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Abstract. Consider the linear regression model with uncorrelated errors and
an experimental design &. In the article, we address the problem of calcu-
lating the minimal efficiency of ¢ with respect to the class O of orthogonally
invariant information criteria, containing all Kiefer’s criteria of ¢,-opti-
mality, among others. We show that the O-minimal efficiency of ¢ is equal
to the minimal efficiency of ¢ with respect to a finite class of criteria which
generalize the criterion of E-optimality. We also formulate conditions under
which a design is maximin efficient, i.e. the most efficiency-stable for criteria
from O. To illustrate the results, we calculated the O-minimal efficiency of
¢, (in particular D, 4 and E) optimal designs for polynomial regression on
[-1,1] up to degree 4. Moreover, for the quadratic model we explicitly
constructed the O-maximin efficient design.
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1 Introduction and model assumptions

A common situation in design of experiments is that general, statistically
motivated considerations lead to a broad, often infinite class of reasonable
criteria of optimality. In the same time, usually no design is simultaneously
optimal for the entire class. One possibility how to approach this problem is
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to select a design which is practically efficient enough, or even the most
efficiency-stable with respect to all criteria in consideration.

The aim of this article is to analyze the problem outlined above for the
class O of orthogonally invariant information criteria. For an information
criterion, the property of orthogonal invariance corresponds to the geomet-
rical assumption, that the quality of a design should depend only on the shape
of the resulting confidence ellipsoid for the vector of parameters, and not on
its orthogonal rotation or a shift.

In Section 2, we characterize the class O in detail, and specify the notion of
design efficiency. In Section 3, we focus on a class of criteria generalizing
E-optimality, which we call criteria of E;-optimality. For these criteria we
prove an equivalence theorem to facilitate identification of E;-optimal designs.
Next, in Section 4 we show that for any design, the minimal efficiency with
respect to the uncountable class O is equal to the efficiency with respect to the
finite class of criteria of Ej-optimality. In Section 5, we define a criterion of
minimal efficiency with respect to @, the maximization of which can lead to
designs with efficiency satisfactory under all orthogonally invariant informa-
tion criteria. Finally, in Section 6 we illustrate the obtained results on poly-
nomial regression on the interval [—1, 1]; for degrees up to 4 we will calculate
the minimal efficiency of Kiefer’s ¢ -optimal designs. For the quadratic case
we also construct the design which 1s maximin efficient with respect to O. We
note that all necessary proofs are deferred to the Appendix.

In the paper, we will consider the usual linear regression model on a
compact experimental domain X C R’. For each design point x € X, we can
observe a random variable Y = f7(x)B + ¢, where f : X — R” is a continuous
vector of known regression functions, € R” is an unknown vector of
parameters, and ¢ is an unobservable random error. For different observa-
tions, the errors are assumed to be uncorrelated, with zero mean and the same
variance which is assumed to be 1 without loss of generality.

By an experimental design we understand a probability measure ¢ finitely
supported on X. The set of all designs on X is denoted by =. The performance
of a design & € E is based on the information matrix associated with £, which
is a positive semidefinite matrix defined by the formula

M) = > Ex)f)f(x)
¢(x)>0

On the set of information matrices we define a real-valued optimality
criterion ® which measures the largeness of an information matrix, i.e. the
quality of the corresponding design. A design ¢ is ®-optimal iff
O(M(&EY)) = sup{®(M(¢)); ¢ € E}. In this case, M(&") is called a ®-optimal
information matrix. We shall also presume that the set of all information
matrices .# = {M(&); & € E} contains a regular matrix.

In the article, the symbols ", 9!, and ¥ denote the sets of all
symmetric, positively semidefinite, resp. positively definite matrices of type
mxm. On %" we define a function A such that A(A)= (4(A),
Aa(A), ..., /lm(A))T is the vector of all (not necessarily distinct) eigenvalues of
A in nondecreasing order; 4;(A) < A(A) <--- < A4,(A). Clearly, A(A) has
nonnegative (positive) components for all A € % (resp. A € ). For a
vector a € R™, the symbol diag(a) denotes the diagonal matrix of type m x m
with diagonal entries equal to the components of a. On %" we use the
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Loewner partial ordering <, which is defined as A < B iff B— A € 9. For
vectors a,b € R", by a < b we mean a; < b; foralli=1,...,m.

