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Chapter 1

FUNDAMENTALS, TERMINOLOGY, NOTATION

In this chapter, we will give a brief introduction to the theory of optimal design of
uncorrelated linear regression experiments with focus on the terminology and notation
used in the rest of the thesis. For a more detailed explanation of foundations of the
theory of optimal experimental design, we refer the reader to the monographs [17]
and [19].

1.1 Experimental designs, information matrices and the Elfving set

Consider the linear regression model on a compact experimental domain X ⊆ Rs.
For each design point x ∈ X, we can observe a random variable

y = fT (x)β + ε

where f : X→ Rm is a known vector of regression functions, β ∈ Rm is an unknown
vector of parameters, and ε is an unobservable random error. We suppose that the
components of f are continuous and linearly independent real functions. For different
observations, the errors are assumed to be uncorrelated, with zero mean and the same
variance, which is assumed to be 1 without loss of generality. We will denote this
model by (f,X) and say that (f,X) is m-dimensional.

As is usual in the asymptotic theory, by an experimental design we understand
a probability measure ξ finitely supported on X. For an experimenter, the value ξ (x)
determines the relative proportion of the measurements that should be taken in x ∈ X.
The set of all designs on X will be denoted by ΞX. Evidently, the set ΞX is convex.

The performance of a design ξ ∈ ΞX is based on the information matrix asso-
ciated with ξ, which is a positive semidefinite matrix defined by the formula

Mf,X (ξ) =
∑

x∈X; ξ(x)>0

ξ (x) f(x)fT (x)

If we perform n experiments in accord with a design ξ, and if Mf,X (ξ) is regu-
lar, then nMf,X (ξ) is equal to the inverse of the covariance matrix of the least squares
estimate of β. Moreover, if the observations are normally distributed, then nMf,X (ξ)
is the Fisher information matrix for the parameter β. Hence, roughly speaking,
Mf,X (ξ) is the average Fisher information matrix for the unknown parameter that
can be attributed to a single observation executed in accord with the experimental
plan ξ.
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The assumptions given above imply that the set Mf,X = {Mf,X (ξ) : ξ ∈ ΞX}
of all information matrices is convex, compact and contains a regular matrix (see e.g.
[17], p. 60).

The Elfving set of the model (f,X) is a compact subset of Rm defined by

Ef,X = conv {−f(X) ∪ f(X)}

Let Pm,k be the set of all orthogonal projectors which project Rm onto a k-
dimensional linear subspace of Rk, k ∈ {1, ..., m}. For the purpose of this work, we
introduce the k-radius of the Elfving set:

rk (Ef,X) = (1/2)×minP∈Pm,k
diam (PEf,X)

The k-radius of Ef,X can be geometrically interpreted as the minimal possible
radius of the k-dimensional base of a ”cylinder” circumscribed to Ef,X. It is simple
to show that r1 (Ef,X) is the radius of the sphere inscribed to Ef,X and rm (Ef,X) is
the radius of the sphere circumscribed to Ef,X.

1.2 Optimality and efficiency of designs

An optimality criterion is a real valued matrix function Φ which measures the large-
ness of an information matrix, i.e. the quality of the corresponding design. We say
that a design ξ∗ is optimal for the model (f,X) with respect to an optimality criterion
Φ or, equivalently, that ξ∗ is Φ-optimal for (f,X) iff

Φ(Mf,X (ξ∗)) = supζ∈ΞX
Φ (Mf,X (ζ))

In this case, Mf,X (ξ∗) is called an optimal information matrix for the model (f,X)
with respect to the criterion Φ, or Φ-optimal for (f,X). The value Φ(Mf,X (ξ∗)) is
then called the Φ-optimal value of (f,X).

For a nonnegative criterion Φ, which is not identically 0 on Mf,X, we define
the Φ-efficiency of a design ξ ∈ ΞX in the form

efff,X(ξ|Φ) =
Φ (Mf,X (ξ))

supζ∈ΞX
Φ (Mf,X (ζ))

The efficiency efff,X(ξ|Φ) can be interpreted as the extent to which the design
ξ exhausts the maximum amount of information about the parameter.

We remark that if the model we analyze is obvious from the context, or if the
results that are being presented pertain to all models, we suppress the symbols f and
X in the above-defined notation. In this case ΞX, Mf,X,Mf,X, Ef,X and efff,X become
Ξ, M,M, E, and eff.

Let the symbols Sm, Sm
+ , and Sm

++ denote the sets of all symmetric, positively
semidefinite, and positively definite matrices of type m × m. On Sm we use the
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Loewner partial ordering ≤, which is defined as A ≤ B iff B −A ∈ Sm
+ . Moreover,

for A ∈ Sm we define λ(A) = (λ1(A), . . . , λm(A))T - the vector of all (not necessarily
distinct) eigenvalues of A in nondecreasing order:

λ1(A) ≤ λ2(A) ≤ ... ≤ λm(A)

Clearly, λ(A) has nonnegative (positive) components for all A ∈ Sm
+ (resp. A ∈ Sm

++).

1.3 Orthogonally invariant criteria

An orthogonally invariant criterion is any matrix function Φ : Sm
+ → [0,∞) which is

not identically zero, and which satisfies the following general properties:

(I) isotonicity:
C ≤ D⇒ Φ (C) ≤ Φ (D) for all C,D ∈ Sm

+

(C) concavity:
Φ (αC + (1− α)D) ≥ αΦ (C)+(1− α) Φ (D) for all C,D ∈ Sm

+ and α ∈ [0, 1]

(S) upper semicontinuity:
The level sets

{
C ∈ Sm

+ : Φ (C) ≥ c
}

are closed for all c ∈ R

(H) positive homogeneity:
Φ (αC) = αΦ (C) for all C ∈ Sm

+ and α ≥ 0

(O) orthogonal invariance:
Φ
(
UCUT

)
= Φ (C) for all C ∈ Sm

+ and orthogonal m×m matrices U

A criterion satisfying (I),(C),(S),(H) is sometimes called an information
function (see [19], Chapter 5 for a thorough argumentation in favor of these proper-
ties). If Φ is an information function, then the sets of all Φ-optimal designs and all
Φ-optimal information matrices are nonempty and convex. Moreover, the Φ-optimal
value is positive (cf. Lemma 5.16. in [19]).

The property (O) will be analysed in Section 3.1, where we show why is
the property of orthogonal invariance natural for the criteria which simultaneously
measure quality of estimation of all components of β. We denote the class of all
orthogonally invariant criteria by the symbol O.

The most important examples of orthogonally invariant criteria are the Kiefer’s
criteria of Φp-optimality for p ∈ [−∞, 1]. (We use the parametrization as defined in
[19] p. 139,140, which differs from the classical ”convex” definition; cf. [17] p. 94.)

Φp(C) =





λ1(C) if p = −∞
(

1
m

∑m
i=1 λ

p
i (C)

)1/p
if p ∈ (−∞, 0) and C ∈ Sm

++ or if p ∈ (0, 1]

(
∏m

i=1 λi(C))1/m if p = 0
0 if p ∈ (−∞, 0) and C ∈ Sm

+ \Sm
++
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Some extensively studied special cases are exhibited in the following table.

Name Criterion For C ∈ Sm
++ For C ∈ Sm

+ \Sm
++

E-optimality Φ−∞ λ1(C) 0

A-optimality Φ−1 m (tr(C−1))
−1

0

D-optimality Φ0 (det(C))1/m 0
T -optimality Φ1 m−1 tr(C) m−1 tr(C)

The class O also contains the criteria of Chk-optimality (characteristic poly-
nomial criteria; see [24], or [25]) for all k = 1, ..., m defined in their homogeneous and
concave version:

ΦChk
(C) =




(
m

k

)−1 ∑

1≤i1<...<ik≤m

λ−1
i1

(C) ...λ−1
ik

(C)




−1/k

for C ∈ Sm
++

We define ΦChk
(C) = 0 for C ∈ Sm

+ \ Sm
++. Notice that the criterion ΦCh1

is
identical to the criterion of A-optimality and ΦChm is the criterion of D-optimality,
but other characteristic polynomial criteria do not correspond to any of the criteria
of Φp-optimality.

In this work, we introduce a new class of criteria, which we call criteria of
Ek-optimality. For k ∈ {1, ..., m} we define the criterion of Ek-optimality by

ΦEk
(C) =

k∑

i=1

λi(C) for all C ∈ Sm
+

Clearly, the criterion of E1-optimality is equivalent to the criterion of E-
optimality and the criterion of Em-optimality corresponds to a constant multiple
of the criterion of T -optimality. In Section 3.2 we will show that any criterion ΦEk

belongs to O.

Apart from the criteria defined above, there is a richness of other orthogonally
invariant criteria, since any convex combination, or a minimum of a finite set of
criteria from O is again an orthogonally invariant criterion (cmp. [19], p.124-125).

For the Φ−∞-, Φ−1-, Φ0-, Φ1-, ΦEk
-optimal designs (optimal matrices, optimal

values, efficiencies) we will also use the concise terminology E-, A-, D-, T -, and
Ek-optimal designs (optimal matrices, optimal values, efficiencies).



Chapter 2

FORMULATION OF THE AIM AND DESCRIPTION OF THE

MAIN RESULTS OF THE THESIS

2.1 The aim of the thesis

Much of the effort in optimal design of experiments is aimed at solving the following
type of problems: For the model (f,X) in consideration, find the design of best
performance measured by a fixed criterion of optimality. Often, though, it is very
difficult to give a persuasive justification for the choice of a single criterion, because
there is a large number of different criteria, all of which measure useful aspects of
designs.

The same problem was formulated by Galil and Kiefer in the following citation
introducing the article [6]:

”A first step away from the traditional choice of a design to satisfy some princi-
ple of intuition or symmetry is to base the choice on a specific criterion. Realistically,
though, such a criterion is usually at best only an approximate reflection of some
vague notion of ’goodness’. Hence, it seems prudent to check that a design, selected
in this fashion, performs reasonably well in other respects, relative to other possible
designs.”

Consider, for example, the criteria of D- and E-optimality. Using the criterion
of D-optimality, we search for designs minimizing the determinant of the covariance
matrix of the least squares estimate of β or, in geometric terms, the volume of the
confidence ellipsoid for β (if the errors are normally distributed; cmp. with [17],
Section IV.2.1). On the other hand, if we use the criterion of E-optimality, we
minimize the maximum variance of linear combinations cTβ, where c are vectors of
norm 1 or, equivalently, minimize the diameter of the confidence ellipsoid for β (cmp.
with [17], Section IV.2.5).

However, the D-optimal design sometimes leads to a confidence ellipsoid of
large diameter, while the E-optimal design can result in a confidence ellipsoid of
extremely large volume. The situation is similar for the infinite number of possible
criteria with their own statistical or geometric interpretations. In other words, the
performance of designs can strongly depend on the choice of a criterion.
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In accord with the problem described above, we set the following aims:

• For a given experimental design ξ calculate the minimal efficiency of

ξ with respect to all orthogonally invariant criteria, i.e. calculate

min
Φ∈O

eff (ξ|Φ)

This value, which we will call the O-minimal efficiency of ξ, can be interpreted
the measure of guaranteed performance of ξ under an arbitrary selection of a
criterion from O.

• Find the design which maximizes the minimal efficiency with respect

to all orthogonally invariant criteria, i.e. find a design ξ∗, such that

min
Φ∈O

eff (ξ∗|Φ) ≥ min
Φ∈O

eff (ξ|Φ) for all ξ ∈ Ξ

Therefore, ξ∗ is the most performance-stable design under an arbitrary selection
of a criterion from O. We will call ξ∗ the O-maximin efficient design.

2.2 Main results of the thesis

In this section, we will give a survey of the main results of this work. Paralelly,
we will describe the most important connections of the obtained results with known
theorems from the optimal design literature.

2.2.1 Theoretical results

• We proved that the minimal efficiency of a design ξ with respect to the class
of all orthogonally invariant criteria is equal to the minimal efficiency of ξ with
respect to at most m criteria of Ek-optimality (Theorem 11). Therefore, the
problem of how to calculate or bound the O-minimal efficiency of any given
design reduces to the problem of how to calculate or bound the Ek-optimal
values of the model (f,X).

• To facilitate the identification of the Ek-optimal designs and values, we formu-
lated necessary and sufficient conditions for Ek-optimality (Theorem 6). This
theorem generalizes the equivalence theorems for E-optimality and T -optimality
(see [19], p. 182 and p. 240).

• We showed that the universal optimality of a given design ξ, i.e. simultaneous
optimality of ξ with respect to all orthogonally invariant criteria, can be verified
by a direct maximization of at most m known functions over the experimental
domain (Theorem 12). This result significantly simplifies the implict claim in
Theorem 2.1. from the paper [1].

• We formulated a necessary and sufficient condition for the O-maximin efficient
designs (Theorem 14).
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• We proved that for any k, the Ek-optimal value of the model (f,X) is bounded
from above by the square the k-radius of the Elfving set (Theorem 23). This
generalizes a result in the article [20] which states that the E-optimal value is
equal or less than the squared radius of the sphere inscribed to the Elfving set.

• For the Ek-optimal values, we constructed upper bounds which depend only
on the eigenvalues of a regular Φp-optimal information matrix (Theorem 27).
This result leads to strenghtening of the bounds on E-efficiency of Φp-optimal
designs given in Theorem 5.1 in the paper [6].

• We proved that the efficiency of any D-optimal design is at least h/m with
respect to all orthogonally invariant criteria, where h is the minimal multiplicity
of an eigenvalue of the D-optimal information matrix (Theorem 32).

2.2.2 Analysis of specific models

• We proved universal optimality of the uniform equidistant support design in the
trigonometric regression model on [0, 2π] . This extends theorems concerning
special subclasses of orthogonally invariant criteria (see [19], Section 9.16, and
the article [25], Theorem 3.1). Moreover, we proved universal optimality of
certain symmetric designs for a model with the experimental domain being a
sphere in the lp-norm, generalizing a result from the paper [4]. (Chapter 7)

• For the multivariate linear regression of the first degree over the unit cube, we
found an analytic formula for the O-minimal efficiency of the neighbor-vertex
designs, covering all Φp-optimal designs constructed in the paper [3]. Moreover,
we found the O-maximin efficient design for any degree of the model. (Chapter

8)

• For the multivariate linear regression of the first degree with a constant term, we
constructed the E- and D-optimal designs. We also calculated the O-minimal
efficiency of the E-optimal design and found bounds on the O-minimal efficiency
of the D-optimal design. (Chapter 9)

• For the quadratic, cubic and biquadratic regression on the interval [−1, 1] we
found all Ek-optimal designs and numerically computed the O-minimal effi-
ciency of all Φp-optimal designs. Moreover, we derived the O-maximin efficient
design for the quadratic regression. (Chapter 10)

• We constructed a method which allows us to remove the points from the ex-
perimental domain which can not support any D-optimal design measure. For
a cubic polynomial regression without the intercept term we demonstrate how
can increasingly large parts of the experimental domain be discarded in the
process of computation of the D-optimal design. (Chapter 11)
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Chapter 3

ORTHOGONALLY INVARIANT CRITERIA

3.1 Orthogonal invariance and comparison of confidence ellipsoids

In this section, we will analyse the properties of the class O of orthogonally invariant
criteria as defined in Section 1.3, with focus on isotonicity and orthogonal invariance.
The main aim is to show why is the property of orthogonal invariance important for
all criteria which measure quality of designs according to the size of the confidence
ellipsoid for the parameter β.

