a broad, often infinite class of reasonable
criteria of optimality. In the same time, usually no design is simultaneously
optimal for the entire class. One possibility how to approach this problem is
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to select a design which is practically efficient enough, or even the most
efficiency-stable with respect to all criteria in consideration.

The aim of this article is to analyze the problem outlined above for the
class O of orthogonally invariant information criteria. For an information
criterion, the property of orthogonal invariance corresponds to the geomet-
rical assumption, that the quality of a design should depend only on the shape
of the resulting confidence ellipsoid for the vector of parameters, and not on
its orthogonal rotation or a shift.

In Section 2, we characterize the class O in detail, and specify the notion of
design efficiency. In Section 3, we focus on a class of criteria generalizing
E-optimality, which we call criteria of Ek-optimality. For these criteria we
prove an equivalence theorem to facilitate identification of Ek-optimal designs.
Next, in Section 4 we show that for any design, the minimal efficiency with
respect to the uncountable class O is equal to the efficiency with respect to the
finite class of criteria of Ek-optimality. In Section 5, we define a criterion of
minimal efficiency with respect to O, the maximization of which can lead to
designs with efficiency satisfactory under all orthogonally invariant informa-
tion criteria. Finally, in Section 6 we illustrate the obtained results on poly-
nomial regression on the interval �1; 1½ �; for degrees up to 4 we will calculate
the minimal efficiency of Kiefer’s /p-optimal designs. For the quadratic case
we also construct the design which is maximin efficient with respect to O. We
note that all necessary proofs are deferred to the Appendix.

In the paper, we will consider the usual linear regression model on a
compact experimental domain X � Rs. For each design point x 2 X, we can
observe a random variable Y ¼ f T ðxÞbþ e, where f : X! Rm is a continuous
vector of known regression functions, b 2 Rm is an unknown vector of
parameters, and e is an unobservable random error. For different observa-
tions, the errors are assumed to be uncorrelated, with zero mean and the same
variance which is assumed to be 1 without loss of generality.

By an experimental design we understand a probability measure n finitely
supported on X. The set of all designs on X is denoted by N. The performance
of a design n 2 N is based on the information matrix associated with n, which
is a positive semidefinite matrix defined by the formula

M nð Þ ¼
X

x;n xð Þ>0
n xð Þf ðxÞf T ðxÞ

On the set of information matrices we define a real-valued optimality
criterion U which measures the largeness of an information matrix, i.e. the
quality of the corresponding design. A design n� is U-optimal iff
UðM n�ð ÞÞ ¼ sup UðM nð ÞÞ; n 2 Nf g. In this case, M n�ð Þ is called a U-optimal
information matrix. We shall also presume that the set of all information
matrices M ¼ M nð Þf ; n 2 Ng contains a regular matrix.

In the article, the symbols Sm, Sm
þ, and Sm

þþ denote the sets of all
symmetric, positively semidefinite, resp. positively definite matrices of type
m� m. On Sm we define a function k such that kðAÞ ¼ k1ðAÞ;ð
k2ðAÞ; . . . ; kmðAÞÞT is the vector of all (not necessarily distinct) eigenvalues of
A in nondecreasing order; k1ðAÞ � k2ðAÞ � � � � � kmðAÞ. Clearly, kðAÞ has
nonnegative (positive) components for all A 2Sm

þ (resp. A 2 Sm
þþ). For a

vector a 2 Rm, the symbol diagðaÞ denotes the diagonal matrix of type m� m
with diagonal entries equal to the components of a. On Sm we use the
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Loewner partial ordering �, which is defined as A � B iff B� A 2Sm
þ. For

vectors a; b 2 Rm, by a � b we mean ai � bi for all i ¼ 1; . . . ;m.

2 The class of orthogonally invariant information criteria

In the article, we will consider the class O of all orthogonally invariant
information criteria, i.e. the set of functions U : Sm

þ ! ½0;1Þ, which are not
identically zero, and which satisfy all of the following properties:

(I) isotonicity: C � D) U Cð Þ � U Dð Þ for all C;D 2Sm
þ

(C) concavity: U aCþ 1� að ÞDð Þ � aU Cð Þ þ 1� að ÞU Dð Þ for all C;D 2Sm
þ

and a 2 0; 1½ �
(H) positive homogeneity: U aCð Þ ¼ aU Cð Þ for all C 2 Sm

þ and a � 0
(S) upper semicontinuity: The level sets C 2 Sm

þ
�

; U Cð Þ � cg are closed for
all c 2 R

(O) orthogonal invariance: U UCUT� �
¼ U Cð Þ for all C 2Sm

þ and orthogonal
m� m matrices U

We remark that (I), (C), (H), and (S) are well established properties
based on natural demands for a statistically reasonable measure of infor-
mation gained by the experiment (see [8], Chapter 5). In particular, positive
homogeneity is essential for definition of relative efficiency of n 2 N with
respect to f 2 N and absolute efficiency of n in the form (cf. [8] p. 115, 132)

effU njfð Þ ¼ U M nð Þð Þ
U M fð Þð Þ ; resp. effUðnÞ ¼

U M nð Þð Þ
sup
f2N

U M fð Þð Þ

For simplicity we will not define the relative efficiency for a design n with
singular information matrix, but we do include the situation of M fð Þ being
singular (we assume that c=0 ¼ þ1 for c > 0). As U is positive on Sm

þþ (see
[8] p. 117) and we assume that M \Sm

þþ 6¼ ;, the U-optimal value
supf2N U M fð Þð Þ is positive, which implies that effUðnÞ is a well defined number
between 0 and 1.

