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1 Metropolis-Hastings algorithm

The aim of the Metropolis-Hastings algorithm is to generate samples from
a “target” probability π on a finite set X . The set X is often called the
“space of states” and the elements are called “states”, which is a terminology
adopted from physics. For each state x ∈ X , let q(·|x) be a “candidate”, or
“proposal” probability on X and let X1 ≡ x1 ∈ X be an initial state.

Under very general assumptions, the following algorithm produces a se-
quence of (Xi)

∞
i=1 of random variables on X which converges to the distribu-

tion π.

1. Set t← 1.

2. Generate a “candidate” Y from the distribution q(·|Xt).

3. Calculate

α← min

(
1,
π(Y )q(Xt|Y )

π(Xt)q(Y |Xt)

)
.

4. Generate random variable U ∼ U(0, 1).

5. If U < α set Xt+1 ← Y , otherwise set Xt+1 ← Xt.

6. Set t← t+ 1 and continue by step 2.
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The algorithm is most often used with symmetric candidate probabilities
satisfying q(y|x) = q(x|y) for all x, y ∈ X , in which case it is called just the
Metropolis algorithm. (Sometimes q(y|x) is the same for all x, y ∈ X , which
we call the “independence sampler”.) In this case, the formula for α reduces
to a simpler form and the behaviour of the algorithm is easier to interpret
and understand: The algorithm will always make a transition to a state y
with a higher probability than x, but it can also make a transition to a state
y with a lower probability than x; the probability of such a transition is equal
to π(y)/π(x).

Note that for the Metropolis-Hastings algorithm it is not necessary to
know the “normalising constant” of the distribution π. Metropolis-Hastings
algorithm is often useful for a very large state space X and an complex
probability π, or if we do not know the normalizing constant of π, which
means that the direct sampling methods are infeasible.

Metropolis-Hastings algorithm is a special MCMC (Markov-chain Monte
Carlo) method; clearly, the sequence (Xi)

∞
i=1 of random states forms a Markov

chain. If q is chosen such that this Markov chain is ergodic, we obtain the
desired convergence to π. At the beginning of algorithm, we sometimes use
the so-called “burn-in” period.

2 Ising model

The Ising model is a model of ferromagnetism in statistical physics. Consider
a state space X formed by all matrices B ∈ {−1,+1}N×N . Note that the
size of X is 2N

2
, which is an astronomic number even for moderate N . The

individual elements of each state B, called “sites”, represent magnetic dipole
moments of atomic spins. We will assume that two different sites of the
N ×N lattice are “adjacent” if both their coordinates differ by at most 1.

The probability of a state B is a function of its “energy”, which is in the
case of zero external magnetic field and the same, unit interaction strength
given by the formula

H(B) =
∑
−B(i1, j1)B(i2, j2),

where the sum is taken with respect to all unordered couples (i1, j1), (i2, j2)
of sites adjacent in the lattice. Note that two adjacent sites with the opposite

2



spin contribute to the sum by one and two adjacent sites with the same spin
reduce the sum by one. The probability of a state B is, using the Boltzmann
law

π(B) = e−βH(B)/Zβ,

where β = (TkB)−1, T is the temperature of the system, kB is the Boltzmann
constant and Zβ is the normalization constant.

To generate a random state in accord with π, we need to construct a can-
didate distribution on X . A simple symmetric candidate probability ‘q(.|Bx)
is the uniform distribution on all states By which differ from Bx at exactly
one site. Now we can calculate the acceptance probability α, which is a
minimum of 1 and

π(By)

π(Bx)
= e−β(H(By)−H(Bx)) = exp

[
β
(∑

By(i1, j1)By(i2, j2)−Bx(i1, j1)Bx(i2, j2)
)]
,

where again the sum is taken with respect to all unordered pairs (i1, j1),
(i2, j2) of sites adjacent in the lattice. However, note that the two states differ
in only one site, say (i, j). Therefore, the differences By(i1, j1)By(i2, j2) −
Bx(i1, j1)Bx(i2, j2) will be zero for all adjacent pairs of sites, except for those
that one of the sites is equal to (i.j). Therefore, the sum above is equal to∑

By(i1, j1)By(i, j)−Bx(i1, j1)Bx(i, j),

where the sum is taken with respect to (i1, j1) adjacent to (i, j). ButBy(i, j) =
−Bx(i, j) and By(i1, j1) = Bx(i1, j1) therefore the sum is equal to

−2Bx(i, j)
∑

Bx(i1, j1).

Summarizing, we have

π(By)

π(Bx)
= exp

[
−2βBx(i, j)

∑
Bx(i1, j1)

]
,

where the sum is taken with respect to (i1, j1) adjacent to (i, j).

During the lecture, we will demonstrate the Metropolis-Hastings algo-
rithm applied to the simplest Ising model in the environment R.
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