Firstly, notice that the property of orthogonal invariance of a matrix function
Φ : Sm

+ → R is equivalent to the assumption that Φ (C) depends only on the eigenval-
ues of C, i.e. if λ(C) = λ (D) for some C,D ∈ Sm

+ , then Φ (C) = Φ (D). This is an
immediate consequence of the fact that Φ (C) = Φ (diagλ (C)) for any C ∈ Sm

+ and
an orthogonally invariant Φ. (For more properties of orthogonally invariant matrix
functions, see e.g. [1], [26], [14] or [2] p. 104-108.)

In the sequel, we will show that orthogonal invariance together with isotonicity
can be substituted by a single assumption of ”spectral monotonicity”; more precisely:

Proposition 1 ([8]) Let Φ : Sm
+ → [0,∞). Then the following statements are equiv-

alent:
(i) Φ is isotonic and orthogonally invariant.
(ii) For all C,D ∈Sm

+ : If λ (C) ≤ λ (D) then Φ (C) ≤ Φ (D).

Proof. Let Φ : Sm
+ → [0,∞) be isotonic and orthogonally invariant, and let λ (C) ≤

λ (D) for some C,D ∈Sm
+ . Then diag (λ (C)) ≤ diag (λ (D)) in Loewner ordering,

thus Φ (C) = Φ(diag λ (C)) ≤ Φ(diag λ (D)) = Φ (D). This proves the ”(i)⇒(ii)”
part of the proposition.

To prove the converse, suppose that for any C,D ∈Sm
+ such that λ (C) ≤

λ (D), we have Φ (C) ≤ Φ (D). If C ≤ D, then from 7.7.4 (c) in [10], p. 471 we
have λ (C) ≤ λ (D) which implies Φ (C) ≤ Φ (D) by the assumption. (See also [1],
p. 327.) This proves isotonicity of Φ. Furthermore, if λ (C) = λ (D) then we have
both λ (C) ≤ λ (D) and λ (D) ≤ λ (C), which means that Φ (C) ≤ Φ (D) ≤ Φ (C)
entailing Φ (C) = Φ (D). Hence, Φ (C) depends only on the eigenvalues of C, which
means that Φ is orthogonally invariant.

The previous proposition can be geometrically formulated in terms of confi-
dence ellipsoids, as we will explain. For β̂ ∈ Rm, c > 0, and C ∈ Sm

+ let
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C
β̂,c

(C) =
{
b ∈ Rm :

(
b− β̂

)T
C
(
b− β̂

)
≤ c

}

If the errors are normally distributed and D(β̂) ∈ Sm
++ is the covariance ma-

trix of the least squares estimate β̂, then C =
(
D(β̂)

)−1
is the information matrix

and C
β̂,c

(C) is a confidence ellipsoid covering the true parameter β with probability

P [χ2
m ≤ c] (For details, see [17] p. 79,80).

In the next proposition, a rigid-motion transformation is the composition of
an orthogonal transformation and a shift by a vector.

Proposition 2 ([8]) Let Φ : Sm
+ → [0,∞). Then the following statements are equiv-

alent:
(i) Φ is isotonic and orthogonally invariant.
(ii) For all C,D ∈Sm

+ : If for any β̂1, β̂2 ∈ Rm and c > 0 there exists a rigid-motion
transformation ρ : Rm → Rm such that ρ(C

β̂1,c
(C)) ⊇ C

β̂2,c
(D), then Φ (C) ≤ Φ (D).

Proof. Proposition 2 follows from Proposition 1 once we prove that for all C,D ∈ Sm
+

these two statements are equivalent:
(iii) For any β̂1, β̂2 ∈ Rm and c > 0 there exists a rigid-motion transformation

ρ : Rm → Rm such that ρ(C
β̂1,c

(C)) ⊇ C
β̂2,c

(D);

(iv) λ (C) ≤ λ (D) componentwise.
It is simple to show that for any H ∈ Sm

+ , β̂, s ∈ Rm, c > 0 and a regular
matrix A of type m×m we have

A·C
β̂,c

(H) + s = C
Aβ̂+s,c

((A−1)
T
HA−1).

”(iii)⇒(iv)” If (iii) holds then choosing β̂1 = β̂2 = 0 and c = 1 we see that
there must exist δ ∈ Rm and an orthogonal matrix U such that for Q = UCUT we
have Cδ,1(Q) ⊇ C0,1(D). Let a ∈ Rm, d > 0 and aT Da ≤ d. Then the vectors 1√

d
a

and − 1√
d
a are members of C0,1(D), hence they both belong to Cδ,1(Q). It follows that

(
1√
d
a− δ

)T
Q
(

1√
d
a− δ

)
≤ 1 as well as

(
− 1√

d
a− δ

)T
Q
(
− 1√

d
a− δ

)
≤ 1.

Summing up these two inequalities we obtain 1
d
aT Qa + δTQδ ≤ 1. Because

Q ∈ Sm
+ we have δTQδ ≥ 0, thence aTQa ≤ d. This clearly implies that for any

a ∈ Rm we have aTQa ≤ aTDa and consequently Q ≤ D in Loewner ordering.
Therefore λ (C) = λ (Q) ≤ λ (D), where the inequality follows from 7.7.4 (c) in [10].

”(iii)⇐(iv)” Let (iv) hold, D = V diag (λ (D))VT and C = R diag (λ (C))RT

for some orthogonal matrices V, R. Let β̂1, β̂2 ∈ Rm and c > 0 be arbitrary. Let ρ
be the rigid-motion transformation which is defined by the formula

ρ (·) = U× (·) + r, where U = VRT , r = β̂2 −Uβ̂1

Evidently, λ (C) ≤ λ (D) implies that for all β̂ ∈ Rm: C
β̂,c

(diag (λ (C))) ⊇
C

β̂,c
(diag (λ (D))). Therefore
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ρ(C
β̂1,c

(C)) = C
Uβ̂1+r,c

(UCUT ) = C
β̂2,c

(V diag (λ (C))VT ) =

= V·C
VT β̂2,c

(diag (λ (C))) ⊇ V·C
VT β̂2,c

(diag (λ (D))) = C
β̂2,c

(D)

The previous proposition can be roughly formulated as follows. Suppose that
we consider a confidence ellipsoid C1 to be ”equally large or larger” than a confidence
ellipsoid C2, if C1 can be shifted and orthogonally rotated to cover C2. Moreover,
define a partial ordering ⊑ comparing the amout of information contained in infor-
mation matrices C, D as C ⊑ D iff the confidence ellipsoid corresponding to C will
certainly be equally large or larger than the confidence ellipsoid corresponding to
D. Then Proposition 2 means that, for a matrix function Φ : Sm

+ → [0,∞), the
properties of Loewner isotonicity and orthogonal invariance can be substituted by
the assumption of monotonicity with respect to the ordering ⊑.

3.2 Criteria of Ek-optimality

In this section we begin the study of a class of criteria having an essential importance
for the entire work.

For k ∈ {1, ..., m}, let Φ̃Ek
(A) be the sum of the k smallest eigenvalues of

A ∈ Sm, i.e.

Φ̃Ek
: Sm → (−∞,∞) , Φ̃Ek

(A) =
k∑

i=1

λi(A)

The restriction of the function Φ̃Ek
onto Sm

+ is the criterion ΦEk
ofEk-optimality

defined in Section 1.3.

Evidently, the functions ΦEk
are orthogonally invariant. Proposition 1 implies

that these functions are also isotonic. Furthermore, positive homogeneity and upper
semicontinuity are clear (upper semicontinuity is a consequence of continuity of the
functions λi : Sm → R themselves; cmp. e.g. [10] p. 540). Moreover, for any C ∈ Sm

+

we have
ΦEk

(C) = minU∈Um,k
trUTCU

where Um,k is the set of all matrices U of type m × k, such that UTU = Ik (the
theorem of Ky Fan; see e.g. [10] p. 191). It follows that ΦEk

is a minimum of
linear functions, which entails concavity of ΦEk

(see also [14], [16]). Consequently, we
obtained

Proposition 3 ([8]) For any k ∈ {1, ..., m}, the function ΦEk
: Sm

+ → [0,∞) is an
orthogonally invariant criterion.

Notice that criteria ΦEk
are not strictly concave (i.e. we can have more than

one Ek-optimal information matrix) and, with the exception of ΦE1
, they can be pos-

itive for a singular information matrix (as is the case, for instance, in the polynomial
regression model analyzed in Chapter 10).
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The functions Φ̃Ek
are not differentiable everywhere on Sm, with the exception

of the linear function Φ̃Em . Nonetheless, it is possible to find the subdifferential
∂Φ̃Ek

(A) of the function Φ̃Ek
in any fixed A ∈ Sm, which is the set of all subgradients

of Φ̃Ek
in A (see [22] p. 308 or [21]; notice that the trace of a product of two matrices

corresponds to the scalar product):

∂Φ̃Ek
(A) =

{
Y ∈ Sm : Φ̃Ek

(B) ≤ Φ̃Ek
(A) + tr ((B−A)Y) for all B ∈ Sm

}
.

The following proposition is in all important aspects equal to a claim published
in [14] (see also [16]).

Proposition 4 Let A ∈ Sm, and let λ(A) = λ = (λ1, ..., λm)T . Then ∂Φ̃Ek
(A) is

the set of all matrices U diag (γ)UT , where the orthogonal matrix U satisfies A =
U diag (λ)UT , and the vector γ = (γ1, ..., γm)T satisfies: γi ∈ [0, 1] for all i = 1, ..., m,
γi = 1 if λi < λk, γi = 0 if λi > λk, and

∑m
i=1 γi = k.

In the case of λk(A) being strictly less than λk+1(A), the subdifferential
∂Φ̃Ek

(A) contains elements
∑k

i=1 uiu
T
i , where Aui = λi(A)ui, 〈ui, uj〉 = δij (Kro-

necker delta) for i, j = 1, ..., k. It is easy to see that for any choice of the vectors ui,
the sum

∑k
i=1 uiu

T
i is a unique matrix: the orthogonal projector on the linear space

generated by the eigenvectors of A corresponding to the k smallest eigenvalues. That
is, in this case the function Φ̃Ek

is differentiable in A, and the gradient is the matrix
of orthogonal projection.

If λk(A) = λk+1(A), then the compact and convex set ∂Φ̃Ek
(A) contains a full

continuum of matrices, not all of which must be projectors, but projectors do play
an important role also in the general subdifferential ∂Φ̃Ek

(A). (By ‖Q‖F we denote

the Frobenius norm of Q ∈ Sm: ‖Q‖F =
√

tr (Q2).)

Proposition 5 Let A ∈ Sm, and Y ∈ ∂Φ̃Ek
(A). Then tr (Y) = k and ‖Y‖F ≤

√
k.

Moreover, the next three statements are equivalent:
(i) Y is an extreme point of ∂Φ̃Ek

(A).
(ii) Y is an orthogonal projector which projects on a k-dimensional subspace of Rm.
(iii) ‖Y‖F =

√
k.

Proof. For Y ∈ ∂Φ̃Ek
(A) we have tr (Y) = k and ‖Y‖F ≤

√
k which directly

follows from Proposition 4. We shall prove ”(i)⇔(ii)⇔(iii)” in the second part of the
proposition.

”(i)⇒(ii)”: For Y ∈ ∂Φ̃Ek
(A) we can assume that Y = U diag (γ)UT , where

U ∈ Um,m and γ ∈ [0, 1]m satisfy the conditions given by Proposition 4.
Suppose that Y is not an orthogonal projector, which means that γ /∈ {0, 1}m.

As
∑m

i=1 γi is a natural number (k), there must exist at least two indices 1 ≤ i1 <
i2 ≤ m such that the components γi1 , γi2 ∈ [ε, 1− ε] for some ε ∈ (0, 1/2]. Obviously,
i1, i2 must be such that λi1(A) = λi2(A) = λk(A). Take the m-dimensional vectors
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γ(1), γ(2) having the components same as γ with these exceptions: γ
(1)
i1 = γi1 − ε,

γ
(1)
i2 = γi2 + ε, γ

(2)
i1 = γi1 + ε and γ

(2)
i2 = γi2 − ε. It is straightforward to check that

the vectors γ(1), γ(2) are chosen such that both Y1 = U diag
(
γ(1)

)
UT and Y2 =

U diag
(
γ(2)

)
UT belong to ∂Φ̃Ek

(A), and that 1
2
Y1 + 1

2
Y2 = Y. Therefore, Y is not

an extreme point of ∂Φ̃Ek
(A).

We can close the proof of ”(i)⇒(ii)” noticing that any member of ∂Φ̃Ek
(A)

has trace equal to k, which means that any projector from ∂Φ̃Ek
(A) must project on

a k-dimensional space (the trace of an idempotent matrix is its rank).
”(ii)⇒(iii)”: If Y is an orthogonal projector on a k-dimensional space, then Y

is idempotent with trace k, hence ‖Y‖2F = tr (Y2) = tr (Y) = k, which implies (iii).

”(iii)⇒(i)”: If ‖Y‖F =
√
k, then Y is clearly an extreme point of the ball

B =
{
Q ∈ Sm : ‖Q‖F ≤

√
k
}
, and because ∂Φ̃Ek

(A) ⊆ B we obtain (i).

Thus, the Minkowski Theorem (see e.g. [22] p. 167 or [2] p.68) entails that
∂Φ̃Ek

(A) is a convex hull of the set of all orthogonal projectors contained in ∂Φ̃Ek
(A).

(We remark that a convex combination of two orthogonal projectors does not have
to be an orthogonal projector itself.)

3.3 Equivalence theorem for Ek-optimality

Using ∂Φ̃Ek
, we can formulate a characterization of Ek-optimal designs, i.e. an ”equiv-

alence theorem” for Ek-optimality in the general model (f,X).

Theorem 6 ([8]) Let ζ ∈ Ξ and let λ = (λ1, ..., λm)T = λ(M (ζ)). Then the next
three statements are equivalent:
(i) ζ is Ek-optimal for the model (f,X).
(ii) ΦEk

(M (ζ)) = max
x∈X

fT (x)Yf(x) for some Y ∈ ∂Φ̃Ek
(M (ζ)).

(iii) ΦEk
(M (ζ)) = max

x∈X
fT (x)Yf(x) for some Y ∈ Sm

+ such that tr(Y) = k, Y ≤ Im.