Next, the property of orthogonal invariance is equivalent to the
assumption that U Cð Þ depends only on the eigenvalues of C, i.e. if
kðCÞ ¼ k Dð Þ for some C;D 2 Sm

þ, then U Cð Þ ¼ U Dð Þ. This is an immediate
consequence of the fact that U Cð Þ ¼ U diagk Cð Þð Þ for any C 2 Sm

þ and an
orthogonally invariant U. (For more properties of orthogonally invariant
matrix functions, see e.g. [1] , [13], [4] or [2] p. 104-108.) Notice also, that the
assumption of orthogonal invariance corresponds to the assumption of
invariance under orthogonal reparametrization of the model.

It turns out that the properties (I) and (O) could be substituted by a
single assumption of ‘‘spectral monotonicity’’; more precisely:

Proposition 1. Let U : Sm
þ ! ½0;1Þ. Then the following two statements are

equivalent: (i) U is isotonic and orthogonally invariant. (ii) For all C;D 2Sm
þ: If

k Cð Þ � k Dð Þ then U Cð Þ � U Dð Þ.

The previous proposition can be geometrically formulated in terms of
confidence ellipsoids, as we will specify in the sequel. For bb 2 Rm, c > 0, and
C 2 Sm

þ let
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Ebb;cðCÞ ¼ b 2 Rm; b� bb
� �T

C b� bb
� �

� c
� �

If the errors are normally distributed and DðbbÞ 2 Sm
þþ is the covariance

matrix of the least squares estimator bb, then C ¼ DðbbÞ
� ��1

is the information
matrix and Ebb;cðCÞ is a confidence ellipsoid covering the true parameter b

with probability P v2m � c
� 	

(For details, see [7] p. 79,80). In the following
proposition, a rigid-motion transformation is the composition of an
orthogonal transformation and a shift by a vector.

Proposition 2. Let U : Sm
þ ! 0;1½ Þ. Then the following two statements are

equivalent: (i) U is isotonous and orthogonally invariant. (ii) For all C;D 2Sm
þ:

If for any bb1;
bb2 2 Rm and c > 0 there exists a rigid-motion transformation

q : Rm ! Rm such that qðEbb1;c
ðCÞÞ 	 Ebb2;c

ðDÞ, then U Cð Þ � U Dð Þ.

Among orthogonally invariant information criteria we find all criteria of
/p-optimality for p 2 �1; 1½ � (we use the parametrization as defined in [8]
p. 139,140, cf. also [7] p. 94). The class O also contains the criteria of
Chk-optimality (see [12]) for all k ¼ 1; . . . ;m defined in their homogeneous
and concave version:

UChk ðCÞ ¼
m
k


 ��1 X

1�i1<...<ik�m

k�1i1 Cð Þ . . . k�1ik Cð Þ
 !�1=k

for C 2Sm
þþ

and UChk ðCÞ ¼ 0 for C 2Sm
þn Sm

þþ.
As special cases we have D-optimality (
 /0, or Chm):

UDðCÞ ¼ detðCÞð Þ1=m; A-optimality ( 
 /�1, or Ch1): UAðCÞ ¼ m trðC�1Þ
� ��1

for C 2Sm
þþ and UAðCÞ ¼ 0 for C 2 Sm

þn Sm
þþ; E-optimality (
 /�1):

UEðCÞ ¼ k1ðCÞ; The trace optimality: (
 /1) UT ðCÞ ¼ m�1trðCÞ.
Notice also, that any convex combination, or a minimum of a finite set of

criteria from O is again an orthogonally invariant information criterion (cmp.
[8], p.124-125), so the set O is very rich.

3 Criteria of Ek-optimality

For k 2 1; . . . ;mf g, let eUEk ðAÞ be the sum of the k smallest eigenvalues of
A 2 Sm, i.e.

eUEk : Sm ! �1;1ð Þ; eUEk ðAÞ ¼
Xk

i¼1
kiðAÞ

Let UEk : Sm
þ ! ½0;1Þ be the restriction of the function eUEk ontoSm

þ. We will
call UEk the criterion of Ek-optimality. Obviously UE1

¼ UE and UEm ¼ m:UT ,
therefore Ek-optimality can be considered as a generalization of both E and
the trace optimality. Clearly, the functions UEk are isotonic, positively
homogeneous, upper semicontinuous and orthogonally invariant. Moreover,
for any C 2Sm

þ we have UEk Cð Þ ¼ minU2Um;k trU
TCU, where Um;k is the set of

all matrices U of type m� k, such that UTU ¼ I (the theorem of Ky Fan; see
e.g. [3] p.191). It follows that UEk is a minimum of linear functions, which
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entails concavity of UEk (see also [4], [6]). Consequently UEk are orthogonally
invariant information criteria for all k ¼ 1; . . . ;m.

The functions eUEk are not differentiable everywhere on Sm (with the
exception of the linear function eUEm ), but it is possible to find the subdiffer-
ential @eUEk ðAÞ of the function eUEk in any fixed A 2Sm, i.e. the set of all
subgradients of eUEk in A (see [11] p. 308 or [10]; notice that the trace of a
product of two matrices corresponds to the scalar product):

@eUEk ðAÞ¼ Y2Sm; eUEk ðBÞ� eUEk ðAÞþ tr B�Að ÞYð Þ
n

for all B2Smg:

The following proposition is in all important aspects equal to a claim pub-
lished in [4] (see also [6]).