2 The class of orthogonally invariant information criteria

In the article, we will consider the class @ of all orthogonally invariant
information criteria, i.e. the set of functions ® : ¥ — [0, 00), which are not
identically zero, and which satisfy all of the following properties:

(I) isotonicity: C <D = ®(C) < ®(D) for all C,D € &

(C) concavity: ®(aC + (1 — o)D) > a®(C) + (1 — )@(D) for all C,D € 97
and o € [0, 1]

(H) positive homogeneity: ®(aC) = a®(C) for all C € ¥ and « > 0

(S) upper semicontinuity: The level sets gC € " ; ®(C) > c} are closed for
allc e R

(0) orthogonal invariance: ®(UCU") = ®(C) for all C € & and orthogonal
m x m matrices U

We remark that (I), (C), (H), and (S) are well established properties
based on natural demands for a statistically reasonable measure of infor-
mation gained by the experiment (see [8], Chapter 5). In particular, positive
homogeneity is essential for definition of relative efficiency of & € E with
respect to { € E and absolute efficiency of ¢ in the form (cf. [8] p. 115, 132)

dM(¢)) DM(E))
eff =———2 resp. eff, =———""
(e

For simplicity we will not define the relative efficiency for a design ¢ with
singular information matrix, but we do include the situation of M({) being
singular (we assume that ¢/0 = +o0 for ¢ > 0). As @ is positive on ¥, (see
[8] p. 117) and we assume that .# N9 # 0, the ®-optimal value
supcz P(M(()) is positive, which implies that effp (&) is a well defined number
between 0 and 1.

Next, the property of orthogonal invariance is equivalent to the
assumption that ®(C) depends only on the eigenvalues of C, ie. if
(C) = A(D) for some C,D € ., then ®(C) = ®(D). This is an immediate
consequence of the fact that ®(C) = ®(diagA(C)) for any C € ¢} and an
orthogonally invariant ®. (For more properties of orthogonally invariant
matrix functions, see e.g. [1], [13], [4] or [2] p. 104-108.) Notice also, that the
assumption of orthogonal invariance corresponds to the assumption of
invariance under orthogonal reparametrization of the model.

It turns out that the properties (I) and (0) could be substituted by a
single assumption of “spectral monotonicity’’; more precisely:

Proposition 1. Let @ : 9! — [0,00). Then the following two statements are
equivalent: (i) @ is isotonic and orthogonally invariant. (ii) For all C,D €& If
A(C) < A(D) then ®(C) < O(D).

The previous proposition can be geometrically formulated in terms of
confidence ellipsoids, as we will specify in the sequel. For ff € R”, ¢ > 0, and
Cec 97 let
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€ (€)= {b cn"; (b —B)Tc(b —ﬁ) < c}

If the errors are normally distributed and D(ﬁ) € &, is the covariance

matrix of the least squares estimator E, then C = QD(E)) is the information
matrix and G~ ( ) is a confidence ellipsoid covering the true parameter f3

with probablhty Py, < c| (For details, see [7] p. 79,80). In the following
proposition, a rigid-motion transformation is the composition of an
orthogonal transformation and a shift by a vector.

Proposition 2. Let @ : 9! — [0,00). Then the following two statements are
equivalent: (i) © is isotonous and orthogonally invariant. (if) For all C,D €47}
If for any B,,B, € R" and ¢ > 0 there exists a rigid-motion transformation
p: R — R" such that p((%; C(C)) 2 (‘}ﬁ\ C(D), then ®(C) < ®(D).

1) 2

Among orthogonally invariant information criteria we find all criteria of
¢,-optimality for p € [~oo0, 1] (we use the parametrization as defined in [8]
p. 139,140, cf. also [7] p. 94). The class O also contains the criteria of
Chy-optimality (see [12]) for all k =1,...,m defined in their homogeneous
and concave version:

_ —1/k
q)cm(C):(('Z)l > )v,-ll(C)...iikl(C)> for Ceg™,

1<ii<..<ix<m

and @, (C) =0 for C € S\ 9.

As special cases we have D-optimality (= ¢y, or Ch,,,)I
®p(C) = (det(C))"/™; A-optimality ( ~ ¢_,, or Ch ) @4(C) = m(tr(C"))
for Ce ", and ®4(C) =0 for Cc 977\ &7 ; E-optimality (= ¢_.):
®(C) = 41(C); The trace optimality: (~ qﬁl) (I)T(C) =m~'tr(C).