Proof. A well known theorem from convex analysis (see e.g. [22] part 7.4. or
[21]) implies that M = M (ζ) maximizes Φ̃Ek

(hence also ΦEk
) on M if and only if

there exists Y ∈ ∂Φ̃Ek
(M), such that tr(NY) ≤ tr(MY) for all N ∈ M, resp. iff

supN∈M tr(NY) = tr(MY). But

supN∈M tr(NY) = supξ∈Ξ tr(
∑

ξ(x)>0 ξ (x) f(x)fT (x)Y) =
= supξ∈Ξ

∑
ξ(x)>0 ξ (x) fT (x)Yf(x) = max

x∈X
fT (x)Yf(x)

Also, for any choice Y = U diag (γ)UT where U, γ are given in Proposition
4, we have tr(MY) = tr(diag (λ) diag (γ)) = ΦEk

(M). This proves (i)⇔(ii).
Next, the implication (ii)⇒(iii) follows from Proposition 4, as for any Y ∈

∂Φ̃Ek
(M) we have tr(Y) = k, and λi(Y) ∈ [0, 1] giving Y ≤ Im.
We will prove (iii)⇒(ii) by simply showing that the matrix Y from (iii) is a

subgradient of Φ̃Ek
in M = M (ζ). Let (iii) hold. Obviously
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tr(MY) = tr(
∑

ζ(x)>0 ζ (x) f(x)fT (x)Y) =
=
∑

ζ(x)>0 ζ (x) fT (x)Yf(x) ≤ max
x∈X

fT (x)Yf(x) = ΦEk
(M).

For any B ∈ Sm we thus have Φ̃Ek
(M)+tr ((B−M)Y) ≥ tr (BY). Moreover

from Theorem 3.4 in [16] it follows that:

Φ̃Ek
(B) = min

{
tr(BH) : H ∈ Sm

+ ,H ≤ Im, tr(H) = k
}
.

Hence tr (BY) ≥ Φ̃Ek
(B), which entails Φ̃Ek

(M)+tr ((B−M)Y) ≥ Φ̃Ek
(B).

By the definition of subgradient, this means that Y ∈ ∂Φ̃Ek
(M).

Notice that the previous theorem gives us a generalization of the equivalence
theorem for E-optimality in the form of [19], p. 182. The equivalence theorem for
T -optimality [19], p. 240 is a direct consequence as well.

According to the discussion above, Theorem 6 provides an easy test of Ek-
optimality for those designs ζ , that M = M (ζ) has λk(M) < λk+1(M), i.e. if Φ̃Ek

is
differentiable in M. In such a case we only need to check that

ΦEk
(M) = max

x∈X

∑k
i=1

(
fT (x)ui

)2

where u1, ..., uk are (arbitrary) orthonormal eigenvectors corresponding to the
eigenvalues λ1(M), ..., λk(M).

If Φ̃Ek
is not differentiable in M, that is if ∂Φ̃Ek

(M) contains more than one
element, then Theorem 6 can still be applicable. The reason is that ∂Φ̃Ek

(M) is a
convex set (generated by a known set of projectors; see Proposition 5) and for all
x ∈ X the function fT (x) (·) f(x) : Sm → R is linear, therefore maxx∈X f

T (x) (·) f(x)
is a finite convex function. Nevertheless, finding the appropriate subgradient can be
a hard convex-optimization problem itself.

The efficiency of designs with respect to criteria of Ek-optimality is of partic-
ular interest in the following parts of this work.

Theorem 7 Let ξ ∈ Ξ, and let k ∈ {1, ..., m}. Then

eff(ξ|ΦEk
) ≥ ΦEk

(M (ξ))

max
x∈X

fT (x)Yf(x)
for any Y ∈ ∂Φ̃Ek

(M (ξ))

Proof. Let ξ ∈ Ξ, 1 ≤ k ≤ m, ζ∗k be an Ek-optimal design, and let Y ∈ ∂Φ̃Ek
(M (ξ)).

From the definition of subgradient we have

ΦEk
(M (ζ∗k)) ≤ ΦEk

(M (ξ)) + tr ((M (ζ∗k)−M (ξ))Y)

In the same time, we can show that tr (M (ζ∗k)Y) ≤ max
x∈X

fT (x)Yf(x) and ΦEk
(M (ξ)) =

tr (M (ξ)Y) similarly as in the proof of ”(i)⇔(ii)” in Theorem 6. Combining these
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three facts we obtain ΦEk
(M (ζ∗k)) ≤ max

x∈X
fT (x)Yf(x). The theorem now follows from

the definition of efficiency. (Notice also that we obtained max
x∈X

fT (x)Yf(x) > 0.)

If Φ̃Ek
is not differentiable in M (ξ), the strongest bound on the Ek-efficiency of

ξ ∈ Ξ based on Theorem 7 assumes that we find the minimum of maxx∈X f
T (x)Yf(x)

for all subgradients Y. Here we can encounter similar problems as in the case that we
need to verify Ek-optimality of ζ (see the discussion after Theorem 6). Fortunately,
we will be able to avoid these difficulties in computation of bounds on the O-minimal
efficiency of a design defined and analyzed in the next section, esp. Theorem 11. In
this respect, the following auxiliary result will be important:

Proposition 8 For k ∈ {1, ..., m} and ξ ∈ Ξ define vξ (k) = ΦEk
(M (ξ)) and

vξ (0) = 0. Let vξ(·) : [0, m] → [0,∞) be the piecewise-linear function interpolat-
ing nodes (0, vξ (0)), ..., (m, vξ (m)), which means that for x ∈ [0, m)

vξ(x) = (1− (x− ⌊x⌋))vξ (⌊x⌋) + (x− ⌊x⌋)vξ (⌊x⌋+ 1)

Consider the function v (·) : [0, m]→ [0,∞) defined by

v (x) = sup
ξ∈Ξ

vξ(x) for x ∈ [0, m]

Then v is an increasing convex function.

Proof. The only nontrivial step is to show that v is convex. This will follow once
we prove that for any fixed ξ the function vξ is convex, since a pointwise supremum
of convex functions is again a convex function (see e.g. [22], p. 35; notice also that
the functions vξ are bounded from above by the Em-optimal value.) The case m = 1
is trivial. Let m > 1. Clearly, to prove convexity of the piecewise linear function vξ

it suffices to show that vξ(k + 1)− vξ(k) ≥ vξ(k)− vξ(k − 1) for all k = 1, ..., m− 1.
But this inequality is equivalent to λk+1(M (ξ)) ≥ λk(M (ξ)).

For the Ek-optimal values of an m-dimensional model (f,X) we will use the
notation vf,X(k), or simply v(k) if the model in consideration is clear from the context.
Notice that for an integer k, the symbol v(k) from the previous theorem is consistent
with our notation of the Ek-optimal values.



Chapter 4

MINIMAL EFFICIENCY OF DESIGNS UNDER THE CLASS OF

ORTHOGONALLY INVARIANT INFORMATION CRITERIA

4.1 The O-minimal efficiency of designs

In this chapter we will prove the main theoretical results of this work. We will
show that, as far as the problem of minimal efficiency (and universal optimality) is
concerned, we can restrict our attention from the uncountable class O to the finite
subset of criteria of Ek-optimality.

Suppose that ξ, ζ ∈ Ξ are designs such that M (ξ) ∈ Sm
++, and let Φ ∈ O. Let

us define the relative Φ-efficiency of ξ with respect to ζ in the form

eff(ξ : ζ |Φ) = Φ (M (ξ)) /Φ (M (ζ))

where c/0 =∞ for c > 0. The efficiency eff(ξ : ζ |Φ) can thus be intuitively interpreted
as the proportion of the information gained by the design ξ compared to ζ .

Theorem 9 ([8]) Let ξ, ζ ∈ Ξ, M (ξ) ∈ Sm
++. Then

inf
Φ∈O

eff(ξ : ζ |Φ) = min
k=1,...,m

eff(ξ : ζ |ΦEk
)

Proof. Recall that an m × m matrix S is said to be doubly stochastic, if it has
nonnegative entries and each column and row is summing to one. An m×m matrix
P is a permutation matrix, if each row and column contains exactly one element 1,
and m− 1 elements 0. Evidently, there are m! such matrices.

Let Rm
+ , and Rm

≤ denote the set of all m-dimensional vectors with nonnegative
components (the nonnegative orthant), resp. the set of all vectors with components
in a nondecreasing order. Let x = (x1, ..., xm)T , y = (y1, ..., ym)T ∈ Rm

≤ . If
∑k

i=1 xi ≥∑k
i=1 yi for k = 1, ..., m− 1, and

∑m
i=1 xi =

∑m
i=1 yi, then we will say that x majorizes

y, and denote this fact by x � y. (We use this notion as defined e.g. in [10] p.192,
cf. also with [19], p.144-5.)

In the proof, we will use the following theorems:
1. (Birkhoff theorem, see e.g. [10] p. 527) An m × m matrix S is doubly

stochastic if and only if S is a convex combination of permutation matrices.
2. (Hardy-Littlewood-Pólya theorem; see e.g. [10] p. 197) If x, y ∈ Rm

+ ∩Rm
≤ ,

then x � y if and only if x = Sy for some doubly stochastic matrix S.
Evidently, the inequality infΦ∈O eff(ξ : ζ |Φ) ≤ mink=1,...,m eff(ξ : ζ |ΦEk

) is clear
because ΦEk

∈ O. We will prove the converse inequality.
Denote l = λ(M (ξ)) and g = λ(M (ζ)). Define 0−1 =∞, ∞−1 = 0, and set
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δ = min
k=1,...,m

eff(ξ : ζ |ΦEk
) = min

k=1,...,m

(∑k
i=1 li

) (∑k
i=1 gi

)−1
,

g∗m = δ−1 (
∑m

i=1 li)−
∑m−1

i=1 gi, and g∗ = (g1, ..., gm−1, g
∗
m)T

As δ ≤ (
∑m

i=1 li) (
∑m

i=1 gi)
−1, we have g∗m ≥ gm, hence g∗ ≥ g and g∗ ∈

Rm
+ ∩ Rm

≤ . Moreover, δ−1∑k
i=1 li ≥

∑k
i=1 gi for k = 1, ..., m − 1, and δ−1∑m

i=1 li =(∑m−1
i=1 gi

)
+ g∗m, which implies δ−1l � g∗. Therefore, by the Hardy-Littlewood-Pólya

theorem there exists a doubly stochastic matrix S of the type m × m, such that
δ−1l = Sg∗. Because the elements of S, as well as the coordinates of g and g∗ are
nonnegative, the inequality g∗ ≥ g implies Sg∗ ≥ Sg, therefore δ−1l ≥ Sg. Next, from
the Birkhoff theorem we know that S =

∑m!
j=1 αjPj , where Pj is the j-th permutation

matrix, αj ∈ [0, 1] for j = 1, ..., m!, and
∑m!

j=1 αj = 1.
Let Φ ∈ O. For any permutation matrix Pj it holds that Φ (diag Pjg) =

Φ (diag g), since Φ is orthogonally invariant. Hence, the orthogonal invariance, con-
cavity, isotonicity, and homogeneity of Φ imply:

Φ(M (ζ)) = Φ (diag g) =
∑m!

j=1 αj (Φ (diag g)) =
∑m!

j=1 αj (Φ (diag Pjg)) ≤
≤ Φ

(
diag

(∑m!
j=1 αjPjg

))
= Φ (diag (Sg)) ≤ Φ (diag (δ−1l)) = δ−1Φ (M (ξ))

Therefore eff(ξ : ζ |Φ) = Φ (M (ξ)) /Φ(M (ζ)) ≥ δ which concludes the proof
of Theorem 9.

An important consequence of Theorem 9 is that it gives us a method how to
compute the minimal (absolute) efficiency with respect to O for any design. From
the previous theorem we immediately obtain:

Theorem 10 ([8]) Let ξ ∈ Ξ be any design. Then

inf
Φ∈O

eff(ξ|Φ) = min
k=1,...,m

eff(ξ|ΦEk
)

Hence, the minimal efficiency with respect to the uncountable set of all or-
thogonally invariant criteria is simply the minimal efficiency with respect to the set
of criteria ΦEk

, which numbers only m elements. In other words, once we computed
the model-specific Ek-optimal values v(k), we can directly calculate the minimal ef-
ficiency for any design ξ as

inf
Φ∈O

eff(ξ|Φ) = min
k=1,...,m

{ΦEk
(M (ξ))/v(k)}

We will call the value infΦ∈O eff(ξ|Φ) also the O-minimal efficiency of ξ and
denote it briefly by mineff(ξ|O), or minefff,X(ξ|O) if we feel the need to emphasize
the dependence on the model (f,X).

Surprisingly, in the previous theorem we can safely disregard the Ek-efficiency
of ξ for any such k, for which Φ̃Ek

is not differentiable in M (ξ). We will formalize this
claim in the following important strengthening of Theorem 10, including the entailed
bounds on the O-minimal efficiency.
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Let ξ be a design. Define the set

D (ξ) = {k ∈ {1, ..., m− 1} : λk (M (ξ)) < λk+1 (M (ξ))} ∪ {m}

The set D (ξ) = Df,X (ξ) corresponds to those indices k ∈ {1, ..., m}, such that Φ̃Ek

is differentiable in M (ξ). (See the remarks after Proposition 4.)

Theorem 11 Let ξ ∈ Ξ be any design. Then

mineff(ξ|O) = min
k∈D(ξ)

eff(ξ|ΦEk
)

Moreover, let M (ξ) = U diag λ (M (ξ))UT for some U = (u1, ..., um) ∈ Um,m. Define
matrices Uk = (u1, ..., uk) for k = 1, ..., m. Then

mineff(ξ|O) ≥ min
k∈D(ξ)

ΦEk
(M (ξ))

maxx∈X ‖UT
k f(x)‖2

Proof. For the first part of the theorem it suffices to prove that if s ∈ {1, ..., m− 1}
and s /∈ D (ξ), then eff(ξ|ΦEs) ≥ eff(ξ|ΦEk

) for some k ∈ {1, ..., m}, k 6= s, in view of
Theorem 10.

Consider the functions vξ and v from Proposition 8. If s /∈ D (ξ) then
λs (M (ξ)) = λs+1 (M (ξ)), therefore vξ(s− 1) + vξ(s+ 1) = 2vξ(s). Next, v is convex
which means v(s − 1) + v(s + 1) ≥ 2v(s). Consequently, for any s /∈ D (ξ) we can
write:

eff(ξ|ΦEs) =
vξ(s)

v(s)
≥ vξ(s− 1) + vξ(s+ 1)

v(s− 1) + v(s+ 1)

Hence, if s = 1 then vξ(s− 1) = v(s− 1) = 0 implies:

eff(ξ|ΦEs) = eff(ξ|ΦEs+1
)

If s > 1 we can use a decomposition to a convex combination to obtain:

eff(ξ|ΦEs) ≥
v(s− 1)

v(s− 1) + v(s+ 1)

vξ(s− 1)

v(s− 1)
+

v(s+ 1)

v(s− 1) + v(s+ 1)

vξ(s+ 1)

v(s+ 1)
≥

≥ min

{
vξ(s− 1)

v(s− 1)
,
vξ(s+ 1)

v(s+ 1)

}
= min

{
eff(ξ|ΦEs−1

), eff(ξ|ΦEs+1
)
}

The first part is thus proved.

The proof of the second part of the theorem uses the first part, Theorem 7,
and the fact that, in the case of differentiability, the gradient of ΦEk

in M (ξ) is
UkU

T
k (Proposition 4). Consequently, for (the only one) Y ∈ ∂Φ̃Ek

(M (ξ)) we have

maxx∈X f
T (x)Yf(x) = maxx∈X

∥∥∥UT
k f(x)

∥∥∥
2
.
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4.2 Equivalence theorem for universal optimality

It turns out that designs optimal with respect to all orthogonally invariant criteria
do exist in some special models. An example is the equispaced support design in the
trigonometric regression on the full circle or a sufficiently symmetric uniform design
on an m-dimensional sphere (see Chapter 7 for these and some other examples).