Proposition 3. Let A 2Sm, and let kðAÞ ¼ k ¼ k1; . . . ; kmð ÞT . Then @eUEk Að Þ is
the set of all matrices Udiag cð ÞUT , where the orthogonal matrix U satisfies
A ¼ Udiag kð ÞUT , and the vector c ¼ c1; . . . ; cmð ÞT satisfies: ci 2 0; 1½ � for all
i ¼ 1; . . . ;m, ci ¼ 1 if ki < kk, ci ¼ 0 if ki > kk, and

Pm
i¼1 ci ¼ k.

In the case of kkðAÞ being strictly less than kkþ1ðAÞ, the subdifferential
contains elements

Pk
i¼1 uiuT

i , where Aui ¼ kiðAÞui, ui; uj
� 


¼ dij (Kronecker
delta) for i; j ¼ 1; . . . ; k. It is easy to see that for any choice of vectors ui, the
sum

Pk
i¼1 uiuT

i is a unique matrix: the orthogonal projector on the linear
space generated by the eigenvectors of A corresponding to the k smallest
eigenvalues. That is, in this case the function eUEk is differentiable in A, and the
gradient is the matrix of orthogonal projection.

Using @eUEk , we can formulate a characterization of UEk -optimal designs,
i.e. an ‘‘equivalence theorem’’ for Ek-optimality. (For a simple proof see the
Appendix. Cf. also [10].)

Theorem 4. Let n 2 N. Then the following three statements are equivalent: (i) n
is UEk -optimal. (ii) There exists Y 2 @eUEk M nð Þð Þ, such that
UEk ðM nð ÞÞ ¼ max

x2X
f T ðxÞYf ðxÞ. (iii) There exists Y 2Sm

þ , trðYÞ ¼ k, Y � I,

such that UEk ðM nð ÞÞ ¼ max
x2X

f T ðxÞYf ðxÞ.

Notice that the previous theorem gives us a generalization of the equiv-
alence theorem for E-optimality in the form of [8], p. 182. The equivalence
theorem for the trace optimality [8], p. 240 is a direct consequence as well.

According to the discussion above, Theorem 4 provides an easy test of
Ek-optimality for those designs n, that kkðM nð ÞÞ < kkþ1ðM nð ÞÞ, i.e. if eUEk is
differentiable in M nð Þ . In such a case we only need to check that

UEk ðM nð ÞÞ ¼ max
x2X

Xk

i¼1
f T ðxÞui
� �2

where u1; . . . ; uk are (arbitrary) orthonormal eigenvectors corresponding to
k1ðM nð ÞÞ; . . . ; kkðM nð ÞÞ.

Notice also, that criteria UEk are not strictly concave (i.e. we can have more
than one UEk -optimal information matrix) and, with the exception of UE1

, they
can be positive or even formally optimal for a singular information matrix (as
is the case in the polynomial regression model analyzed in Section 6).
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4 Minimal efficiency under the class of orthogonally invariant
information criteria

The theorems of this section are central to the article.

Theorem 5. Let n; f 2 N, M nð Þ 2Sm
þþ. Then

inf
U2O

effUðnjfÞ ¼ min
k¼1;...;m

effUEk
ðnjfÞ

A proof of this theorem, as given in the Appendix, relies on the theory of
vector majorization. Firstly, it can be proved that the constant
d ¼ min

k¼1;...;m
effUEk

ðnjfÞ is sufficiently small to ensure that kðMðnÞÞ majorizes a

vector which is equal or greater than dkðMðfÞÞ in componentwise compari-
son. Secondly, it can be shown that this type of dominance of eigenvalues is
enough to guarantee that UðMðnÞÞ � dUðMðfÞÞ, i.e. eff UðnjfÞ � d for any
orthogonally invariant criterion U. Therefore inf

U2O
effUðnjfÞ � d. The converse

inequality follows from the fact that UEk 2 O for all k.
An immediate consequence of the previous theorem is that a design n is

optimal for all orthogonally invariant information criteria (i.e. n is ’’univer-
sally’’ optimal for the class O) if and only if n is UEk -optimal for all
k ¼ 1; . . . ;m. Notice, that this is the same condition characterizing universally
optimal designs as the one obtained by Bondar for a somewhat different class
of criteria (see [1] for details). It turns out that designs optimal with respect to
all orthogonally invariant criteria do exist in some special models. An
example is the equispaced support design in the trigonometric regression on
the full circle (compare with [7], p. 185 or [8], p. 241) as we state in the
following proposition.

Proposition 6. Let d 2 N, f2j�1ðxÞ ¼ cosðjxÞ, f2jðxÞ ¼ sinðjxÞ for j ¼ 1; . . . ; d
and f2dþ1ðxÞ ¼ 1. Let X ¼ 0; 2p½ � and let n� be a uniform design on

x1; . . . ; xnf g � X, where n � 2d þ 1 and xiþ1 � xi ¼ 2p=n for all
i ¼ 1; . . . ; n� 1 . Then n� is optimal with respect to all U 2 O.