Notice also, that any convex combination, or a minimum of a finite set of
criteria from O is again an orthogonally invariant information criterion (cmp.
[8], p.124-125), so the set O is very rich.

3 Criteria of Ej-optimality

For k€ {1,...,m}, let &)E;, (A) be the sum of the & smallest eigenvalues of
Ae S ie.

k
D, : S — (—o00,0), Dg, (A Z

Let ®g, : ¥ — [0, 00) be the restriction of the function @z, onto . We will
call @g, the criterion of Ej-optimality. Obviously @, = @ and Oy, = m.Or
therefore E;-optimality can be considered as a generalization of both E and
the trace optimality. Clearly, the functions ®g are isotonic, positively
homogeneous, upper semicontinuous and orthogonally invariant. Moreover,
for any C € & we have @, (C) = minyey,, trtU” CU, where %, is the set of
all matrices U of type m x k, such that U'U = I (the theorem of Ky Fan; see
e.g. [3] p-191). It follows that @z, is a minimum of linear functions, which
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entails concavity of @z, (see also [4], [6]). Consequently @z, are orthogonally
invariant information criteria for all k = 1,...,m.

The functions @, are not differentiable everywhere on " (with the
exception of the linear function @), but it is possible to find the subdiffer-
ential 0®f, (A) of the function @, in any fixed A € &, i.e. the set of all
subgradients of ®g, in A (see [11] p. 308 or [10]; notice that the trace of a
product of two matrices corresponds to the scalar product):

OBy, (A) = {Y € 9™ Oy, (B) < Op, (A) +tr(B—A)Y) forall Be o™},

The following proposition is in all important aspects equal to a claim pub-
lished in [4] (see also [6]).

Proposition 3. Let A € ", and let J(A) = /.= (M1, ..., m)" . Then d®g, (A) is
the set of all matrices Udiag(y)U”, where the orthogonal matrix U satisfies
A = Udiag(2)U”, and the vector y = (y,,. .. ,ym)T satisfies: y; € [0,1] for all
i=1,...,m oy, =1if i <A, p;=010f 4 > X, and >, 7, = k.

In the case of A4(A) being strictly less than Z;41(A), the subdifferential
contains elements Y_; ; uu!, where Au; = 4;(A)u;, (u;,u;) = 6; (Kronecker
delta) for i, j = 1,... k. It is easy to see that for any choice of vectors u;, the
sum Y. uu! is a unique matrix: the orthogonal projector on the linear
space generated by the eigenvectors of A corresponding to the & smallest
eigenvalues. That is, in this case the function @, is differentiable in A, and the
gradient is the matrix of orthogonal projection.

Using 0@, , we can formulate a characterization of ®g, -optimal designs,
i.e. an “‘equivalence theorem” for Ej-optimality. (For a simple proof see the

Appendix. Cf. also [10].)

Theorem 4. Let & € E. Then the following three statements are equivalent: (i) &
is  ®p-optimal. (ii) There exists Y € 00g (M(&)), such that
Og, (M(E)) = mag(fT(x)Yf(x). (iii) There exists Y € &7, tr(Y) =k, Y <1,

such that ®g, (M(&)) = max /7 (0 Y/ (x).

Notice that the previous theorem gives us a generalization of the equiv-
alence theorem for E-optimality in the form of [8], p. 182. The equivalence
theorem for the trace optimality [8], p. 240 is a direct consequence as well.

According to the discussion above, Theorem 4 provides an easy test of
Er-optimality for those designs &, that A4,(M(&)) < A1 (M(E)), ie. if g, is
differentiable in M(&) . In such a case we only need to check that

k

. 2
O, (M(8)) = max » (/7 (x)u;)
xeXx )
where up,...,u; are (arbitrary) orthonormal eigenvectors corresponding to

M(E), -, 2 (M(E)).

Notice also, that criteria ®g, are not strictly concave (i.e. we can have more
than one @, -optimal information matrix) and, with the exception of @, , they
can be positive or even formally optimal for a singular information matrix (as
is the case in the polynomial regression model analyzed in Section 6).
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4 Minimal efficiency under the class of orthogonally invariant
information criteria

The theorems of this section are central to the article.

Theorem 5. Let &, € B, M(&) € S, Then

anf, effa(¢]C) =, min

A proof of this theorem, as given in the Appendix, relies on the theory of
vector majorization. Firstly, it can be proved that the constant

vector which is equal or greater than §4(M({)) in componentwise compari-

son. Secondly, it can be shown that this type of dominance of eigenvalues is

enough to guarantee that ®(M(¢&)) > dO(M({)), i.e. eff ¢(&|() > o for any

orthogonally invariant criterion ®. Therefore di)ng effe(&|() > J. The converse
S

inequality follows from the fact that ®g, € O for all .