An immediate consequence of Theorem 10 is that a design ξ is optimal with
respect to all orthogonally invariant criteria (in other words: ξ is ”universally” optimal
for the class O) if and only if ξ is ΦEk

-optimal for all k = 1, ..., m. We point out that
this condition characterizing universally optimal designs is same as the one obtained
by Bondar for a somewhat different (yet related) class of criteria; see [1] for details.
However, we can formulate a much more explicit condition of how to verify universal
optimality, as we will show in the sequel.

To prove that a design ξ is universally optimal, that is ΦEk
-optimal for all k =

1, ..., m, we can use the equivalence theorem for Ek-optimality. However, this theorem
is difficult to apply for the cases when ΦEk

is not differentiable in M (ξ). Nevertheless,
one consequence of Theorem 11 is that we only need to check Ek-optimality for the
”easy” values of k, circumventing all difficulties with nondifferentiability. In the
following claim we use the set D (ξ) and matrices U1, ...,Um consisting of eigenvectors
of M (ξ) exactly as in Theorem 11.

Theorem 12 Let ξ ∈ Ξ. Then the following three statements are equivalent.
(i) ξ is optimal with respect to all orthogonally invariant criteria.
(ii) ξ is Ek-optimal for all k ∈ D (ξ).

(iii) ΦEk
(M (ξ)) = maxx∈X

∥∥∥UT
k f(x)

∥∥∥
2

for all k ∈ D (ξ).

Proof. Follows directly from Theorem 11.

Although universal optimality is based on nondifferentiable criteria, the pre-
vious theorem allows us to check universal optimality in a very similar way as the
equivalence theorems for differentiable criteria - by a simple maximization of known
functions over the compact set X.

4.3 O-maximin efficient designs

The results of Section 4.1 entail a natural question: If the model in consideration does
not admit a universally optimal design, are we able to find the design with maximum
possible O-minimal efficiency?

Consider the matrix function

Φ̃O : Sm → (−∞,∞); Φ̃O(A) = min
k=1,...,m

Φ̃Ek
(A)

v(k)
,

where v(k) is the Ek-optimal value, k = 1, ..., m. Clearly, the function ΦO,
defined as the restriction of Φ̃O onto Sm

+ , is an orthogonally invariant criterion and,
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in accord with Theorem 10, we can consider it to be the criterion of O-minimal
efficiency for the model (f,X). Therefore, the ΦO-optimal design can be called the
maximin efficient design with respect to O (shortly O-maximin efficient design).

As Φ̃O is a finite minimum of concave functions, it is not difficult to find the
subdifferential of Φ̃O, and consequently formulate an equivalence theorem for the O-
maximin efficient design. The next proposition follows from a general formula giving
the subgradient of a minimum of concave functions which can be found e.g. in [2]
p.47. (Cf. also [22] p.223.)

Proposition 13 ([8]) Let A ∈ Sm and let

I =
{
k ∈ {1, ..., m} : Φ̃Ek

(A)/v(k) = Φ̃O (A)
}

Then subdifferential of Φ̃O in A is the set

∂Φ̃O (A) =
⋃



∑

k∈J

αk

v(k)
∂Φ̃Ek

(A) :
∑

k∈I

αk = 1, and αk ≥ 0 for k ∈ I





Theorem 14 ([8]) A design ξ is maximin efficient with respect to O if and only if
there exists Y ∈ ∂Φ̃O (M (ξ)), such that ΦO(M (ξ)) = max

x∈X
fT (x)Yf(x).

The proof of the previous theorem is similar to the proof of (i)⇔(ii) in Theorem
6 and is therefore omitted. Notice that if M (ξ) is a point of nondifferentiability of Φ̃O,
then ∂Φ̃O (M (ξ)) possibly contains a continuum of subgradients, and the previous
theorem does not give us a method how to choose the right one for the equivalence
determining optimality. We also remark that the previous theorem can be formulated
in terms of directional derivatives of Φ̃Ek

, similarly as in [15]. Nevertheless, both
approaches are essentially same, and they suffer analogous disadvantages.

To illustrate the concept of O-maximin efficiency on an example, we will deter-
mine the maximin efficient designs (which are not universally optimal) for multivariate
linear regression models in Section 8.3 and for the quadratic regression on [−1, 1] in
Section 10.3.

Very often, it is difficult to find the exact Ek-optimal values which are neces-
sary to begin the search for an O-maximin efficient design. (For example in Chapter 9
we were not able to find the Ek-optimal values exactly, which precludes further search
for the O-maximin efficient design.) Hence, an analytic calculation of the O-maximin
efficient design can be a very hard problem. Therefore, a numerical algorithm deter-
mining the Ek-optimal values and, accordingly, computing the O-maximin efficient
design, would be a very useful addition to the theory developed in this work. Al-
though our preliminary considerations suggest that such an algorithm can indeed be
constructed (see e.g. [31], or [30] for some potentially useful methods), we refrained
from developing the complicated numerical methods in this work. The only numerical
construction of efficiency-robust (but, in general, not O-maximin efficient) designs is
hinted in the next section; the reason is its appealing simplicity.
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4.4 Efficiency robust designs based on linear programming

Let ζ∗k be a known Ek-optimal design for k = 1, ..., m. As mentioned above, knowledge
of the designs ζ∗k does not automatically mean that we can find an O-maximin efficient
design. Nevertheless, we can use them to construct a design with O-minimal efficiency
at least (but possibly much more than) 1/m.

Consider a vector w ∈ Rm
+ ;
∑m

i=1wi = 1 of weights and the convex combination
of the Ek-optimal designs given by

ζw =
m∑

i=1

wiζ
∗
i

From concavity of functions ΦEk
we obtain

mineff
(
ζw|O

)
= min

k=1,...,m

(
eff

(
m∑

i=1

wiζ
∗
i |ΦEk

))
≥ min

k=1,...,m

(
m∑

i=1

wi eff(ζ∗i |ΦEk
)

)

For any fixed k, the sum
∑m

i=1wi eff(ζ∗i |ΦEk
) contains the term wk eff(ζ∗k |ΦEk

) =
wk, which clearly implies

mineff
(
ζw|O

)
≥ min {w1, ..., wm}

Setting w1 = ... = wm = 1/m we see that the average of the Ek-optimal designs

satisfies mineff
(
ζw|O

)
≥ 1/m. (We will show that any D-optimal design has this

property as well; see Corollary 32.)

Nonetheless, we can go further and try to find the vector of weights

w∗ = argmax w

{
min

k=1,...,m

(
m∑

i=1

wi eff(ζ∗i |ΦEk
)

)}

such that for w∗ the lower bound on the O-minimal efficiency of ζw is maxi-
mized. Clearly, this requires maximization of a polyhedral concave function over an
m-dimensional simplex of weights, which is equivalent to the following problem of
linear programming:

maximize y subject to




eff(ζ∗1 |ΦE1
) · · · eff(ζ∗m|ΦE1

) −1 0 · · · 0 −1
eff(ζ∗1 |ΦE2

) · · · eff(ζ∗m|ΦE2
) 0 −1 · · · 0 −1

...
. . .

...
...

...
. . .

...
...

eff(ζ∗1 |ΦEm) · · · eff(ζ∗m|ΦEm) 0 0 · · · −1 −1
1 · · · 1 0 0 · · · 0 0







w1
...
wm

δ1
...
δm
y




=




0
...
0
1




(w1, ..., wm, δ1, ..., δm, y)
T ∈ R2m+1

+
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To solve this problem, we can use standard algorithms as the simplex method.
(See e.g. [28] for a book on linear programming which can be of particular interest
for a statistician.) Because the number of parameters m of a regression model is
usually small, it is also possible to simply compute all individual extreme points of
the compact polyhedral feasible set and find the optimum by a direct comparison of
their last component y. Geometry of linear programming entails that the number
of the extreme points with nonzero y is at most

(
2m
m

)
and the computation of them

requires solving at most
(

2m
m

)
systems of m + 1 independent linear equations with

m+ 1 unknowns.
We will exemplify this method on the quadratic regression model in Section

10.3 by calculating the design ζw∗ and comparing its performance with the known
O-maximin efficient design.



Chapter 5

BOUNDS ON THE EK-EFFICIENCY AND THE O-MINIMAL

EFFICIENCY BASED ON ORTHOGONAL SUBMODELS

5.1 Orthogonal submodels and the Poincaré separation theorem

In this chapter we prove that the Ek-optimal values of an m-dimensional model (f,X)
can be bounded from below as well as from above by the optimal values of orthogonal
submodels of (f,X). We will show that some of the obtained bounds admit an
interpretation as the k-radii of the Elfving set, which generalizes a known result about
E-optimality. Using the k-radii of the Elfving set, we can formulate a necessary and
sufficient condition for universal optimality under the class of orthogonally invariant
criteria.

Let 1 ≤ k ≤ m be two natural numbers. Recall that Um,k denotes the set of
all matrices U of type m× k such that UTU = Ik, i.e. Um,k is the set of all matrices
(u1, ..., uk) where u1, ..., uk ∈ Rm form an orthonormal system of vectors.

A k-dimensional model (g,X) will be called an orthogonal submodel of (f,X) if
g = UTf for some U ∈ Um,k. That is, an orthogonal submodel of (f,X) is any model
which consists of k ≤ m components of (f,X), or of some orthogonal reparametriza-
tion of (f,X). Notice that the relation of being an orthogonal submodel is transitive,
which means that if (h,X) is an orthogonal submodel of (g,X) and if (g,X) is an
orthogonal submodel of (f,X) then (h,X) is an orthogonal submodel of (f,X). This
follows from the fact that if 1 ≤ r ≤ k ≤ m, U ∈ Um,k and V ∈ Uk,r, then UV ∈ Um,r.

Let
(
UT f,X

)
be an r-dimensional orthogonal submodel of an m-dimensional

model (f,X), where U ∈ Um,r. Then

MUT f,X(ξ) = UT Mf,X(ξ)U for all ξ ∈ ΞX

MUT f,X = UTMf,XU

This explains the need for analysis of the relations between the eigenvalues of
matrices M ∈ Sm

+ and UTMU ∈ Sr
+. The main theoretical tool which we will use

is the Poincaré separation theorem (see e.g. [10] p. 190). For the purpose of this
chapter, we formulate the theorem in the following form.

Lemma 15 Let r,m ∈ N, 1 ≤ r ≤ m and let M ∈ Sm
+ , U ∈ Um,r, N = UT MU.

Then for all k = 1, ..., r

λk(M) ≤ λk(N) ≤ λk+m−r(M)
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To give a more intuitive description of the previous lemma, consider the special
case r = m− 1, m > 1. Then N = UTMU ∈ Sm−1

+ and the claim of Lemma 15 can
be visualized by the following scheme, where a→ b denotes a ≤ b.

λ1(M) → λ2(M) → λ3(M) · · · λm−1(M) → λm(M)
↓ ր ↓ ր ↓ · · · ↓ ր

λ1(N) → λ2(N) → λ3(N) · · · λm−1(N)

As a direct application of the Poincaré separation theorem we obtain:

Proposition 16 Let r,m ∈ N, 1 ≤ r ≤ m and let M ∈ Sm
+ , U ∈ Um,r, N = UT MU.

Then

ΦEk
(M) ≤ ΦEk

(N) if k ∈ {1, ..., r}
ΦEk

(M) ≥ ΦEk−m+r
(N) + ΦEm−r(M) if k ∈ {m− r + 1, ..., m} , r < m

The first corollary pertaining to the problem of Ek-optimality is Theorem 17.
Recall that by vg,X(k) we denote the Ek-optimal value of a model (g,X).

Theorem 17 Let 1 ≤ k ≤ m and let (f,X) be an m-dimensional model. Suppose
that

ΦEk
(Mf,X(ζ)) ≥ vg,X(k)

for some design ζ ∈ ΞX and an r-dimensional orthogonal submodel (g,X) of the model
(f,X), where k ≤ r ≤ m. Then the following statements hold:
(i) The design ζ is Ek-optimal for the model (f,X);
(ii) Any design which is Ek-optimal for (f,X) is also Ek-optimal for (g,X).

Proof. Let 1 ≤ k ≤ m, ζ ∈ ΞX and let ΦEk
(Mf,X(ζ)) = vUT f,X(k) for some

U ∈ Um,r such that k ≤ r ≤ m. Let ζ∗k ∈ ΞX be any Ek-optimal design for
the model (f,X). From the assumption, Proposition 16, and from the fact that
UTMf,X(ζ∗k)U = MUT f,X(ζ∗k) we obtain

vUT f,X(k) = ΦEk
(Mf,X(ζ)) ≤ vf,X(k) = ΦEk

(Mf,X(ζ∗k)) ≤
≤ ΦEk

(
UTMf,X(ζ∗k)U

)
= ΦEk

(
MUT f,X(ζ∗k)

)
≤ vUT f,X(k)

Therefore ΦEk
(Mf,X(ζ)) = vf,X(k) which implies (i) and ΦEk

(
MUT f,X(ζ∗k)

)
=

vUT f,X(k) which entails (ii).

Thus, a suitable orthogonal submodel (g,X) of the model (f,X) can be used
to prove Ek-optimality of a given design ξ ∈ ΞX. In this view, Theorem 17 is a
sufficient condition on Ek-optimality. Moreover, it can also help us determine all
Ek-optimal designs of the model (f,X) in the sense that the only candidates on the
Ek-optimal designs of (f,X) are the Ek-optimal designs of (g,X). We remark that
the model (g,X) can have greatly reduced dimension or exhibit some easy to analyse
symmetries, which directly yield the Ek-optimal values vg,X(k). The use of Theorem
17 is demonstrated in the proofs of Theorems 47 and 56.
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5.2 Bounds on Ek-optimal values determined by orthogonal submodels

Proposition 16 immediately gives us bounds on the ΦEk
-optimal values of (f,X).

Proposition 18 Let r,m ∈ N, m > 1, 1 ≤ r < m. Let (f,X) be an m-dimensional
model and U ∈ Um,r. Then

vf,X(k) ≤ vUT f,X(k) if k ∈ {1, ..., r}
vf,X(k) ≥ vUT f,X(k −m+ r) if k ∈ {m− r + 1, ..., m}

The particularly important upper bound on vf,X(k) given by the previous
theorem can be concisely restated as follows: the Ek-optimal value of the model (f,X)
is bounded from above by the Ek-optimal value of any of its orthogonal submodels.

Suppose now that (f1,X) , (f2,X) , ... is a sequence of models such that (fi,X)
is an i-dimensional orthogonal submodel of (fi+1,X) for i = 1, 2, .... Proposition 18
implies that the relations between the values vfi,X(k) can be visualized by a ”lattice”
of bounds depicted below. (Compare this diagram with the exact Ek-optimal values
for the successive degrees models of spring balance weighing in Section 8.2 and for
the polynomial models in Section 10.1.)

vf1,X(1) ← vf2,X(1) ← vf3,X(1) ← vf4,X(1) ← · · ·
ց ↓ ց ↓ ց ↓ ց · · ·

vf2,X(2) ← vf3,X(2) ← vf4,X(2) ← · · ·
ց ↓ ց ↓ ց · · ·

vf3,X(3) ← vf4,X(3) ← · · ·
ց ↓ ց · · ·

vf4,X(4) ← · · ·
ց · · ·
· · ·

Taking the set of all orthogonal submodels of (f,X) into account, we obtain
the following chain of bounds on vf,X(k) from above.