For the purpose of this article, a more important consequence of Theorem
5 is that it gives us a method how to compute the minimal (absolute) efficiency
with respect to O for any regular design, even in the case of models which do
not permit a universally optimal design. From the previous theorem we
immediately obtain:

Theorem 7. Let n 2 N. Then

inf
U2O

effUðnÞ ¼ min
k¼1;...;m

effUEk
ðnÞ

Hence, the minimal efficiency with respect to the uncountable set of all
orthogonally invariant criteria is simply the minimal efficiency with respect to
the set of criteria UEk , which numbers only m elements. In other words, once
we computed the model-specific values vk ¼ supf2N UEk M fð Þð Þ, k ¼ 1; . . . ;m,
we can directly calculate the minimal efficiency for any design n as
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inf
U2O

effUðnÞ ¼ min
k¼1;...;m

v�1k UEk ðM nð ÞÞ
� �

. (We will call the value inf
U2O

effUðnÞ
also the O-minimal efficiency of n.)

To demonstrate this method, we will find the values vk for the polynomial
regression models on �1; 1½ � up to degree 4. This will allow us to compute the
O-minimal efficiency for /p-optimal designs (see Section 6).

5 Maximin efficient designs with respect to the class O

The results of the previous section entail a natural question: If we are able to
compute the O-minimal efficiency of a given design, is there a method how to
find the design which maximizes this value?

Consider the matrix function

eUv : Sm ! �1;1ð Þ; eUvðAÞ ¼ min
k¼1;...;m

v�1k
eUEk ðAÞ;

where v ¼ v1; . . . ; vmð ÞT is defined as vk ¼ supf2N UEk M fð Þð Þ > 0, k ¼ 1; . . . ;m.
Clearly, the function Uv, defined as the restriction of eUv onto Sm

þ, is an
orthogonally invariant information criterion and, in accord with Theorem 7,
we can consider it to be the criterion of minimal efficiency with respect to O.
Therefore, the Uv-optimal design can be called the maximin efficient design
with respect to O (shortly O-maximin efficient design).

As eUv is a finite minimum of concave functions, it is not difficult to find the
subdifferential of eUv, and consequently formulate an equivalence theorem for
the O-maximin efficient design. The following proposition is a special case of
a known and more general formula which can be found e.g. in [2] p.47. (Cf.
also [11] p.223.)

Proposition 8. Let A 2Sm and let I ¼ k 2 1; . . . ;mf g; v�1k
eUEk ðAÞ ¼ eUv Að Þ

n o
.

Then subdifferential of eUv in A is the set

@eUv Að Þ ¼
[ X

k2I

akv�1k @eUEk ðAÞ;
X

k2I

ak ¼ 1; and ak � 0 for k 2 I

( )

Theorem 9. A design n is maximin efficient with respect to O if and only if there
exists Y 2 @eUv M nð Þð Þ, such that UvðM nð ÞÞ ¼ max

x2X
f T ðxÞYf ðxÞ.

The proof of the previous theorem is similar to the proof of (i),(ii) in
Theorem 4 and is therefore omitted. Notice that if M nð Þ is a point of non-
differentiability of eUv, then @eUv M nð Þð Þ contains a full continuum of subgra-
dients, and the previous theorem does not give us a method how to choose the
right one for the equivalence determining optimality. In fact, the search for
the appropriate subgradient can be a difficult optimization problem itself. We
also remark that the previous theorem can be formulated in terms of direc-
tional derivatives of eUv, similarly as e.g. in [5]. Nevertheless, both approaches
are essentially same, and they suffer analogous disadvantages.

To illustrate the concept of O-maximin efficiency on an example, we will
exhibit the maximin efficient design for the quadratic regression on �1; 1½ � in
the next section.
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6 Example: polynomial regression on �½ 1; 1�

As a special case of the regression model defined in the introduction, consider
the polynomial regression of degree d on the experimental domain X ¼ �1; 1½ �
given by the model equation

y ¼ b1 þ b2xþ . . .þ bdþ1x
d þ e

In the notation of this article, the vector of unknown parameters of interest
b ¼ ðb1; b2; . . . ; bdþ1ÞT is m ¼ d þ 1 dimensional and the vector of regression
functions is f ðxÞ ¼ ð1; x; . . . ; xdÞT .

We will analyze this model for degrees d 2 1; 2; 3; 4f g with the aim to
evaluate the minimal efficiency of /p-optimal designs, p 2 �1; 1½ �, with
respect to the class O of all orthogonally invariant information criteria. As
special cases, we will obtain the O-minimal efficiency for the D, A, and E
optimal designs. Moreover, for the quadratic regression (d ¼ 2), we will
identify the design which is maximin efficient with respect to O.

Firstly, we need to find the optimal values for the criteria of Ek-optimality.
It turns out that the UEk -optimal designs for degrees d ¼ 1; 2; 3; 4, and for
k ¼ 1; . . . ; d þ 1 can be found explicitly. For k ¼ 1, that is for the ordinary E-
optimality, the optimal designs are known (see [9] or [8] p. 232-237), and we

denote them by nðdÞ1 . In particular, the simplest design n 1ð Þ
1 assigns the weight 1

2

to �1 and 1. Next, by n 4ð Þ
3 we denote the design which assigns the weight 1=6

to �1,1, and the weight 2=3 to 0. Using Theorem 4, it is simple to verify that
for any considered combination of d and k, some of the five designs described
(i.e. nð1Þ1 ; . . . ; nð4Þ1 or nð4Þ3 ) is UEk -optimal. The UEk -optimal designs nðdÞk and the

corresponding optimal values vðdÞk ¼ UEk ðMðn
ðdÞ
k ÞÞ are summarized in Table 1.