An immediate consequence of the previous theorem is that a design ¢ is
optimal for all orthogonally invariant information criteria (i.e. £ is ~univer-
sally” optimal for the class O) if and only if ¢ is ®p-optimal for all
k=1,...,m. Notice, that this is the same condition characterizing universally
optimal designs as the one obtained by Bondar for a somewhat different class
of criteria (see [1] for details). It turns out that designs optimal with respect to
all orthogonally invariant criteria do exist in some special models. An
example is the equispaced support design in the trigonometric regression on
the full circle (compare with [7], p. 185 or [8], p. 241) as we state in the
following proposition.

Proposition 6. Let d € N, f>;_i(x) = cos(jx), frj(x) = sin(jx) for j=1,...,d
and frg1(x) =1. Let X=1[0,2n] and let & be a uniform design on
{x1,-.,x,} CX, where n>2d+1 and x—x;=2n/n  for all
i=1,...,n— 1. Then & is optimal with respect to all ® € O.

For the purpose of this article, a more important consequence of Theorem
5 is that it gives us a method how to compute the minimal (absolute) efficiency
with respect to O for any regular design, even in the case of models which do
not permit a universally optimal design. From the previous theorem we
immediately obtain:

Theorem 7. Let £ € E. Then

inf effo (&) = nin_effo,, ()

Hence, the minimal efficiency with respect to the uncountable set of all
orthogonally invariant criteria is simply the minimal efficiency with respect to
the set of criteria @, , which numbers only m elements. In other words, once
we computed the model-specific values vy = sup;cz P, (M(()), k =1,...,m,
we can directly calculate the minimal efficiency for any design ¢ as
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di)rgl(f) effp(&) = kgl,in,m{U;l(DEk (M())}. (We will call the value inf‘DE@ effp (&)
also the O-minimal efficiency of ¢&.)
To demonstrate this method, we will find the values vy for the polynomial

regression models on [—1, 1] up to degree 4. This will allow us to compute the
O-minimal efficiency for ¢,-optimal designs (see Section 6).

5 Maximin efficient designs with respect to the class O

The results of the previous section entail a natural question: If we are able to
compute the O-minimal efficiency of a given design, is there a method how to
find the design which maximizes this value?

Consider the matrix function

D, : S — (—00,00); D,(A) = min v, Dk, (A),
where v = (v1,...,0,)" is defined as v; = supeez P, (M(()) >0, k=1,...,m.
Clearly, the function ®,, defined as the restriction of ®, onto %7}, is an
orthogonally invariant information criterion and, in accord with Theorem 7,
we can consider it to be the criterion of minimal efficiency with respect to O.
Therefore, the ®,-optimal design can be called the maximin efficient design
with respect to O (shortly O-maximin efficient design).

As @, is a finite minimum of concave functions, it is not difficult to find the
subdifferential of ®,, and consequently formulate an equivalence theorem for
the @-maximin efficient design. The following proposition is a special case of
a known and more general formula which can be found e.g. in [2] p.47. (Cf.
also [11] p.223.)

Proposition 8. Let A € 9 and let [ = {k e{1,....myvp D (A) = @(A)}.
Then subdifferential of ®, in A is the set

kel kel

OD,(A) = U{Zakvklaa)gk(A);Zock =1, and o >0 for k € 1}

Theorem 9. A design  is maximin efficient with respect to Q if and only if there
exists Y € 00,(M(&)), such that ®,(M(¢)) = m%EXfT(x)Yf(x).
xe

The proof of the previous theorem is similar to the proof of (i)<(ii) in
Theorem 4 and is therefore omitted. Notice that if M(¢) is a point of non-
differentiability of ®,, then 0®,(M(&)) contains a full continuum of subgra-
dients, and the previous theorem does not give us a method how to choose the
right one for the equivalence determining optimality. In fact, the search for
the appropriate subgradient can be a difficult optimization problem itself. We
also remark that the previous theorem can be formulated in terms of direc-
tional derivatives of ®@,, similarly as e.g. in [5]. Nevertheless, both approaches
are essentially same, and they suffer analogous disadvantages.