Theorem 19 Let (f,X) be an m-dimensional model, m > 1, and let k ∈ {1, ..., m− 1}.
Then

vf,X(k) ≤ inf
U∈Um,m−1

vUT f,X(k) ≤ ... ≤ inf
U∈Um,k

vUT f,X(k)

Moreover, let M be an Ek-optimal information matrix for (f,X) and let λk(M) <
λs(M) for some s ∈ {k + 1, ..., m}. Let u1, ..., us−1 be a sequence of orthonormal
eigenvectors of M corresponding to λ1(M), ..., λs−1(M). Then vf,X(k) = vUT f,X(k)
for U = (u1, ..., us−1) ∈ Um,s−1.

Proof.

Let r ∈ {k + 1, .., m}. Take U1 ∈ Um,r−1 and any vector u ∈ Rm, ‖u‖ = 1 such
that u is orthogonal to all columns of U1. Clearly, U0 = (U1, u) ∈ Um,r. Therefore(
UT

1 f,X
)

is an orthogonal submodel of
(
UT

0 f,X
)
, which means that vUT

0
f,X(k) ≤

vUT
1

f,X(k) by Proposition 18. Since U1 ∈ Um,r−1 was arbitrary, we obtained
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infU∈Um,r vUT f,X(k) ≤ infU∈Um,r−1
vUT f,X(k)

This implies the first part of the theorem.
To prove the second part, let M, s, and U = (u1, ..., us−1) ∈ Um,s−1 be as

described in the statement of the theorem, and let λ = λ(M). As M is assumed to
be Ek-optimal, Proposition 4 and the part ”(i)⇔(ii)” of Theorem 6 imply that there
exist coefficients γ1, .., γs−1 ∈ [0, 1], such that

∑s−1
i=1 γi = k, next γi = 1 if λi < λk,

γi = 0 if λi > λk and

ΦEk
(M) = max

x∈X
fT (x)

(∑s−1
i=1 γiuiu

T
i

)
f(x) =

max
x∈X

(UTf)T (x) diag(γ1, .., γs−1)(U
Tf)(x)

Moreover, UT MU =diag(λ1, ..., λs−1) which implies ΦEk

(
UTMU

)
= ΦEk

(M),
therefore

ΦEk

(
UTMU

)
= max

x∈X
(UTf)T (x) diag(γ1, .., γs−1)(U

Tf)(x)

On the other hand tr(diag(γ1, .., γs−1)) = k and diag(γ1, .., γs−1) ≤ Im, which

means that UTMU is Ek-optimal for
(
UTf,X

)
by Theorem 6, part ”(i)⇔(iii)”.

Consequently

vUT f,X(k) = ΦEk

(
UTMU

)
= ΦEk

(M) = vf,X(k).

The previous theorem extends the use of Theorem 17 such that it gives us a
condition under which there indeed does exist an orthogonal submodel of (f,X) with
the same Ek-optimal value as the suppermodel.

For example, assume that we are able to rule out the possibility that the
information matrix of anE-optimal design ξ is proportional to the identity matrix. By
Theorem 19, the design ξ is among the E-optimal designs of some m−1 dimensional
orthogonal submodel of (f,X). This submodel is the one which is ”minimal” in the
sense that it has the minimal E-optimal value, from all m−1 dimensional orthogonal
submodels of (f,X).

For completeness, we will also formulate a counterpart of Theorem 19 giving
us a sequence of lower bounds on the Ek-optimal values.

Theorem 20 Let (f,X) be an m-dimensional model, m > 1, and let k ∈ {2, ..., m}.
Then

vf,X(k) ≥ sup
U∈Um,m−1

vUT f,X(k − 1) ≥ ... ≥ sup
U∈Um,m−k+1

vUT f,X(1)

Moreover, let M be an Ek-optimal information matrix for (f,X) and let λ1(M) =
λ2(M) = ... = λs(M) = 0 for some s ∈ {1, ..., k − 1}. Let us+1, ..., um be a sequence of
orthonormal eigenvectors of M corresponding to λs+1(M), ..., λm(M). Then vf,X(k) =
vUT f,X(k − s) for U = (us+1, ..., um) ∈ Um,m−s.
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Proof. Let r ∈ {1, ..., k − 1}. Take any U1 ∈ Um,m−r and choose a vector u ∈ Rm,
‖u‖ = 1 such that u is orthogonal to all columns of U1. We have U0 = (U1, u) ∈
Um,m−r+1, and

(
UT

1 f,X
)

is an orthogonal submodel of
(
UT

0 f,X
)
, hence vUT

0
f,X(k −

r+1) ≥ vUT
1

f,X(k− r) by Proposition 18. As U1 was an arbitrary member of Um,m−r,
we obtain

sup
U∈Um,m−r+1

vUT f,X(k − r + 1) ≥ sup
U∈Um,m−r

vUT f,X(k − r)

This proves the first part of the theorem. For the second part, suppose that
M, s, and U = (us+1, ..., um) ∈ Um,m−s satisfy assumptions of the premise. Clearly
UTMU = diag (λs+1(M), ..., λm(M)) hence

vf,X(k) =
∑k

i=s+1 λi(M) = ΦEk−s
(UTMU) ≤ vUT f,X(k − s)

By Proposition 18 we have vf,X(k) ≥ vUT f,X(k−s) and consequently vf,X(k) =
vUT f,X(k − s).

For k > 1, the Ek-optimal information matrix for the model (f,X) can be
singular, in which case the Ek-optimal value is equal to the Ek−s-optimal value for
some orthogonal submodel of dimension s < m. This is the case in the polynomial
regression model; see Section 10.1. Nevertheless, there are special models, where any
Ek-optimal information matrix is regular (for k < m) and vf,X(k) is strictly greater
than the largest lower bound from Theorem 20. An example is the regression model
on a sphere in Rm centered in origin (Section 7.1).

5.3 Elfving set geometry of the bounds on Ek-optimal values

Many properties of the model (f,X), which are interesting from the perspective of
optimal experimental design, can be geometrically analyzed using the Elfving set
defined in Section 1.1 (see e.g. [17], [19], [18], [4], or [5]) .

The most important use of the Elfving set is its geometric characterization of
c-optimal designs as given by the Elfving theorem (see [17], p. 71, or [19], p. 50).
From the large number of relations between the compact set Ef,X and optimal designs
for (f,X), we select those which are most relevant for the problem of Ek-optimality.
For a design ξ ∈ ΞX let supp (ξ) = {x ∈ X; ξ (x) > 0} be the support of ξ.

Proposition 21 Let Φ be an orthogonally invariant information criterion.
(i) For any model (f,X) there exists a Φ-optimal design ξ∗ ∈ ΞX, such that f(supp (ξ))
is a subset of the set of extreme points of Ef,X.
(ii) Let (f1,X1) and (f2,X2) be models of the same dimension and let Ef1,X1

⊆ Ef2,X2
.

Then the Φ-optimal value of (f1,X1) is less or equal to the Φ-optimal value of (f2,X2).

Proof. The part (i) follows from Proposition III.7. in [17] or Theorem 8.5. in [19].
We will prove (ii).

Let Φ : Sm
+ → [0,∞), Φ ∈ O. Firstly, we will show that if two m-dimensional

models (f1,X) and (f2,X) have the same Elfving sets, then they have the same Φ-
optimal values (denoted by vf1,X(Φ), resp. vf2,X(Φ)).
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Suppose that Ef1,X = Ef2,X. Let ξ∗ ∈ ΞX be a design which is Φ-optimal for
(f1,X) and which is chosen in accord with the part (i) of this theorem, i.e. such
that supp (ξ∗) is a subset of the set of extreme points of Ef1,X. Let x ∈ supp (ξ∗).
Since f1(x) is an extreme point of Ef1,X, and because the Elfving sets are assumed to
be equal, the point f1(x) is also extreme for Ef2,X. This entails that f1(x) = f2(x

∗)
or f1(x) = −f2(x

∗) for some x∗ ∈ X, hence f1(x)f
T
1 (x) = f2(x

∗)fT
2 (x∗). Therefore,

Mf1,X(ξ∗) =
∑

x∈X;ξ∗(x)>0 ξ
∗(x)f1(x)f

T
1 (x) can be expressed as a convex combination

of matrices of type f2(x
∗)fT

2 (x∗), where x∗ ∈ X. We thus obtained Mf1,X(ξ∗) ∈Mf2,X,
thence vf1,X(Φ) ≤ vf2,X(Φ). Using the same argument we can show that vf2,X(Φ) ≤
vf1,X(Φ) and consequently vf1,X(Φ) = vf2,X(Φ).

Next, suppose that Ef1,X ⊆ Ef2,X. Let id be the identity function on Rm.
Clearly, the Elfving set of the model (fi,X) is equal to the Elfving set of the model
(id,Efi,X) for both i = 1, 2. Moreover, by the assumption the experimental domain
of (id,Ef1,X) is a subset of the experimental domain of (id,Ef1,X), which implies
Mid,Ef1,X

⊆Mid,Ef2,X
. Therefore

vf1,X(Φ) = vid,Ef1,X
(Φ) ≤ vid,Ef2,X

(Φ) = vf2,X(Φ)

The proof is closed.

It turns out that the Elfving sets of a model and its orthogonal submodel have
a simple geometric relation as specified in the next proposition.

Proposition 22 Let 1 ≤ k ≤ m, and let (g,X) be a k-dimensional orthogonal sub-
model of an m-dimensional model (f,X), i.e. g = UTf for some U ∈ Um,k. Consider
the orthogonal projector P : Rm → Rm, P = UUT , projecting on a k-dimensional
linear subspace of Rm. Then the projection PEf,X is an orthogonal rotation of Eg,X,
if k = m, or PEf,X is an orthogonal rotation of Eg,X× {0m−k}, if k < m.

Proof. Clearly

PEf,X = U conv
{
UTf(X) ∪ −UT f(X)

}
= UEg,X

If k = m, then the previous equality proves the proposition. If k < m, create
an orthogonal matrix V ∈ Um,m such that, in the block-matrix notation, V =
(U, uk+1, ..., um) for some orthonormal vectors uk+1, ..., um ∈ Rm. We obtain PEf,X =
V (Eg,X× {0m−k}).

The meaning of Proposition 22 is that the Elfving sets of all k-dimensional
orthogonal submodels of an m-dimensional model (f,X) essentially correspond to all
orthogonal projections of Ef,X on k-dimensional linear subspaces. This geometric
view can help us to identify the orthogonal submodel of (f,X) with the ”smallest”
Elfving set which in turn gives us the best possible upper bounds on the Ek-optimal
values given in Theorem 19. We will demonstrate this approach in Sections 8.2 and
9.4.
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Using Theorem 19 we can prove that the Ek-optimal value is bounded from
above by the square of the k-radius of Ef,X, i.e. the square of the minimal radius of
a k-dimensional projection of Ef,X (see Section 1.1 for the definition of rk (Ef,X)):

Theorem 23 Let (f,X) be an m-dimensional model and let 1 ≤ k ≤ m. Then

vf,X(k) ≤ r2
k (Ef,X)

with equality if k = m or if λk(M) < λk+1(M) for some ΦEk
-optimal information

matrix M, i.e. if k ∈ Df,X (ζ∗k) for some Ek-optimal design ζ∗k .

Proof. For any projector P ∈ Pm,k we have diam (PEf,X) = 2 × maxx∈X ‖Pf(x)‖,
which is a simple consequence of the continuity of norm and the parallelogram law.
Moreover, it is easy to show that P ∈ Pm,k if and only if P = UUT for some U ∈Um,k,

in which case ‖Pf(x)‖ =
∥∥∥UTf(x)

∥∥∥ for all x ∈ X. Therefore

rk (Ef,X) = (1/2)×minP∈Pm,k
diam (PEf,X) = minP∈Pm,k

maxx∈X ‖Pf(x)‖
r2
k (Ef,X) = minP∈Pm,k

maxx∈X ‖Pf(x)‖2 = minU∈Um,k
maxx∈X

∥∥∥UTf(x)
∥∥∥
2

If U ∈Um,k, then (UTf,X) is a k-dimensional model and for all M ∈MUT f,X

we know that ∂Φ̃Ek
(M) = {Ik}, which follows from Proposition 4. Hence, by The-

orem 6 part ”(i)⇔(ii)”, we see that maxx∈X

∥∥∥UTf(x)
∥∥∥
2

= vUT f,X(k). Consequently,

r2
k (Ef,X) = minU∈Um,k

vUT f,X(k), and the proof can be completed using Theorem 19.

Clearly, the 1-radius of Ef,X is equal to the smallest distance of two parallel
hyperplanes bounding Ef,X from opposite sides, which equals the maximal radius of
the sphere inscribed to Ef,X. This means that we have obtained a generalization
of the result in [20] which states that if the minimal eigenvalue of the E-optimal
information matrix has multiplicity 1, then the E-optimal value is the squared radius
of the sphere inscribed to Ef,X.

Using Theorem 23, we can prove a geometric analogue of the equivalence
theorem for universal optimality under the class of orthogonally invariant criteria.

Theorem 24 A design ξ ∈ ΞX is optimal for (f,X) with respect to all orthogonally
invariant criteria if and only if

ΦEk
(Mf,X (ξ)) = r2

k (Ef,X) for all k ∈ Df,X (ξ)

Proof. Suppose that ξ ∈ ΞX. If ξ is universally optimal for (f,X), then for all
k ∈ Df,X (ξ) we have ΦEk

(Mf,X (ξ)) = vf,X(k) = r2
k (Ef,X), where the last equality

follows directly from Theorem 23.
Conversely, assume that ΦEk

(Mf,X (ξ)) = r2
k (Ef,X) for some ξ ∈ ΞX and all

k ∈ Df,X (ξ). Then vf,X(k) ≥ ΦEk
(Mf,X (ξ)) = r2

k (Ef,X) ≥ vf,X(k) where, again, the
last inequality follows from Theorem 23. This means that ΦEk

(Mf,X (ξ)) = vf,X(k),
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i.e. ξ is Ek-optimal for all k ∈ Df,X (ξ). Therefore, ξ is universally optimal by
Theorem 11.

Notice, that Theorem 24 uses only directly geometrically interpretable k-radii
of the Elfving set although, in general, they do not fully determine the Ek-optimal
values.

An obvious disadvantage of claims based on geometry is that we can confi-
dently intuitively manipulate only with objects of dimension at most 3. While some
problems in optimal design can be nontrivial even in dimensions 2 and 3 (see e.g. [5]),
the problem of universal optimality is usually simple due to Theorem 24. Consider
the following example, which is a special case of the model analyzed in Section 7.2.