Notice that in the case of line regression (d ¼ 1) the design nð1Þ1 is
UEk -optimal for both k ¼ 1; 2. This means that nð1Þ1 is optimal for all
orthogonally invariant criteria.

For d ¼ 2; 3; 4, the values vðdÞk allow us compute the O-minimal efficiency
for the /p-optimal designs, p 2 �1; 1½ �. For polynomial regression on �1; 1½ �,
the E 
 /�1, A 
 /�1, and D 
 /0 optimal designs are known (see e.g. [8]
Chapter 9). For these designs, Tables 2,3 and 4 give the Ek-efficiencies.

Table 1.

nðdÞk ; vðdÞk d = 1 d = 2 d = 3 d = 4

k = 1 n 1ð Þ
1 ; 1 nð2Þ1 ; 1=5 nð3Þ1 ; 1=25 nð4Þ1 ; 1=129

k = 2 n 1ð Þ
1 ; 2 n 1ð Þ

1 ; 1 n 2ð Þ
1 ; 1=5 n 3ð Þ

1 ; 1=25

k = 3 – nð1Þ1 ; 3 n 1ð Þ
1 ; 2 n 4ð Þ

3 ; 1=3

k = 4 – – n 1ð Þ
1 ; 4 n 1ð Þ

1 ; 2

k = 5 – – – n 1ð Þ
1 ; 5

Table 2. (d = 2)

eff E1 E2 E3 O-minimal

D 0:730745 0:812816 0:777778 0:730745
A 0:954915 0:690983 0:666667 0:666667
E 1:000000 0:600000 0:600000 0:600000
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According to Theorem 7, the minimum of these d þ 1 efficiencies equals to the
O-minimal efficiency.

For an arbitrary p 2 �1; 1½ �, the /p-optimal design can be computed
using general iterative methods (see [7] Chapter V). The Graphs 1,2,3 in the
Appendix plot the numerically computed Ek-efficiencies, and the O-minimal
efficiency of /p-optimal designs. The parameter r, which corresponds to the
horizontal axis, relates to the parameter p via the function pðrÞ ¼ 2r

1þr for
r 2 �1; 1ð � and pðrÞ ¼ �1 for r ¼ �1. Hence, E, A, D and the trace opti-
mality correspond to r ¼ �1;�1=3; 0, resp. 1. Notice also that the function
pð�Þ is chosen such that pðrÞ þ pð�rÞ ¼ pðrÞpð�rÞ , which means that pðrÞ and
pð�rÞ are conjugate numbers.

From the graphs of minimal efficiency with respect to O we see that the
D-optimal design performs well, yet it does not maximize the O-minimal
efficiency even within the class of /p-optimal designs.

In general, it turns out to be difficult to find the O-maximin efficient design
without resorting to numerical procedures for maximization of a nondiffer-
entiable function (see e.g. [14] for such a numerical algorithm in the context of
optimal experimental design). Nevertheless, for the case of the quadratic
regression, we can specify the maximin efficient design explicitly:

Proposition 10. Let n be the design which assigns the weight
w ¼ 46

251þ 15
502

ffiffiffiffiffi
22
p
¼: 0:32342 to the points �1,1 and the weight 1� 2w¼: 0:35316

to the point 0. Then n is maximin efficient with respect to O for the quadratic
regression on �1; 1½ �. The O-minimal efficiency of n is 145

251þ 10
251

ffiffiffiffiffi
22
p
¼: 0:76456.

The /pðrÞ-efficiencies of D, A, E-optimal designs and the design n from the
previous proposition are depicted in Graph 4 in the Appendix (the graph of
r! eff /pðrÞ

ðnÞ is denoted by M). Notice, that the efficiencies of n and the D-
optimal design are close to each other, although n is more efficient for the
criterion of E-optimality and slightly less efficient for the criterion of trace
optimality.

It can be shown that in the case of quadratic regression, the O-maximin
efficient design n must be /pn

-optimal for some pn 2 �1; 1½ �. (More gen-

Table 3. (d = 3)

eff E1 E2 E3 E4 O-minimal

D 0:744733 0:717848 0:608890 0:656000 0:608890
A 0:967451 0:721081 0:432425 0:523166 0:432425
E 1:000000 0:638861 0:396386 0:501250 0:396386

Table 4. (d = 4)

eff E1 E2 E3 E4 E5 O-minimal

D 0:738857 0:714339 0:683360 0:603928 0:577976 0:577976
A 0:969005 0:709550 0:637469 0:443494 0:448069 0:443494
E 1:000000 0:627669 0:603550 0:433000 0:441860 0:433000
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erally, if d ¼ 2 then any design which is optimal with respect to some
U 2 O is also /p-optimal for some p; see the considerations in [8] p. 334.
On the other hand, our preliminary numerical computations suggest that
for d > 2 the O-maximin efficient design does not belong to the class of /p-
optimal designs). One can calculate that pn¼: � 0:0648 (i.e. rn¼: � 0:0314; cf.
with Graph 4).

