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General Introduction to Optimization I

Two �components� of an optimization problem:

X ... set of feasible (permissible) solutions

f : X → R ... objective (loss, error; utility, �tness) function,

sometimes also �criterion�

A typical minimization problem is to �nd one element x∗, called
global optimum, of:

argminx∈X f (x) := {x∗ ∈ X : f (x∗) ≤ f (x) for all x ∈ X}.

Notation: min f (x) subject to (s.t.) x ∈ X .

Variants: • Sometimes, we need to �nd more than one, possibly all

elements of argminx∈X f (x). • More often, it is enough to �nd one

or more x̃ 's from X that are �close� to argminx∈X f (x).

Analogously we de�ne a maximization problem.
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General Introduction to Optimization II

Sometimes the objective function is f : X → Rm for m ≥ 2, in

which case we get the so-called multicriterial optimization

problem. This is a separate topic with speci�c principles.

Exercise: Assume that for each x ∈ X we have a system of

neighbourhoods Nε(x) ⊆ X ; ε > 0. How would you de�ne the

intuitive notion of a �local� optimum?

Exercise: Suggest optimization problems that may appear in

practice, and the corresponding X and f . (Optimization of the

movement of a robot, �training� in machine learning, ...)

Important questions:

Is there any solution? (argminx∈X f (x) 6= ∅?)
Is there a unique solution? (Is argminx∈X f (x) a singleton?)

Can we verify the optimality of a given x? ∈ X?
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General Introduction to Optimization III

Exercise: Give simple examples of optimization problems for which

the solution does not exist, for which the solution exists and is

unique and for which the solution does exist but is not unique.

Basic mathematical (analytic) conditions which guarantee the

existence of the solution of an optimization problem:

X is �nite

X ⊂ Rn compact & f continuous on X (in Eucl. metric).

Note: X ⊂ Rn is compact if it is closed and bounded.

Basic mathematical (analytic) condition that guarantees the

uniqueness of the solution of a minimization problem:

X ⊂ Rn is compact, convex, and f is strictly convex on X .

Note: X ⊂ Rn is convex and f : X ∈ R is strictly convex on X if for

all x1, x2 ∈ X and all α ∈ (0, 1) we have αx1 + (1− α)x2 ∈ X and

f (αx1 + (1− α)x2) < αf (x1) + (1− α)f (x2).
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General Introduction to Optimization IV

Some classes of optimization problems (loose de�nitions):

X is �nite or countable ... discrete optimization (combinatorial

optimization, integer programming with X ⊆ Zn). Examples of

applications: Optimum scheduling, Experimental design etc.

X ⊆ Rn is not a discrete set ... continuous optimization.

Examples of applications: Parameter estimation, �Training� of

ANNs, etc.
��

X ⊆ R ... univariate optimization. Example of application:

Line step search in multivariate optimization.

X ⊆ Rn, n ≥ 2 ... multivariate optimization; almost all

optimization problems in data science are multivariate.

��

X = Rn for some n ≥ 1 ... unconstrained optimization

X 6= Rn ... constrained optimization
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General Introduction to Optimization V

X ⊆ Rn, f are convex ... convex optimization Applications:

SVM, Some MLE, optimal approximate experimental design...

Either X or f non-convex ... non-convex optimization; much

of optimization in data science is non-convex

��

X ( Rn is polytopic, f is linear ... linear optimization (linear

programming). Example of application: L1 regression.

X ⊆ Rn is not polytopic or f is non-linear ... non-linear

optimization (non-linear programming); most optimization

problems in data science are non-linear.

��

f is di�erentiable on X ⊆ Rn ... di�erentiable optimization

f is not di�erentiable in some point of X (in particular in the

optimum) ... non-di�erentiable optimization
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General Introduction to Optimization VI

Basic classes of methods to solve optimization problems:

Finite discrete optimization:

enumeration methods (brute-force complete, or �intelligent�

incomplete methods such as the so-called branch-and-bound)

greedy methods

Di�erentiable optimization:

(quasi-) gradient methods (Newton's method, BFGS, ...)

Convex optimization:

interior-point methods, speci�c methods for speci�c classes of

convex programming (quadratic programming, SOCP, SDP, ...)

simplex method for linear programming

Non-convex optimization and discrete optimization:

various heuristic methods (hill-climbing, exchange methods,

simulated annealing, genetic algorithms, particle swarm

optimization, tabu search...) Many of them are stochastic, i.e.,

they use randomness in a fundamental way.
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Basic Optimization in R I

In R, we can use the following functions in the stats package:

optimize for one-dimensional, continuous, possibly

non-di�erentiable optimization, either unconstrained, or

constrained to an interval.

optim for multi-dimensional, continuous optimization. Some

implemented methods allow for non-di�erentiable optimization

(for instance Nelder-Mead, SANN), some allow for

di�erentiable optimization with box constraints (BFGS).

nlm which implements a Newton-type optimization method for

unconstrained, multivariate, di�erentiable optimization

problem. See also nlminb.

Note: There are also other optimization methods in di�erent R

packages; they may be more appropriate or more e�cient for the

application at hand.
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Basic Optimization in R II

In statistics and, more generally, data science, we usually require

multivariate continuous optimization (unconstrained or

constrained), e.g., for the MLEs or for �training� of ML methods.

For benchmarking of multivariate continuous optimization

algorithms: Rosenbrock function with X ⊆ R2 and the loss function

f (x1, x2) = (1− x1)
2 + 100(x2 − x21 )

2, (x1, x2)
T ∈ X .
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Basic Optimization in R III

R Example Let us test various methods implemented in optim for

�nding the optimum of the Rosenbrock function.

BFGS (Broyden-Fletcher-Goldfarb-Shanno)

CG (Conjugate gradient method)

SANN (simulated annealing; we will discuss it in detail later)

Nelder-Mead (we will discuss it in detail later)

Let us also test the functions

nlm from the standard package stats,

ga from the contributed package GA (=genetic algorithms),

psoptim from the contributed package pso (=particle swarm

optimization).
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That's all folks

See you in one week!
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