To illustrate the concept of O@-maximin efficiency on an example, we will
exhibit the maximin efficient design for the quadratic regression on [—1, 1] in
the next section.
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6 Example: polynomial regression on [—1, 1]

As a special case of the regression model defined in the introduction, consider
the polynomial regression of degree d on the experimental domain X = [—1, []
given by the model equation

y=PBi+Box ot B+
In the notation of thls article, the vector of unknown parameters of interest
= (ﬁl,[iz, . ﬂd+1) is m = d + 1 dimensional and the vector of regression
functions is f( Y= (1,x,...,.x)7".

We will analyze this model for degrees d € {1,2,3,4} with the aim to
evaluate the minimal efficiency of ¢,-optimal demgns p € [0, 1], with
respect to the class O of all orthogonally invariant information criteria. As
special cases, we will obtain the O-minimal efficiency for the D, 4, and E
optimal designs. Moreover, for the quadratic regression (d = 2), we will
identify the design which is maximin efficient with respect to O.

Firstly, we need to find the optimal values for the criteria of Ei-optimality.
It turns out that the ®p, -optimal designs for degrees d = 1,2,3,4, and for
k=1,...,d+ 1 can be found explicitly. For k = 1, that is for the ordinary E-
optimality, the optlmal designs are known (see [9] or [8] p. 232-237), and we
denote them by 6 1 - In partlcular the simplest design ¢ 11 assigns the weight 5 1
to —1 and 1. Next, by 53 we denote the design which ass1gns the weight 1/ 6
to —1,1, and the weight 2/3 to 0. Using Theorem 4, it is simple to verify that
for any con51dered combmatlon of d and k, some of the five demgns descrlbed

(i.e. 51 S 51 or fg )1s D, -optlmal The (I)E, -optimal designs fk and the
correspondmg optimal values v,i = oz, (M (ék )) are summarized in Table 1.
Table 1.

&0 d= d= d=3 d=

k=1 gl &¥i1/s &1/ &ri1/129

k=2 &2 g1 f?); 1/5 &i1/25

k=3 - éhis &b &1/3

k=4 - - &4 &2

k=5 - - - &lss

Notice that in the case of line regression (d = 1) the design é
®g -optimal for both k= 1,2. This means that 5 1~ 1s optimal for all
orthogonally invariant cr1ter1a

For d = 2,3,4, the values v,@ allow us compute the O-minimal efficiency
for the ¢ -optimal designs, p € [~o0, 1]. For polynomial regression on [-1, 1],
the E~ ¢_, A~ ¢_;, and D = ¢, optimal designs are known (see e.g. [§]
Chapter 9). For these designs, Tables 2,3 and 4 give the Ej-efficiencies.

Table 2. (d = 2)

eff E; E, Es O-minimal
D 0.730745 0.812816 0.777778 0.730745
A 0.954915 0.690983 0.666667 0.666667
E 1.000000 0.600000 0.600000 0.600000
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Table 3. (d = 3)

eff E, E, E; E, O-minimal
D 0.744733 0.717848 0.608890 0.656000 0.608890

A 0.967451 0.721081 0.432425 0.523166 0.432425

E 1.000000 0.638861 0.396386 0.501250 0.396386
Table 4. (d = 4)

eff E] Ez E3 E4 E5 O-minimal
D 0.738857 0.714339 0.683360 0.603928 0.577976 0.577976
A 0.969005 0.709550 0.637469 0.443494 0.448069 0.443494
E 1.000000 0.627669 0.603550 0.433000 0.441860 0.433000

According to Theorem 7, the minimum of these d + 1 efficiencies equals to the
O-minimal efficiency.

For an arbitrary p € [~o0, 1], the ¢, -optimal design can be computed
using general iterative methods (see [7] Chapter V). The Graphs 1,2,3 in the
Appendix plot the numerically computed Ej-efficiencies, and the @-minimal
efficiency of qS -optimal designs. The parameter r, which corresponds to the
horizontal axis, relates to the parameter p via the function p(r) = - for
re (—1,1] and p(r) = —oo for r = —1. Hence, E, 4, D and the trace opti-
mality correspond to r = —1,—1/3,0, resp. L. Notice also that the function
p(+) is chosen such that p(r) + p(—r) = p(r)p(—r) , which means that p(r) and
p(—r) are conjugate numbers.

From the graphs of minimal efficiency with respect to O we see that the
D-optimal design performs well, yet it does not maximize the O-minimal
efficiency even within the class of ¢,-optimal designs.