7 Appendix

7.1 Proof of Proposition 1

Let U : Sm
þ ! 0;1½ Þ be isotonic and orthogonally invariant, and let

k Cð Þ � k Dð Þ for some C;D 2Sm
þ. Then diag k Cð Þð Þ � diag k Dð Þð Þ in Loewner

ordering, thus U Cð Þ ¼ Uðdiag k Cð Þð ÞÞ � Uðdiag k Dð ÞÞð Þ ¼ U Dð Þ. This proves
the ‘‘(i))(ii)’’ part of the proposition.

To prove the converse, suppose that for any C;D 2Sm
þ such that

k Cð Þ � k Dð Þ, we have U Cð Þ � U Dð Þ. If C � D, then from 7.7.4 (c) in [3], p.
471 we have k Cð Þ � k Dð Þ which implies U Cð Þ � U Dð Þ by the assumption .
(See also [1], p. 327.) This proves isotonicity of U. Moreover, if k Cð Þ ¼ k Dð Þ
then we have both k Cð Þ � k Dð Þ and k Dð Þ � k Cð Þ, which means that
U Cð Þ � U Dð Þ � U Cð Þ, i.e. U Cð Þ ¼ U Dð Þ. Hence, U Cð Þ depends only on the
eigenvalues of C, which means that U is orthogonally invariant. j

7.2 Proof of Proposition 2

Proposition 2 follows from Proposition 1 once we prove that for all
C;D 2Sm

þ these two statements are equivalent: (iii) For any bb1;
bb2 2 Rm and

c > 0 there exists a rigid-motion transformation q : Rm ! Rm such that
qðEbb1;c

ðCÞÞ 	 Ebb2;c
ðDÞ. (iv) k Cð Þ � k Dð Þ componentwise.

It is simple to show that for any H 2Sm
þ,
bb; s 2 Rm; c > 0 and a regular

matrix A of type m� m we have A�Ebb;cðHÞ þ s ¼ E
Abbþs;c

ð A�1
� �T

HA�1Þ.
‘‘(iii))(iv)’’ If (iii) holds then choosing bb1 ¼ bb2 ¼ 0 and c ¼ 1 we see that

there must exist d 2 Rm and an orthogonal matrix U such that for
Q ¼ UCUT we have Ed;1ðQÞ 	 E0;1ðDÞ. Let a 2 Rm, d > 0 and aTDa � d.
Then the vectors 1ffiffi

d
p a and � 1ffiffi

d
p a are members of E0;1ðDÞ, hence they both

belong to Ed;1ðQÞ. It follows that 1ffiffi
d
p a� d
� �T

Q 1ffiffi
d
p a� d
� �

� 1 as well as

� 1ffiffi
d
p a� d

� �T
Q � 1ffiffi

d
p a� d

� �
� 1. Summing up these two inequalities we

obtain 1
d aTQaþ dTQd � 1. As Q 2Sm

þ we have dTQd � 0, thence
aTQa � d. This clearly implies that for any a 2 Rm we have aTQa � aTDa
and consequently Q � D in Loewner ordering. Therefore
k Cð Þ ¼ k Qð Þ � k Dð Þ, where the inequality follows from 7.7.4 (c) in [3].

‘‘(iii)((iv)’’ Let (iv) hold, D ¼ Vdiag k Dð Þð ÞVT and C ¼ Rdiag k Cð Þð ÞRT for
some orthogonal matrices V, R. Let bb1;

bb2 2 Rm and c > 0 be arbitrary.
Choose the following rigid-motion transformation:
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q �ð Þ ¼ U� �ð Þ þ r; where U ¼ VRT ; r ¼ bb2 �Ubb1

� �
:

Evidently, k Cð Þ � k Dð Þ implies that for all bb 2 Rm: Ebb;cðdiag k Cð Þð ÞÞ 	 Ebb;cðdiag k Dð Þð ÞÞ. Therefore
qðEbb1;c

ðCÞÞ ¼ E
Ubb1þr;c

ðUCUT Þ ¼ Ebb2;c
ðVdiag k Cð Þð ÞVT Þ

¼ V�E
VTbb2;c

ðdiag k Cð Þð ÞÞ 	 V�E
VTbb2;c

ðdiag k Dð Þð ÞÞ ¼ Ebb2;c
ðDÞ

j

7.3 Proof of Theorem 4

A well known theorem from convex analysis (see e.g. [11] or [10]) implies that
M ¼M nð Þ maximizes eUEk (i.e. also UEk ) on M if and only if there exists
Y 2 @eUEk Mð Þ, such that trðNYÞ � trðMYÞ for all N 2M, resp. iff
supN2M trðNYÞ ¼ trðMYÞ. But

sup
N2M

trðNYÞ ¼ sup
f2N

trð
X

f xð Þ>0
f xð Þf ðxÞf T ðxÞYÞ ¼

sup
f2N

X

f xð Þ>0
f xð Þf T ðxÞYf ðxÞ ¼ max

x2X
f T ðxÞYf ðxÞ

Also, for any choice Y ¼ Udiag cð ÞUT where U, c are given in Proposition 3,
we have trðMYÞ ¼ trðdiag kðMÞð Þdiag cð ÞÞ ¼ UEk ðMÞ. This proves (i),(ii).

Next, the implication (ii))(iii) follows from Proposition 3, as for any
Y 2 @eUEk Mð Þ we have trðYÞ ¼ k, and kðYÞ 2 0; 1½ �m i.e. Y � I.