Example 25 (Trigonometric model of the first degree on the full circle.) Let X =
[0, 2π] and let f(x) = (cosx, sin x, 1)T . The Elfving set of (f,X) is clearly the cylinder

E =
{
(x, y, z)T ∈ R3 : x2 + y2 ≤ 1, |z| ≤ 1

}

Let ξ be the uniform design on {0, 2π/3, 4π/3}. As can be easily calculated, M(ξ) =
diag(1/2, 1/2, 1). By Theorem 24, to check the universal optimality of ξ we only need
to verify that ΦE2

(M (ξ)) = r2
2 (E) and ΦE3

(M (ξ)) = r2
3 (E). Obviously, the form of

M(ξ) implies ΦE2
(M (ξ)) = 1 and ΦE3

(M (ξ)) = 2. But r2 (E) is the minimal radius
of the base of a cylinder circumscribed to E which is visibly 1, and r3 (E) is the radius
of the sphere circumscribed to E, which is

√
2. Universal optimality of ξ is proved.



Chapter 6

BOUNDS ON THE EK-EFFICIENCY AND THE O-MINIMAL
EFFICIENCY BASED ON ΦP -OPTIMAL DESIGNS

6.1 Bounds on the Ek-optimal values based on Φp-optimal designs

In this chapter, we will construct bounds on the Ek-optimal values and the O-minimal
efficiency which depend only on the eigenvalues of a known Φp-optimal information
matrix and are very simple to calculate numerically. Moreover, the results obtained
have several theoretical implications pertaining to E-optimality, D-optimality and
universal optimality, which generalize e.g. results of Kiefer and Galil in [6].

We will briefly outline the main geometric idea that stands behind the results
of this section. Suppose that MΦ is a known positive definite Φ-optimal information
matrix for some given differentiable criterion Φ ∈ O. Then a lemma of Fan (see e.g.
[2] 1.2.1. and ex. 13 p. 12) and the subgradient theorem ([19] Section 7.4.) implies

λT (M)λ↓ (∇Φ(MΦ)) ≤ tr (M∇Φ(MΦ)) ≤ tr (MΦ∇Φ(MΦ))

for all information matrices M, where λ↓ denotes the vector of eigenvalues in a non-
increasing order. Consequently, the eigenvalue vector of any information matrix M

belongs to a known polyhedral set H bounded by the cone Rm
≤ ∩Rm

+ and a halfspace
with normal vector λ↓ (∇Φ(MΦ)). Consider the functions ϕk : Rm

+ → R, where ϕk(z)
is the sum the k smallest components of z, k = 1, ..., m. On H, the functions ϕk are
linear, therefore the Ek-optimal value must be bounded from above by maximum of
ϕk on the vertices of H.

To facilitate manipulations with the vertices of the polyhedral set H described
above, we will introduce the following notation. Consider a vector µ ∈ Rm

++ and

define z0 (µ) = 0m, zm (µ) = (
∑m

i=1 µi)
−1 1m, and

zs (µ) =
(∑m

i=m−s+1
µi

)−1 ×
(
0T

m−s, 1
T
s

)T

for s = 1, ..., m− 1.

Lemma 26 Let µ ∈ Rm
++. Then

{
λ ∈ Rm

+ ∩Rm
≤ : λTµ ≤ 1

}
= conv {z0 (µ) , ..., zm (µ)}
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Proof. Let µ ∈ Rm
++, λ ∈ Rm

+ ∩ Rm
≤ , and λTµ ≤ 1. Set α0 = 1 − λTµ, αm =

(
∑m

i=1 µi)λ1 and αs =
(∑m

i=m−s+1 µi

)
(λm−s+1 − λm−s) for all s = 1, ..., m − 1. It is

simple to check that αs ≥ 0 for all s = 0, 1, ..., m,
∑m

s=0 αs = 1, and
∑m

s=0 αszs (µ) = λ.
This proves the inclusion ”⊆” in the lemma. The opposite inclusion is clear.

Now we can prove the basic theorem of this chapter. Recall that v(k) = vf,X(k)
denotes the Ek-optimal value of the model (f,X).

Theorem 27 ([9]) Let p ∈ (−∞, 1], let ξ∗p be a Φp-optimal design and let 0 < λ1 ≤
λ2 ≤ ... ≤ λm be all eigenvalues of M

(
ξ∗p
)

repeated according to their multiplicities.

Then for any k ∈ {1, ..., m}:

v(k) ≤ max
r=1,...,k

r ×
m∑

i=1
λp

i

m∑
i=k+1−r

λp−1
i

Proof. Let p ∈ (−∞, 1], ξ∗p be a Φp-optimal design, Mp = M
(
ξ∗p
)
, and λ = λ(Mp) ∈

Rm
++ and k ∈ {1, ..., m}. The function Φp is differentiable in Mp with gradient

∇Φp(Mp) =
1

m
Φ1−p

p (Mp)M
p−1
p

Let Nk be any ΦEk
-optimal information matrix. Using a lemma of Fan (see e.g. [2]

1.2.1. and ex. 13 p. 12) and the subgradient theorem ([19] part 7.4.) we obtain

λT (Nk)λ↓ (∇Φp(Mp)) ≤ tr (Nk∇Φp(Mp)) ≤ tr (Mp∇Φp(Mp)) = Φp (Mp)

Therefore λT (Nk)µ ≤ 1 where

µ = Φ−1
p (Mp)λ↓ (∇Φp(Mp)) =

(∑m

i=1
λp

i

)−1 ×
(
λp−1

1 , ..., λp−1
m

)T ∈ Rm
++

By Lemma 26 we obtain

λ (Nk) ∈ conv {z0 (µ) , ..., zm (µ)}
For γ ∈ Rm

+ let ϕk(γ) be the sum of the k smallest components of γ. The function ϕk

is linear and nonnegative on the convex and compact set conv {z0 (µ) , ..., zm (µ)} ⊂
Rm

+∩Rm
≤ , which together with z0 (µ) = 0m entails that the maximum of ϕk is attained

on z1 (µ), z2 (µ), ... or zm (µ). Therefore

v(k) = ΦEk
(Nk) = ϕk (λ (Nk)) ≤ max

s=1,...,m
ϕk (zs (µ)) =

=
∑m

i=1
λp

i max
s=1,...,m

ϕk

(
zs

(
λp−1

1 , ..., λp−1
m

))
=

=
∑m

i=1
λp

i max
r=1,...,k

r ×
(∑m

i=k+1−r
λp−1

i

)−1

The proof is complete.

Note that once we know the eigenvalues of a regular Φp-optimal design, com-
putation of the bounds from Theorem 27 is based on a finite number of elementary
arithmetic operations or comparisons and can be readily implemented in any pro-
gramming language.
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6.2 Bounds on the E and T -efficiency based on Φp-optimal designs

The formula given in Theorem 27 directly leads to simple bounds on the E-efficiency
of Φp-optimal designs.

Theorem 28 ([9]) Let p ∈ (−∞, 1], let ξ∗p be a Φp-optimal design and let 0 < λ1 ≤
λ2 ≤ ... ≤ λm be all eigenvalues of M

(
ξ∗p
)
. Then the E-efficiency of ξ∗p satisfies

eff
(
ξ∗p |ΦE1

)
≥

1 +
(

λ2

λ1

)p−1
+ ...+

(
λm

λ1

)p−1

1 +
(

λ2

λ1

)p
+ ...+

(
λm

λ1

)p

Notice, that the formula for the lower bound on the E-efficiency of a D-optimal
design is particularly simple:

eff (ξ∗0 |ΦE1
) ≥ 1

m

m∑

i=1

λ1

λi

It turns out that the bound from Theorem 28 can not drop under a certain fixed
positive level independent of the values λ1, λ2, ..., λm. More precisely, consider the
following generalization of Theorem 5.1. from [6].

Theorem 29 ([9]) Let m ≥ 1, p ∈ (−∞, 0] and let ξ∗p be a Φp-optimal design. If h

is the multiplicity of the minimal eigenvalue of M
(
ξ∗p
)

then

eff
(
ξ∗p |ΦE1

)
≥ min

x∈[0,1]

1 + (m/h− 1)x1−p

1 + (m/h− 1)x−p

In particular, for a D-optimal design ξ∗0 and for an A-optimal design ξ∗−1:

eff (ξ∗0|ΦE1
) ≥ h

m
and eff

(
ξ∗−1|ΦE1

)
≥ 2

1 +
√
m/h

Proof. The claim is simple for p = 0. Let p ∈ (−∞, 0) and h,m ∈ N be such that

h < m. Notice that Theorem 28 entails eff
(
ξ∗p |ΦE1

)
≥ g(x∗), where x∗ ∈ [0, 1]m−h is

the minimum of the continuous function g : [0, 1]m−h → (0, 1) defined by

g(x1, ..., xm−h) =
h + x1−p

1 + ... + x1−p
m−h

h+ x−p
1 + ... + x−p

m−h

Firstly, we will show that x∗ does not lie at the boundary of the cube [0, 1]m−h.
Suppose that x∗i = 0 or x∗i = 1 for some i ∈ {1, ..., m− h}. Choose any positive
δ < g(x∗) and take x− ∈ [0, 1]m−h such that x−i = δ and x−j = x∗j for j 6= i. One
can easily verify that then g(x−) < g(x∗), which contradicts the assumption that x∗

minimizes g on [0, 1]m−h.
Therefore x∗ ∈ (0, 1)m−h and since g is smooth on (0, 1)m−h, x∗ must be a

stationary point of g. Using elementary calculus we can verify that ∇g(x∗) = 0m−h
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implies x∗1 = ... = x∗m−h. Consequently g(x∗) = minx∈[0,1] g(x, ..., x, x) which closes
the proof. (The lower bound for A-optimality is a straightforward application of the
general formula.)

Although for h = 1 Theorem 29 gives the same results as the Theorem 5.1.
from [6], the difference in favor of Theorem 29 can be considerable in the case of a
high multiplicity h of the minimal eigenvalue, as is for instance in the model of spring
balance weighing analyzed in Chapter 8.

For a general p ∈ (−∞, 0), calculation of the lower bound from Theorem 29 as-
sumes computation of a stationary point of (1 + (m/h− 1)x1−p) (1 + (m/h− 1)x−p)

−1
,

i.e. the point x0 ∈ (0, 1) which satisfies q(x0) = 0, where

q(x) = (m− h)x1−p + h(1− p)x+ hp

Although x0 can be explicitly found only for special values p < 0 (such as p = −1),
it is very simple to calculate numerically. One can verify that q(0) = ph < 0,
q(1) = m > 0, next dq(x)/dx = (1 − p)(h + (m − h)x−p) > 0 and d2q(x)/dx2 =
−px−1−p(m− h)(1− p) > 0 for all x ∈ (0, 1). These properties make finding the root
of q a textbook example suitable for an application of the Newton’s method with the
starting point 1.

Using Theorem 29 for h = 1, given m = 2, ..., 10, and an efficiency eff =
0.9, 0.95, 0.99 we can thus easily find integer values of p, which are enough extreme to
guarantee that eff (ξp|ΦE1

) ≥ eff (independently of the actual eigenvalues of M(ξ∗p)).

m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10
eff =0.90 -3 -4 -6 -7 -8 -9 -9 -10 -10
eff =0.95 -5 -9 -12 -14 -16 -18 -19 -20 -21
eff =0.99 -28 -46 -60 -71 -81 -89 -97 -103 -110

For the T -efficiency of Φp-optimal designs we obtain:

Theorem 30 Let p ∈ (−∞, 1], let ξ∗p ∈ Ξ be Φp-optimal, and let 0 < λ1 ≤ λ2 ≤ ... ≤
λm be all eigenvalues of M

(
ξ∗p
)
. Then the T -efficiency of ξ∗p satisfies

eff
(
ξ∗p |ΦEm

)
≥

λ1

λm
+ ...+ λm−1

λm
+ 1

(
λ1

λm

)p
+ ...+

(
λm−1

λm

)p
+ 1

Very similarly as for the E-efficiency, it is possible to construct lower bounds on
the T -efficiency of a Φp-optimal design depending only on m and p or the multiplicity
of the largest eigenvalue of the Φp-optimal information matrix. However, such bounds
would be of limited use, because it is usually easy to construct T -optimal designs
directly (unlike E-optimal designs) and find the exact value of eff

(
ξ∗p |ΦEm

)
.
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6.3 The O-minimal efficiency of Φp-optimal designs

Based on Theorem 27 and one or more Φp-optimal designs, we can construct upper
bounds on all unknown Ek-optimal values and consequently lower bounds on the
O-minimal efficiency of any given design. Making use of the eigenvalues of the infor-
mation matrix corresponding to a Φp-optimal design ξ∗p , we can find a lower bound
on the O-minimal efficiency of ξ∗p itself.

Theorem 31 Let p ∈ (−∞, 1], let ξ∗p be Φp-optimal and let 0 < λ1 ≤ λ2 ≤ ... ≤ λm

be all eigenvalues of M
(
ξ∗p
)
. Then

mineff(ξ∗p |O) ≥ min
1≤r≤k≤m

k∑
i=1

λi ×
m∑

i=k−r+1
λp−1

i

r ×
m∑

i=1
λp

i

The bound from the previous theorem can be easily coded in any program-
ming language with extremely quick numerical computation. The most important
theoretical corollary of Theorem 31 is that any D-optimal design has efficiency at
least 1/m with respect to an arbitrary orthogonally invariant criterion in any model.
This is a trivial consequence of the next theorem.

Theorem 32 Let ξ∗0 be a D-optimal design and let every eigenvalue of the D-optimal
information matrix has multiplicity at least h. Then mineff(ξ∗0 |O) ≥ h/m.

Proof. Let h be the minimal multiplicity of an eigenvalue of M (ξ∗0) and let λ =
λ (M (ξ∗0)). Theorem 32 follows directly from Theorem 31 once we show that

k∑
i=1

λi ×
m∑

j=k−r+1
λ−1

j ≥ hr for any r, k ∈ N such that 1 ≤ r ≤ k ≤ m.

While the proof of this claim can be based on elementary considerations, the
choice of the steps is not completely straightforward, therefore we shall describe it in
its full length. We will split the proof into two cases.