In general, it turns out to be difficult to find the @-maximin efficient design
without resorting to numerical procedures for maximization of a nondiffer-
entiable function (see e.g. [14] for such a numerical algorithm in the context of
optimal experimental design). Nevertheless, for the case of the quadratic
regression, we can specify the maximin efficient design explicitly:

Proposmon 10. Let ¢  be the design which assigns the weight
w= ﬁ 502 5. 1/22=0.32342 to the points —1,1 and the weight 1 — 2w=0.35316
to the point 0. Then & is maximin efficient wzth respect to O for the quadratic
regression on [—1,1]. The O-minimal efficiency of & is 33 + 3% 0 \/22=0.76456.

The ¢, -efficiencies of D, 4, E-optimal designs and the design ¢ from the
previous proposmon are deplcted in Graph 4 in the Appendix (the graph of
r—effy (é) is denoted by M). Notice, that the efficiencies of & and the D-
optimal cfemgn are close to each other, although ¢ is more efficient for the
criterion of E-optimality and slightly less efficient for the criterion of trace
optimality.

It can be shown that in the case of quadratic regression, the O-maximin
efficient design ¢ must be ¢, -optimal for some p: € [—oo, 1]. (More gen-
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erally, if d =2 then any design which is optimal with respect to some
® € O is also ¢,-optimal for some p; see the considerations in [8] p. 334.
On the other hand, our preliminary numerical computations suggest that
for d > 2 the O-maximin efficient design does not belong to the class of ¢,-
optimal designs). One can calculate that p;= — 0.0648 (i.e. re= — 0.0314; cf.

with Graph 4).

7 Appendix
7.1 Proof of Proposition 1

Let ®: 9" —[0,00) be isotonic and orthogonally invariant, and let
4(C) < A(D) for some C,D €9”}. Then diag(A(C)) < diag(A(D)) in Loewner
ordering, thus ®(C) = ®(diag(4(C))) < ®(diag(A(D))) = ®(D). This proves
the “(i)=-(ii)” part of the proposition.

To prove the converse, suppose that for any C,D €% such that
A(C) < A(D), we have ®(C) < ®(D). If C < D, then from 7.7.4 (¢) in [3], p.
471 we have A(C) < A(D) which implies ®(C) < ®(D) by the assumption .
(See also [1], p. 327.) This proves isotonicity of ®. Moreover, if A(C) = A(D)
then we have both A(C) < A(D) and A(D) < A(C), which means that
®(C) < d(D) < P(C), i.e. D(C) = d(D). Hence, ®(C) depends only on the
eigenvalues of C, which means that ® is orthogonally invariant. |

7.2 Proof of Proposition 2

Proposition 2 follows from Proposition 1 once we prove that for all
C,D € 77 these two statements are equivalent: (iii) For any f;, f, € R" and
¢ >0 there exists a rigid-motion transformation p: R” — R” such that
p(@/[; (C) 2 Q://; (D). (iv) A(C) < A(D) componentwise.

1,.¢ c

9 25 ~
It is simple to show that for any H € ¢, f,s € R", ¢ > 0 and a regular
matrix A of type m x m we have A-GBE (H) +5 = @AEJr ((A*I)THA*I).

“@il)=(iv)” If (iii) holds then choosihg f1 =P, =0 and ¢ =1 we see that
there must exist 6 € R” and an orthogonal matrix U such that for
Q = UCU” we have €;,(Q) D €y (D). Leta € R",d > 0 and a’Da < d.

X ; ;

Then the vectors 7 and — ﬁa are membersT of €y (D), hence they both

belong to €;,(Q). It follows that (\/Lga - (3) Q(ﬁa - 5) < 1 as well as
1 I

T
(—7[741 — 5) Q(— Vi 5) < 1. Summing up these two inequalities we

obtain 1a’Qa+6"Q5<1. As Q€ .97 we have 6'Q5 >0, thence
a’Qa < d. This clearly implies that for any a € R” we have a’ Qa < a’Da
and consequently Q<D in Loewner ordering. Therefore
A(C) = 2(Q) < A(D), where the inequality follows from 7.7.4 (c) in [3].

“(iii)<=(iv)” Let (iv) hold, D = Vdiag(A(D))V’ and C = Rdiag(4(C))R” for

some orthogonal matrices V, R. Let §;, f, € R” and ¢ > 0 be arbitrary.
Choose the following rigid-motion transformation:
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p() =Ux(") +r, where U=VRT r= (ﬁ2 - Uﬁl).