We will prove (iii))(ii) by simply showing that the matrix Y from (iii) is a
subgradient of eUEk in M ¼M nð Þ. Let (iii) hold. Obviously

trðMYÞ ¼ trð
X

n xð Þ>0
n xð Þf ðxÞf T ðxÞYÞ ¼

X

n xð Þ>0
n xð Þf T ðxÞYf ðxÞ � max

x2X
f T ðxÞYf ðxÞ ¼ UEk ðMÞ:

For any B 2Sm we thus have eUEk ðMÞ þ tr B�Mð ÞYð Þ � tr BYð Þ. Moreover
from Theorem 3.4 in [6] it follows that:

eUEk ðBÞ ¼ min trðBHÞ;H 2 Sm
þ;H � I; trðHÞ ¼ k

� �
:

Hence tr BYð Þ � eUEk ðBÞ, which entails eUEk ðMÞ þ tr B�Mð ÞYð Þ � eUEk ðBÞ. By
the definition of subgradient, this means that Y 2 @eUEk Mð Þ.

7.4 Proof of Theorem 5

Recall that an m� m matrix S is said to be doubly stochastic, if it has non-
negative entries and each column and row is summing to one. An m� m
matrix P is a permutation matrix, if each row and column contains exactly
one element 1, and m� 1 elements 0. Evidently, there are m! such matrices.
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Let Rm
þ, and Rm

� denote the set of all m -dimensional vectors with non-
negative components (the nonnegative orthant), resp. the set of all vectors
with components in a nondecreasing order. Let x ¼ ðx1; . . . ; xmÞT ;
y ¼ ðy1; . . . ; ymÞT 2 Rm

�. If
Pk

i¼1 xi �
Pk

i¼1 yi for k ¼ 1; . . . ;m� 1, andPm
i¼1 xi ¼

Pm
i¼1 yi, then we will say that x majorizes y, and denote this fact by

x � y. (We use this notion as defined e.g. in [3] p.192, cf. also with [8], p.144-
5.)

In the proof, we will use the following theorems:

1. (Birkhoff theorem, see e.g. [3] p. 527) An m� m matrix S is doubly sto-
chastic if and only if S is a convex combination of permutation matrices.

2. (Hardy-Littlewood-Pólya theorem; see e.g. [3] p. 197) If x; y 2 Rm
þ \Rm

�,
then x � y if and only if x ¼ Sy for some doubly stochastic matrix S.

In Theorem 5, the inequality infU2O effUðnjfÞ � min
k¼1;...;m

eff UEk
ðnjfÞ is clear

because UEk 2 O. We will prove the converse inequality.

If M fð Þ is the zero matrix, then effUðnjfÞ ¼ UðM nð ÞÞ=UðM fð ÞÞ ¼ 1 for
any U 2 O and the inequality is trivial. Let M fð Þ 6¼ 0. Denote

d ¼ min
k¼1;...;m

effUEk
ðnjfÞ ¼ min

k¼1;...;m

Xk

i¼1
li

 !
Xk

i¼1
gi

 !�1
;

where l ¼ kðM nð ÞÞ; g ¼ kðM fð ÞÞ; l; g 2 Rm
þ \Rm

�
Clearly, d is a positive number less than1, because it is a finite minimum

of positive values at least one of which is not infinite. Let

g�m ¼ d�1
Xm

i¼1
li

 !
�
Xm�1

i¼1
gi; and g� ¼ g1; . . . ; gm�1; g�m

� �T

As d �
Pm

i¼1 li
� � Pm

i¼1 gi
� ��1

, we have g�m � gm, hence g� � g and
g� 2 Rm

þ \Rm
�. Moreover,

Pk
i¼1 li �

Pk
i¼1 dgi for k ¼ 1; . . . ;m� 1, andPm

i¼1 li ¼
Pm�1

i¼1 dgi

� �
þ dg�m, which implies that l majorizes dg�. We thus

have

l � dg� � dg

Hence, the Hardy-Littlewood-Pólya theorem entails that there exists a doubly
stochastic matrix S, such that l ¼ S dg�ð Þ. In the same time, as the elements of
S, as well as the coordinates of g and g� are nonnegative, the inequality g� � g
implies S dg�ð Þ � S dgð Þ, therefore l � S dgð Þ. Moreover, from the Birkhoff
theorem we know that S ¼

Pm!
j¼1 ajPj, where Pj is the j -th permutation

matrix, aj 2 0; 1½ � for j ¼ 1; . . . ;m!, and
Pm!

j¼1 aj ¼ 1. Consequently

l �
Xm!

j¼1
ajPj dgð Þ

Let U 2 O. Notice, that for any permutation matrix Pj it holds that
U diagPj dgð Þ
� �

¼ U diag dgð Þð Þ , sinceU is orthogonally invariant. Subsequently
using properties (O),(I),(C),(O),(O) and(H), we finally obtain:
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U M nð Þð Þ ¼ U diaglð Þ � U diag
Xm!

j¼1
ajPj dgð Þ

 ! !

�
Xm!

j¼1
aj U diagPj dgð Þ

� �� �
¼ U diag dgð Þð Þ ¼ UðdM fð ÞÞ ¼ dUðM fð ÞÞ

Therefore effUðnjfÞ ¼ U M nð Þð Þ=UðM fð ÞÞ � d which concludes the proof.