Firstly, suppose that λk−r+1 = λk. Let s, t ≥ 0 be the maximal possible whole
numbers satisfying λk−r+1−s = λk+t. Because the multiplicity of λk is at least h, we
have (k + t)− (k − r + 1− s) + 1 ≥ h, hence r + s + t ≥ h. Therefore

k∑
i=1

λi ×
m∑

j=k−r+1
λ−1

j ≥
k∑

i=k−r+1−s
λi ×

k+t∑
j=k−r+1

λ−1
j =

= {k − (k − r + 1− s) + 1} × {(k + t)− (k − r + 1) + 1} =
= (r + s) (r + t) = r (r + s+ t) + st ≥ rh+ st ≥ rh

Secondly, suppose that λk−r+1 < λk. Let s, t be the maximal possible whole
numbers and let z be the (only one) whole number such that λk−r+1−s = λk−r+1 =
λk−z < λk−z+1 = λk+t. (Note that s ≥ 0, but t can be negative.) Clearly z ≥ 1 and
r ≥ z + 1, which means that z (r − z) ≥ 0. The multiplicity of λk−r+1 is at least h,
which implies (k − z) − (k − r + 1− s) + 1 ≥ h, therefore r + s − z ≥ h. Similarly,
because the multiplicity of λk−z+1 is at least h we obtain (k + t)−(k − z + 1)+1 ≥ h,
which means t+ z ≥ h. Using these inequalities we get
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k∑
i=1

λi ×
m∑

j=k−r+1
λ−1

j ≥
k−z∑

i=k−r+1−s
λi ×

k−z∑
j=k−r+1

λ−1
j +

k∑
i=k−z+1

λi ×
k+t∑

j=k−r+1
λ−1

j ≥
≥ {(k − z)− (k − r + 1− s) + 1} × {(k − z)− (k − r + 1) + 1}+

+ {k − (k − z + 1) + 1} × {(k + t)− (k − r + 1) + 1} =
= (r + s− z) (r − z) + z (r + t) ≥ h(r− z) + z(r− z) + z(z+ t) ≥ h(r− z) + zh = hr

Interestingly, for the designs which are optimal with respect to other Kiefer’s
criteria (not Φ0), there does not exist a similar general lower bound as 1/m. (This
follows e.g. from Theorem 5.2 in [6].) In other words, for p 6= 0 any positive lower
bound on the O-minimal efficiency of a Φp-optimal design must take some properties
of the model into account (e.g. we must know the eigenvalues of the Φp-optimal
information matrix, which do depend on f and X). Moreover, the bound 1/m on
the O-minimal efficiency of the D-optimal design is largest possible in the sense that
there exist m-dimensional models, such that mineff(ξ∗0 |O) is arbitrarily close to 1/m
(see the last paragraph in the Section 9.5).

Although behavior of the bound from Theorem 31 as a function of λ seems
to be complicated for general m and p, it can be substantially simplified for small
values of m and/or special criteria Φp. The proofs of the next two propositions are
mechanical and omitted.

Theorem 33 Let m = 2, p ∈ (−∞, 1], let ξ∗p be a Φp-optimal design and let 0 <

λ1 ≤ λ2 be the eigenvalues of M
(
ξ∗p
)
. Then

mineff(ξ∗p |O) ≥






(
1 + λ1

λ2

)
:
(
1 +

(
λ1

λ2

)p)
if p ≤ 0(

1 +
(

λ2

λ1

)p−1
)

:
(
1 +

(
λ2

λ1

)p)
if p ≥ 0

If λ1 = 0 then mineff(ξ∗p |O) = 0.

For p = 0 (D-optimal design) and for p = −1 (A-optimal design), the bound
from Theorem 33 is

mineff(ξ∗0 |O) ≥ 1

2

(
1 +

λ1

λ2

)
and mineff(ξ∗−1|O) ≥ λ1

λ2

For the case m = 3 the bounds for D and A-optimal designs are given in the
next theorem.

Theorem 34 Let m = 3, and let ξ∗0, ξ
∗
−1 be the D- and the A-optimal designs. Denote

by 0 < λ1 ≤ λ2 ≤ λ3 the eigenvalues of M (ξ∗0), resp. M
(
ξ∗−1

)
. Then

mineff(ξ∗0 |O) ≥ 1

3
min

{
1 +

λ1

λ2

+
λ1

λ3

, 1 +
λ2

λ3

+
λ1

λ3

}

mineff(ξ∗−1|O) ≥ (λ1 + λ2 + λ3)λ
−2
3

λ−1
1 + λ−1

2 + λ−1
3

Obviously, the bounds from Theorem 34 depend only on the ratios of com-
ponents of λ, which means that they can be visualized as real functions defined on
the simplex

{
(λ1, λ2, λ3)

T ∈ R3
+ :

∑3
i=1 λi = 1

}
. For this case the contour plots of the

lower bounds are exhibited in the Figures 1 and 2 in the Appendix.
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6.4 Universal optimality of Φp-optimal designs

At the end of this chapter, we will prove two sufficient conditions on universal opti-
mality of designs under the class of orthogonally invariant criteria.

Theorem 35 ([9]) If a design ξ∗p is Φp-optimal for some p ∈ (−∞, 1] and if M(ξ∗p)
is a positive multiple of the identity matrix, then ξ∗p is optimal with respect to all
orthogonally invariant criteria.

Proof. Let p ∈ (−∞, 1] and for the Φp-optimal design ξ∗p let M
(
ξ∗p
)

= δIm, δ > 0.

Direct application of Theorem 27 implies that the ΦEm-optimal value is v(m) ≤ δm.

This clearly entails Em-optimality of ξ∗p , because ΦEm(M
(
ξ∗p
)
) = δm. By Theorem

12, ξ∗p is optimal with respect to all Φ ∈ O.

We remark that Theorem 35 can not be extended to cover the case of E-
optimality (p = −∞). For example in the model of spring balance weighing of degree
m = 2, the E-optimal information matrix is a scalar multiple of the identity matrix,
yet it is not optimal for all Φ ∈ O (e.g. it is not D-optimal; see Theorem 46 in
Chapter 8).

Theorem 36 ([9]) If a design ξ∗ is Φp-optimal for all p ∈ (−∞, 1) and if M(ξ∗) has
at most two distinct eigenvalues, then ξ∗ is optimal with respect to all orthogonally
invariant criteria.

Proof. Let ξ∗ be Φp-optimal for all p ∈ (−∞, 1) and let M(ξ∗) have at most two
distinct eigenvalues. If all the eigenvalues of M(ξ∗) are the same then Theorem 36 fol-
lows from Theorem 35. Therefore we can assume that λ(M(ξ∗)) = (λ, ..., λ, γ, ..., γ)T ,
λ < γ and the multiplicity of λ is s ≤ m− 1.

Denote by uk(p) the upper bound on v(k) given by Theorem 27 taken in
p ∈ (−∞, 1). By the assumption of Theorem 36 we have v(k) ≤ infp∈(−∞,1) uk(p).
But it can be verified that:

1) For k ∈ {1, ..., s}: limp→−∞ uk(p) = kλ;
2) For k ∈ {s+ 1, ..., m− 1}: uk(1− logγ/λ

m−s
k−s

) = sλ+ (k − s)γ;
3) limp→1 um(p) = sλ+ (m− s)γ.
Consequently infp∈(−∞,1) uk(p) = ΦEk

(M(ξ∗)) i.e. ξ∗ is Ek-optimal for all
k = 1, ..., m. Using Theorem 10 this implies optimality of ξ∗ with respect to all
orthogonally invariant criteria.

The previous theorem can be used to prove universal optimality for the equidis-
tant support design in trigonometric regression (see Theorem 40 in Chapter 7). We
also remark that for the model of spring balance weighing (Chapter 8) it can be
shown that for an odd degree m > 1 the D-optimal design ξ∗0 is Φp-optimal for all
p ∈ [−∞, 0], the information matrix M(ξ∗0) has only two distinct eigenvalues, yet
ξ∗0 is not optimal with respect to all orthogonally invariant criteria (e.g. ξ∗0 is not
T -optimal). In combination with Theorem 36 this fact means that Φp-optimality for
all the most studied p ∈ [−∞, 0] is generally much weaker than Φp-optimality for the
complete class including also the less popular positive values of p.
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Chapter 7

MODELS ADMITTING A UNIVERSALLY OPTIMAL DESIGN

7.1 Universal optimality in regression on a sphere

In this chapter, we will analyse several of the most important models admitting a
design optimal with respect to all orthogonally invariant criteria. We begin with the
model on the Euclidean m-dimensional sphere.

Consider the model (f,X), where f(x) = x and X = {x ∈ Rm :
∑m

i=1 x
2
i = r2}

is the m-dimensional sphere with origin in 0m = (0, ..., 0) ∈ Rm and diameter r > 0.

Theorem 37 A design ξ ∈ Ξ is optimal for the model (f,X) with respect to all
orthogonally invariant criteria if and only if M(ξ) = r2

m
Im.

Proof. If M(ξ) = r2

m
Im, then ξ is T -optimal, because it satisfies conditions given by

the equivalence theorem 6: tr(M(ξ)) = r2 = maxx∈X ‖x‖2. By Theorem 11, ξ is then
optimal with respect to all Φ ∈ O.

Conversely, let ξ be universally optimal for (f,X). Notice, that the design
ξ/ uniform on {r × ei, i = 1, ..., m}, where ei are the basic unit vectors in Rm, has
information matrix r2

m
Im, i.e. ξ/ is universally optimal by the first proved part of the

theorem. Since ξ is E-optimal, we have λ1(M(ξ)) ≥ λ1(M(ξ/)) = r2

m
and since ξ/ is

T -optimal, we have tr(M(ξ)) ≤ tr(M(ξ/)) = r2. Consequently, all the eigenvalues of
M(ξ) are equal to r2

m
which entails M(ξ) = r2

m
Im.

Obviously, there is a multitude of designs with information matrix r2

m
Im, being

thus universally optimal for (f,X). (An exception is the trivial case m = 1 with only
one such design.) In fact, any uniform design on X invariant under a sufficiently rich
group of rotations is also universally optimal:

Proposition 38 Let G ⊆ Um,m be a group of orthogonal matrices such that

span {Uv : U ∈ G} = Rm for all v ∈ Rm

Let G ⊆ X be a finite set invariant under all members of G. Then any design ξ ∈ Ξ
uniform on G is optimal for (f,X) with respect to all orthogonally invariant criteria.

Proof. Let ξ satisfy the assumptions of the theorem. Let u be any eigenvector
of M = M(ξ) with a positive eigenvalue λ (there is such a vector since M is not
the zero matrix). Let U ∈ G. Because the support of ξ is invariant under U, we
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have M = UMUT . Hence, Mu=λu implies UMUTu = λu = λUUTu, therefore
M
(
UTu

)
= λ

(
UTu

)
. This means that UTu is also an eigenvector of M with

eigenvalue λ, and as U was an arbitrary member of G we see that all the vectors
in {Uv : U ∈ G} are eigenvectors with the same eigenvalue λ. From the assumption
we conclude that the entire Rm is an eigenspace corresponding to λ which implies
M = λIm. Moreover, as xTx = r2 for all x ∈ X:

mλ = tr(λIm) = tr(M) = tr
(∑

x∈X;ξ(x)>0 ξ(x)x
Tx
)

= r2

We obtained λ = r2/m, which completes the proof in view of Theorem 37.

Any group of rotations satisfying the condition from Theorem 38 yields uni-
versally optimal designs as uniform probabilities on orbits of finite sets. Naturally, we
can form convex combinations of such designs to create another universally optimal
designs. Thus, while the universally optimal informtion matrix is unique and simple,
the set of all universally optimal designs has a very complex structure.

Using Theorem 11 we can also easily solve the problem of universal opti-
mality for the general model on the lp-sphere. Let f(x) = x for x ∈ Rm and

X(p, r) =
{
x ∈ Rm : ‖x‖p = r

}
, where r > 0 and the lp-norm of x is defined by

‖x‖p = (
∑m

i=1 |xi|p)1/p
for 1 ≤ p < ∞ and ‖x‖∞ = max {|x1| , ..., |xm|}. For p = −∞

this model is known under the name ”chemical balance weighing”.

Theorem 39 If 1 ≤ p ≤ 2, let ξ be the uniform design on {r × e1, ..., r × em}, where
ei ∈ Rm are the basic unit vectors. If 2 ≤ p ≤ ∞, let ξ be the uniform design on the
2m vectors of the form rm−1/p× (±1, ...,±1)T ∈ Rm. Then ξ is optimal for the model
(f,X(p, r)) with respect to all orthogonally invariant criteria.

Proof. If 1 ≤ p ≤ 2, then M(ξ) = r2

m
Im and if 2 ≤ p ≤ ∞ then M(ξ) = r2

m2/p Im, which
can be directly verified. By Theorem 12, we only need to check that ξ is T -optimal,
i.e. that tr(M(ξ)) is the maximum of the (Euclidean) norm of ‖x‖2 over X(p, r). But
this is a simple consequence of the inequality ‖·‖p ≥ ‖·‖2 valid for 1 ≤ p ≤ 2 and the

inequality ‖·‖p ≥ m2/p−1 ‖·‖2 valid for 2 ≤ p ≤ ∞ (cf. [4], Example 4.2.).

The authors of the article [4] prove E-optimality of the designs from the previ-
ous theorem using spheres inscribed to a generalized Elfving set consisting of matrices.
Application of this intriguing yet difficult technique is in contrast with the mechanical
proof based on Theorem 11.

7.2 Universal optimality in trigonometric regression

Consider the trigonometric regression model of the degree d on the full circle, i.e. the
model (f,X), where

f(x) = (cosx, sin x, cos 2x, sin 2x, ..., cos dx, sin dx, 1)T
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and X = [0, 2π], with m = 2d+ 1 parameters.
It has already been shown that the design ξ∗ which is uniform on

{2kπ/m+ π : k = −d,−d+ 1, ..., d− 1, d}

is Φp-optimal for any p ∈ [−∞, 1] (see e.g. [19], Section 9.16.) and also ΦChk
-optimal

for any k = 1, ..., m (see [25]). We will prove the following generalization of these
results.

Theorem 40 ([8], [9]) Design ξ∗ is optimal for (f,X) with respect to all orthogonally
invariant criteria.

Proof. Similarly as in the proof of Proposition VI.9 in [17] or Claim 9.16. in [19],
we can show that M∗ = M (ξ∗) = diag(1/2, ..., 1/2, 1). As ξ∗ is Φp-optimal for all
p ∈ [−∞, 1], and M∗ has only two distinct eigenvalues, Theorem 40 immediately
follows from Theorem 36. For the sake of demonstration of compatibility of results
given in this work, we will also show a second, completely different proof based on
results of Section 4.2.

Using Theorem 12 and the fact that ξ∗ is T -optimal, we see that we only need

to check that ξ∗ is Em−1-optimal. This requires verifying that maxx∈X

∥∥∥UT f(x)
∥∥∥
2

=

ΦEm−1
(M∗), where U is any matrix with columns being an orthonormal basis of the

m − 1 dimensional eigenspace corresponding to the eigenvalue 1/2 of M∗. Trivially,
U = (e1, ..., em−1), where ei are the basic unit vectors, is such a matrix and for all
x ∈ X:

∥∥∥UTf(x)
∥∥∥
2

=

m−1

2∑

j=1

(
cos2(jx) + sin2(jx)

)
=
m− 1

2
= ΦEm−1

(M∗)

The proof is complete.

We remark that the design ξ∗ from the previous theorem is not the only
universally optimal design for (f,X). For example it is simple to show that any
design which is a convex combination of designs equidistantly spaced on at least
2d+ 1 points in X is also universally optimal for (f,X).

7.3 Linear transformation leading to universal optimality

For majority of commonly used models, no design is simultaneously optimal with
respect to all orthogonally invariant criteria. (We will analyze several of such models
in the subsequent chapters.) Despite of that a simple, but noteworthy fact is that
for any model there exists a linear reparametrization which does admit a universally
optimal design. Such a reparametrization can be directly constructed from the D-
optimal information matrix as specified in the following theorem.

Theorem 41 Let ξ∗0 be a D-optimal design for an m-dimensional model (f,X). Let
M (ξ∗0) = UΛUT for some orthogonal matrix U ∈ Um,m and a diagonal matrix Λ. Let
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V ∈ Um,m be any orthogonal matrix and let c > 0. Consider the linear reparametriza-
tion (g,X) of the model (f,X) given by g = cVΛ−1/2UTf . Then ξ∗0 is universally
optimal for (g,X).