Evidently, A(C) < A(D) implies that for all BeR" G (diag(A(C))) 2 @E

(diag(A(D))). Therefore B p
P(@’ﬁ\hc(c)) = (EUEIH-,c(UCUT) — %Z,C(Vdiag()’(c))VT)
= V€ o (diag(2(C) 2 V€ - (diag((D))) =€ (D)

7.3 Proof of Theorem 4

A well known theorem from convex analysis (see e.g. [11] or [10]) implies that
M = M(¢) maximizes @, (i.e. also @g) on .# if and only if there exists
Y € 00g, (M), such that tr(NY) <tr(MY) for all Ne.#, resp. iff
supne.y tr(NY) = tr(MY). But

sup tr(NY) = suptr( S L)/ (x)f (1Y) =

Ne/ (eE {(x)>0
sup > LT ()Y () = max /7 ()Y ()
(€2 ({1)>0 e

Also, for any choice Y = Udiag(y)U” where U, y are given in Proposition 3,
we have tr(MY) = tr(diag(4(M))diag(y)) = ®g, (M). This proves (i)<(ii).
Next, the implication (ii)=-(iii) follows from Proposition 3, as for any
Y € 0@z (M) we have tr(Y) =k, and A(Y) € [0,1]" ie. Y <L
We will prove (iii)=>(ii) by simply showing that the matrix Y from (iii) is a
subgradient of ®g, in M = M(¢). Let (iii) hold. Obviously

w(MY) = tr( Y <) ()T (0)Y) =

£(x)>0
> 0T )Y/ (x) < max /T () VS (x) = @, (M).
o) X€3
For any B € 9" we thus have ®g, (M) + tr((B — M)Y) > tr(BY). Moreover
from Theorem 3.4 in [6] it follows that:
@, (B) = min{tr(BH); H € ¥ H < I, tr(H) = k}.

Hence tr(BY) > @y, (B), which entails @, (M) + tr((B — M)Y) > @, (B). By
the definition of subgradient, this means that Y € 0®g, (M).

7.4 Proof of Theorem 5

Recall that an m x m matrix S is said to be doubly stochastic, if it has non-
negative entries and each column and row is summing to one. An m x m
matrix P is a permutation matrix, if each row and column contains exactly
one element 1, and m — 1 elements 0. Evidently, there are m! such matrices.
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Let R, and RZ denote the set of all m -dimensional vectors with non-
negative components (the nonnegative orthant), resp. the set of all vectors
with components in a nondecreasing order. Let x= (xi,... 7)c,,,)T7
y= (yl,...,ym) e RZ.If Zlex,- >3 » for k=1,....m—1, and

X =D Vs then we will say that x majorizes y, and denote this fact by
x > y. (We use this notion as defined e.g. in [3] p.192, cf. also with [8], p.144-
5)

In the proof, we will use the following theorems:

1. (Birkhoff theorem, see e.g. [3] p. 527) An m x m matrix S is doubly sto-
chastic if and only if S is a convex combination of permutation matrices.

2. (Hardy-Littlewood-Polya theorem; see e.g. [3] p. 197) If x,y € R} N RZ,
then x > y if and only if x = Sy for some doubly stochastic matrix S.

In Theorem 5, the inequality infpcq effp(&[() < Irlnn eff o, (£[0) is clear

.....

because @z, € 0. We will prove the converse inequality.
If M(() is the zero matrix, then effg(&|0) = ®(M(E))/P(M({)) = oo for
any ® € O and the inequality is trivial. Let M(C) # 0. Denote

where 1 = A(M(&)), g = 2A(M(0)); 1,9 € RN ERS
Clearly, 0 is a positive number less than oo, because it is a finite minimum
of positive values at least one of which is not infinite. Let

m m—1
g:;; = 571 <Z ll) - Zgia and g* = (gla .- '7gm—lag;kn)T

As Srig)” " L we have g:, > gm, hence g*>g and
g E‘B’" Moeover lel>zllég, for k=1,...,m—1, and
S L= Z’"— —|— dg:,, which implies that / mdjOI"lZGS 5q We thus
have
l'=dg" = dg

Hence, the Hardy-Littlewood-Polya theorem entails that there exists a doubly
stochastic matrix S, such that / = S(ég*). In the same time, as the elements of
S, as well as the coordinates of g and g* are nonnegative, the inequality g* > g
implies S(g*) > S(dg), therefore / > S(dg). Moreover, from the Birkhoff
theorem we know that S = Z _1 o, P;, Where P; is the j -th permutation
matrix, o; € [0,1] for j=1,. m' and >, o; = 1. Consequently

m!