7.5 Proof of Proposition 6

Similarly as in the proof of Proposition VI.9 in [7] or Claim 9.16. in [8], we
can show that M� ¼M n�ð Þ ¼ diagð1=2; . . . ; 1=2; 1Þ. By Theorem 5, to prove
the U-optimality of n� for all U 2 O we only need to check that n� is
UEk -optimal for all k ¼ 1; . . . ;m, where m ¼ 2d þ 1 is the number of param-
eters. The Um-optimality is simple to prove (see e.g. [8], Claim 9.16.), so we
only need to analyze the case of a fixed k < m. Proposition 3 implies that
diag cð Þ 2 @UEk ðM�Þ for any choice of c which satisfies ci 2 0; 1½ � for
i ¼ 1; . . . ;m� 1 , cm ¼ 0, and

Pm
i¼1 ci ¼ k. If k is even, let c1 ¼ . . . ¼ ck ¼ 1

and ckþ1 ¼ . . . ¼ cm ¼ 0. If k is odd, then k � m� 2, hence we can choose
c1 ¼ . . . ¼ ck�1 ¼ 1, ck ¼ ckþ1 ¼ 1=2, ckþ2 ¼ . . . ¼ cm ¼ 0. In both cases we
have for any x 2 X:

f T ðxÞdiag cð Þf ðxÞ ¼
Xm�12

j¼1
c2j�1 cos

2ðjxÞ þ c2j sin
2ðjxÞ

� �
¼ k=2 ¼ UEk ðM�Þ:

By Theorem 4, this equality proves UEk -optimality of n�.

7.6 Proof of Proposition 10

It is simple to verify that the eigenvalues of M ¼MðnÞ (cf. [8] p.333) are

k1ðMÞ ¼
29

251
þ 2

251

ffiffiffiffiffi
22
p
¼: 0:15291; k2ðMÞ ¼

92

251
þ 15

251

ffiffiffiffiffi
22
p
¼: 0:64684;

k3ðMÞ ¼
314

251
þ 13

251

ffiffiffiffiffi
22
p
¼: 1:49393

We already know (see Table 1) that the optimal values for UEk , k ¼ 1; 2; 3 are
v1 ¼ 1=5, v2 ¼ 1, and v3 ¼ 3, therefore

v�11 UE1
ðMÞ ¼ 5k1ðMÞ ¼

145

251
þ 10

251

ffiffiffiffiffi
22
p
¼: 0:76456

v�12 UE2
ðMÞ ¼ k1ðMÞ þ k2ðMÞ ¼

121

251
þ 17

251

ffiffiffiffiffi
22
p
¼: 0:79975

v�13 UE3
ðMÞ ¼ 1

3
k1ðMÞ þ k2ðMÞ þ k3ðMÞf g ¼ 145

251
þ 10

251

ffiffiffiffiffi
22
p
¼: 0:76456
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Thence the O-minimal efficiency of n is (cmp. also with Table 2)

UvðMÞ ¼ min
k¼1;2;3

v�1k
eUEk ðMÞ ¼

145

251
þ 10

251

ffiffiffiffiffi
22
p
¼: 0:76456

The eigenvalues of M are mutually distinct, hence by the discussion following
Proposition 3 we know that the functions eUEk are differentiable in M, i.e.
there exist unique gradients of eUEk in M for all k. Moreover, as the active set
used in Proposition 8 is I ¼ 1; 3f g, we see that the subgradients of eUv inM are
of the form

Y ¼ av�11 reUE1
ðMÞ þ ð1� aÞv�13 reUE3

ðMÞ; a 2 0; 1½ �:

In the sequel, we shall use the subgradient Y which corresponds to
a ¼ 11

251þ 285
5522

ffiffiffiffiffi
22
p
¼: 0:28591. From Proposition 3, one can calculate that

Fig. 1. The E1, E2, E3 and the O-minimal efficiency of /pðrÞ-optimal designs for the quadratic
polynomial regression model

150 R. Harman



-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ef
fic

ie
nc

y

E1

E4

E3

Graph 2 (d=3)

E2

Fig. 2. The E1, E2, E3, E4 and the O-minimal efficiency of /pðrÞ-optimal designs for the cubic
polynomial regression model
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Fig. 3. The E1, E2, E3, E4, E5 and the O-minimal efficiency of the /pðrÞ-optimal designs for the
biquadratic polynomial regression model
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reUE1
ðMÞ ¼

a 0 b

0 0 0

b 0 c

0
B@

1
CA; where a ¼ 59þ 12

ffiffiffiffiffi
22
p

313
;

b ¼ �90� 13
ffiffiffiffiffi
22
p

313
; c ¼ 254� 12

ffiffiffiffiffi
22
p

313
:

Moreover, eUE3
is simply the trace, therefore reUE3

ðMÞ ¼ I. Using algebraic
simplifications and elementary calculus we finally obtain j

f T ðxÞYf ðxÞ ¼ 220þ 145
ffiffiffiffiffi
22
p

5522
� 7x4 � 7x2 þ

ffiffiffiffiffi
22
p� �

max
x2 0;1½ �

f T ðxÞYf ðxÞ ¼ 145

251
þ 10

ffiffiffiffiffi
22
p

251
¼ UvðMÞ

By Theorem 9, this proves that n is the O-maximin efficient design.

Acknowledgments: The author would like to thank prof. Pázman as well as an anonymous referee
for useful and inspiring comments on earlier versions of this article.

Fig. 4. The /pðrÞ-efficiency of the D, A, E-optimal designs, and the O-maximin efficient design
(denoted by M) for the quadratic regression model
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