123 %P;(o9)
=1

Let ® € O. Notice, that for any permutation matrix P; it holds that
®(diagP;(dg)) = ®(diag(dg)) , since ® is orthogonally invariant. Subsequently
using properties (0), (I), (C), (0), (0) and (H), we finally obtain:
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d(M(E)) = d(diagl) > @ <diag <i 06;1’_;(5@)> )

=
mZ O (diagP;(59))) = D(diag(3g)) = DEM(L)) = SO(MI(L))
Thérefore effe (¢]0) = ®(M(E))/P(M({)) > ¢ which concludes the proof.

7.5 Proof of Proposition 6

Similarly as in the proof of Proposition V1.9 in [7] or Claim 9.16. in [8], we
can show that M* = M(&") = diag(1/2,...,1/2,1). By Theorem 5, to prove
the ®-optimality of &¢" for all ® € O we only need to check that &* is
®g, -optimal for all k =1,...,m, where m = 2d + 1 is the number of param-
eters. The ®@,,-optimality is simple to prove (see e.g. [8], Claim 9.16.), so we
only need to analyze the case of a fixed & < m. Proposition 3 implies that
diag(y) € 0@, (M*) for any choice of 7y which satisfies 7y, € [O, 1] for

i=1,....m—1,y,=0, andz (vi=k Ifkiseven, let y,=...=y, =1
and ka = ym = 0. If £ is odd, then & <m — 2, hence we can choose
"= —'))k 1= 1 Ve = ))k+1 1/2, yk+2 = .=V = 0. In both cases we

have for any x € X:

m—1

FT0)diag()f () = 3 (121 €OS2) + 7y 5in(ix)) = k/2 = D, (M),

=1

~.

By Theorem 4, this equality proves ®g -optimality of £*.

7.6 Proof of Proposition 10

It is simple to verify that the eigenvalues of M = M(&) (cf. [8] p.333) are

29 2 . A 92 15 .
71(M) = 2or -+ 522 V222015291, n(M) = 5 + 50 v/220.64684,
14
M) =28 13 5 49303

251 251

We already know (see Table 1) that the optimal values for @, k =1,2,3 are
vy =1/5, v, =1, and v3 = 3, therefore

_ 145
vy g, (M) = 54 (M) = 351 251 \/ =0.76456

121
vy ' g, (M) = 11 (M) + 12(M) = 351 ﬁ\/ =0.79975

1 145
v ' Op, (M) = S TaM) + (M) + 23(M)} =+ EF 0.76456
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Thence the O-minimal efficiency of & is (cmp. also with Table 2)

. ~ 145 10 _
®,(M) = min, v ' Dg, (M) = 51t 551 V22=0.76456

The eigenvalues of M are mutually distinct, hence by the discussion following
Proposition 3 we know that the functions ®g, are differentiable in M, i.e.
there exist unique gradients of @, in M for all k. Moreover, as the active set
used in Proposition 8 is / = {1, 3}, we see that the subgradients of ®, in M are
of the form

Y = o} ' Vg, (M) + (1 — a)v; ' Vg, (M), « € [0,1].

In the sequel, we shall use the subgradient Y which corresponds to
o= % + % v/22=0.28591. From Proposition 3, one can calculate that
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polynomial regression model
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Fig. 2. The E\, E,, E3, E4 and the O-minimal efficiency of ¢,)-optimal designs for the cubic
polynomial regression model
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efficiency
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Fig. 4. The ¢, -efficiency of the D, 4, E-optimal designs, and the O-maximin efficient design
(denoted by M) for the quadratic regression model

a 0 b
Vo;,M)=|0 0 0 ,wherea:%,
b 0 ¢
b:—90—13\/ﬁ 62254—12\/25
313 ’ 313

Moreover, @, is simply the trace, therefore Vg, (M) = I. Using algebraic
simplifications and elementary calculus we finally obtain |

FTOYf () = 204 15v22 42512425 VEEN (72 =76 + v22)

145 1022
r = — —_— =
xrg[g}]f )Y/ (x) = 557+ 57 = ©(M)

By Theorem 9, this proves that ¢ is the @-maximin efficient design.
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