Proof. Let ξ∗0 be a D-optimal design for (f,X). Consider a model (g,X) as given
in the theorem. As D-optimality of a design is preserved by any regular linear
reparametrization of the model, we see that ξ∗0 is D-optimal also for (g,X). But

Mg,X (ξ∗0) = c2VΛ−1/2UTMf,X (ξ∗0)
(
VΛ−1/2UT

)T
= c2Im

Theorem 41 now follows directly from Theorem 35.

For all linear reparametrizations (Af,X) of (f,X), where A is an arbitrary
regular matrix of type m×m, the procedure given by the previous theorem leads to
models which are same up to a positive multiple or an orthogonal reparametrization.
It can be shown that the transformations given in Theorem 41 correspond to linear
deformations of the minimal volume ellipsoid containing the Elfving set of (f,X) to
a sphere.

Apart from being geometrically pleasing, the models constructed using Theo-
rem 41 are usually artificial, without an interpretation of parameters and appeal to
a practitioner. In the sequel, we will briefly describe two examples.

Example 42 (2-way multivariate linear regression of the first degree on {0, 1}2.)
Consider the model (f,X), where f(x) = x and X = {0, 1}2. It is easy to check that
the D-optimal design ξ∗0 is uniform on {(1, 0) , (0, 1), (1, 1)}. A transformation from
Theorem 41 based on M (ξ∗0) leads to the model (g,X), where

g(x1, x2) = ((x1 + x2)/2,
√

3(x1 − x2)/2)T

with ξ∗0 being a universally optimal design. Notice, that the Elfving set of (g,X) is a
regular hexagon inscribed into the unit circle. (See Chapter 8 for these models of a
general degree in the standard parametrization.)

Example 43 (Quadratic polynomial model on [−1, 1].) Our initial model is (f,X),
where f(x) = (1, x, x2)T and X = [−1, 1]. Using the D-optimal design (the uniform
probability on {−1, 0, 1}) and Theorem 41 we can construct the model (g,X), with

g(x) = (
√

2,
√

3x, −2 + 3x2)T

admitting a universally optimal design. In this case, the Elfving set of (g,X) is a con-
vex body touching the circumscribed sphere at vertices of a regular octahedron. (See
Chapter 10 for an analysis of the polynomial regression in the standard parametriza-
tion.)



Chapter 8

MULTIVARIATE LINEAR REGRESSION OF THE FIRST

DEGREE WITHOUT A CONSTANT TERM

8.1 Definition of the model and neighbor-vertex designs

Consider the m-way multivariate linear regression model of the first degree over the
unit cube without an intercept term given by the formula:

y = x1β1 + ... + xmβm + ε, x1, ..., xm ∈ {0, 1}

For a choice of points x1, ..., xm ∈ {0, 1}, the value xi = 1 can be interpreted
as a presence and xi = 0 as an absence of the i-th item in the balance measuring
weight by the tension of a spring. In accord with this interpretation, this model is
sometimes called the model of spring balance weighing.

For the model in consideration, the vector of regression functions is f : X →
Rm, f(x) = x and the experimental domain is X = {0, 1}m. Notice that in the
asymptotic design theory, the experimental domain X is essentially same as [0, 1]m,
because any point from [0, 1]m can be expressed as a convex combination of points
from X and, trivially, vice versa.

To the optimal design theory of this model (see e.g. [3] for Φp-optimal designs,
[4] for a geometric construction of E-optimal designs, or [19] Section 14.10. for a
general analysis) we will add results concerning minimal efficiency under the class of
orthogonally invariant criteria.

Let j ∈ {0, 1, ..., m} and let κj be the j-vertex design, i.e. the uniform proba-
bility on the unit cube vertices from X having exactly j-components equal to 1 and
m− j components equal to 0. Let us extend the set of j-vertex designs to the set of
so called neighbor-vertex designs κs, such that for a noninteger s ∈ [0, m] we define

κs = (1− (s− ⌊s⌋))κ⌊s⌋ + (s− ⌊s⌋)κ⌊s⌋+1

In the previous formula, ⌊s⌋ denotes the largest integer number not exceeding
s. The following proposition is a trivial consequence of the Claim I in [19], p. 374,
and explains the importance of the neighbor-vertex designs.

Proposition 44 Let Φ be an orthogonally invariant criterion. Then there exists
s ∈ [0, m], such that the neighbor-vertex design κs is Φ-optimal for the model (f,X).

Together with Proposition 44, the next proposition entails that, in principle,
construction of a Φ-optimal design can be based on one dimensional calculus.
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Proposition 45 Let s ∈ [0, m], m > 1, and let κs be a neighbor-vertex design. Then

M(κs) = a(m)
s

(
Im −

1

m
1m1T

m

)
+ b(m)

s

(
1

m
1m1T

m

)

where

a(m)
s =

−2s ⌊s⌋ − s+ ⌊s⌋+ ⌊s⌋2 + sm

m(m− 1)
, b(m)

s =
2s ⌊s⌋+ s− ⌊s⌋ − ⌊s⌋2

m

Moreover
λ (M(κs)) = (a(m)

s , ..., a(m)
s , b(m)

s )T

Proof. The proposition is a direct consequence of the results in [19] Section 14.10.

Propositions 44 and 45 can be used to derive Φp-optimal designs for all p ∈
[−∞, 1]. The E- and D-optimal designs are given in the next proposition.

Proposition 46 Let m > 1. Let s−∞ = m
2

and s0 = m
2

m+2
m+1

if m is even and let

s−∞ = s0 = m+1
2

if m is odd. Then the neighbor-vertex design ξ∗−∞ = κs−∞
is E-

optimal and the neighbor-vertex design ξ∗0 = κs0
is D-optimal for the model (f,X). If

m is even then

λ
(
M(ξ∗−∞)

)
=
(

1

4

m

m− 1
, ...,

1

4

m

m− 1
,
m

4

)T

and

λ (M(ξ∗0)) =
(

1

4

m+ 2

m+ 1
, ...,

1

4

m+ 2

m+ 1
,
m+ 2

4

)T

and if m is odd then

λ
(
M(ξ∗−∞)

)
= λ (M(ξ∗0)) =

(
1

4

m+ 1

m
, ...,

1

4

m+ 1

m
,
1

4

(m+ 1)2

m

)T

We remark that for an odd m > 1, the E-optimal information matrix is
not unique, which is known to be theoretically possible (because Φ−∞ is not strictly

concave), but rare in non-artificial models. Indeed, if s
/
−∞ = m−1

2
then the information

matrix of ξ
/
−∞ = κ

s
/
−∞

has the same minimal eigenvalue as the information matrix

of the E-optimal design ξ∗−∞ given in Proposition 46, yet the information matrices
themselves differ.

8.2 The Ek-optimal values

For calculation of the O-minimal efficiency of designs and construction of the O-
maximin efficient design for (f,X) we need to find the Ek-optimal values.

Theorem 47 Let m > 1. The Ek-optimal values v(k) for the model (f,X) are
v(m) = m and for all 1 ≤ k < m:

v(k) =
k

4

m

m− 1
if m is even, v(k) =

k

4

m+ 1

m
if m is odd
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Proof. A technical proof of the theorem can be based on Propositions 44 and 45.
Nevertheless, we opt for the use of ideas from Chapter 5. This approach gives us an
independent proof of E-optimality of the design from Proposition 46, as well as more
insight into the geometry of Ek-optimality in this model.

Evidently, the Elfving set Ef,X of (f,X) is the convex hull of the union of the
cubes [0, 1]m and [−1, 0]m. Intutivelly, the ”smallest” m − 1 dimensional projection
of Ef,X is orthogonal to the common diagonal of the two cubes, i.e. it is orthogonal
to 1m. Therefore, we will consider the projection

P = UUT = Im − 1
m

1m1T
m, where U ∈ Um,m−1,

and the m− 1 dimensional submodel (g,X) of (f,X) given by g = UTf .
We will prove the theorem for an even m, remarking that the case of an odd

m is completely analogous. For any unit cube vertex x ∈ X we have

‖g(x)‖2 = xT
(
Im − 1

m
1m1T

m

)
x = m (x− x2),

where x = 1
m

∑m
i=1 xi. Hence, the norm ‖g(x)‖ is maximized at those points

x ∈ X such that x = 1/2, that is at the points with m/2 entries equal to 1. The
corresponding maximum of ‖g(x)‖ is thus

√
m/2, which means that the Elfving set

Eg,X of (g,X) is a subset of the ball with radius r =
√
m/2 centered in 0m−1. Therefore,

Proposition 21 and Theorem 37 imply that for 1 ≤ k ≤ m− 1, the Ek-optimal value
vg,X(k) of the m − 1 dimensional model (g,X) can not be larger than kr2/ (m− 1).
Consequently, for the design ξ∗−∞ given in Proposition 46 we obtain

ΦEk
(Mf,X(ξ∗−∞)) = k

4
m

m−1
= kr2

m−1
≥ vg,X(k)

By Proposition 17, the previous inequality implies that ξ∗−∞ is Ek-optimal for
all k = 1, ..., m− 1. Hence, the Ek-optimal value of (f,X) is km

4(m−1)
.

Note, that the previous proof gives us a clear geometric interpretation of the
E-optimal values of the model (f,X): Construct the orthogonal projection of the unit
cube [0, 1]m in the direction of its main diagonal. Find the minimal hypersphere S

circumscribed to this projection. The E-optimal value for the model (f,X) is then
equal to the squared radius of S divided by m− 1.

This is a geometric interpretation alternative to the one given in the paper
[4], where the E-optimal values are based on the radius of a sphere inscribed to the
extended Elfving set of m×m dimensional matrices.
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For the first 5 dimensions, the following table exhibits the Ek-optimal values.

m=1 m=2 m=3 m=4 m=5
k=1 1 1/2 1/3 1/3 3/10
k=2 - 2 2/3 2/3 3/5
k=3 - - 3 1 9/10
k=4 - - - 4 6/5
k=5 - - - - 5

8.3 The O-minimal efficiency of the neighbor-vertex designs and the O-

maximin efficient designs

Consider the model (f,X), where m > 1. Theorem 47 implies that if 1 ≤ k < m
then the Ek-efficiency of any design ξ is at least as high as the E-efficiency of ξ.
Therefore, the O-minimal efficiency of ξ is simply the minimum of the E-efficiency
and the T -efficiency of ξ as follows from Theorem 10. Moreover, the design κm is
T -optimal and tr(M(κs)) = s for all s ∈ [0, m]. We obtain:

Theorem 48 Let m > 1, s ∈ [0, m], and let κs be the neighbor-vertex design. Then

mineff (κs|O) =





min
{

4
m2

(
−2s ⌊s⌋ − s+ ⌊s⌋+ ⌊s⌋2 + sm

)
, s

m

}
if m is even

min
{

4
(m+1)(m−1)

(
−2s ⌊s⌋ − s+ ⌊s⌋+ ⌊s⌋2 + sm

)
, s

m

}
if m is odd

The next corollaries give the O-minimal efficiency of the two most important
Kiefer’s designs.

Theorem 49 Let m > 1 and let ξ∗−∞ be the E-optimal design for the model (f,X)
which is given in Theorem 46. Then

mineff
(
ξ∗−∞|O

)
=

{
1/2 if m is even
(m+ 1)/(2m) if m is odd

Theorem 50 ([9]) Let m > 1 and let ξ∗0 be a D-optimal design for the model (f,X).
Then

mineff (ξ∗0 |O) =

{
(m+ 2)/(2m+ 2) if m is even
(m+ 1)/(2m) if m is odd

Therefore, the O-minimal efficiency of the E- and D-optimal designs is at least
50% and it converges to 50% with dimension m increasing to infinity.

We will show that, with an exception of the case mmod4 = 2, the O-maximin
efficient design for (f,X) is the neighbor-vertex design κs with s = 3

4
m and its O-

minimal efficiency is exactly 3/4.
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Theorem 51 Let m ∈ N. Set s = 1 if m = 1 and

s = 3m/4 if mmod 4 ∈ {0, 1, 3} , m 6= 1
s = 3m/4− 1/(3m) if mmod 4 = 2

Then the neighbor vertex design κs is O-maximin efficient for the model (f,X). More-
over

mineff (κs|O) =

{
3/4 if mmod4 ∈ {0, 1, 3} , m 6= 1
3/4− 1/ (3m2) if mmod4 = 2

Proof. Proposition 44 entails that for some s ∈ [0, m] the neighbor-vertex design
κs is O-minimax efficient from the reason that the criterion of O-minimal efficiency
is orthogonally invariant. Clearly, the value of s which gives the O-minimax efficient
design maximizes the minima in Theorem 48.

Let m be even. Then we need to maximize the function min {q0(m, s), s/m} on

[0, m], where q0(m, s) = 4
m2

(
−2s ⌊s⌋ − s+ ⌊s⌋+ ⌊s⌋2 + sm

)
. Notice that q0(m,m/2) =

1, q0(m,m) = 0, and that q0(m, ·) is decreasing on [m/2, m]. Therefore, the maxi-
mum of min {q0(m, s), s/m} is attained at the point s ∈ [m/2, m] which solves the
equation q0(m, s) = s/m. One can verify that the solution is s = 3

4
m if mmod4 = 0

and s = 3
4
m− 1

3
m−1 if mmod 4 = 2.

If m is odd, then we need to maximize min {q1(m, s), s/m} on [0, m], where

q1(m, s) = 4
(m+1)(m−1)

(
−2s ⌊s⌋ − s+ ⌊s⌋+ ⌊s⌋2 + sm

)
. Since q0(m, (m + 1)/2) = 1,

q0(m,m) = 0, and q0(m, ·) is decreasing on [(m+ 1)/2, m], we need to find the solution
s ∈ [(m+ 1)/2, m] which solves q1(m, s) = s/m. Again, it is straightforward to verify
that the solution is s = 3

4
m.



Chapter 9

MULTIVARIATE LINEAR REGRESSION OF THE FIRST

DEGREE WITH A CONSTANT TERM

9.1 Definition of the model and j-vertex designs

Consider the d-way linear regression model of the first degree with a nonzero intercept
term given by the formula

y = x1β1 + ... + xdβd + cβd+1 + ε, x1, ..., xd ∈ {0, 1}

where c is a known positive constant.

Suppose that β1, ..., βd represent unknown weights, and the components of x
mean the presence or absence of items in a weighing (similarly as in the model from
the previous chapter). Then βd+1 can represent an unknown constant bias of the
spring balance, caused for instance by an additional weight of different character,
which is necessarily present in all the weighings. Notice that the constant c basically
quantifies our interest about the intercept term compared to β1, ..., βd in the sense
that a small value of c indicates that the intercept term is important, while a large
value of c means that the estimation of the parameters β1, ..., βd is of primary interest.

In the standard notation used in this work, the experimental domain is X =
{0, 1}d, the set of all designs is Ξ, and the m = d+1 dimensional vector of regression
functions is

f : X→ R
d+1; f(x1, ..., xd) = (x1, ..., xd, c)

T

Let Xj be the set of all unit cube vertices from X having j components equal to
1 and d− j components equal to 0. Next, let κj be the j-vertex design - the uniform
probability on Xj. In the sequel, we will construct designs in the class Ξ∗ of all convex
combinations of j-vertex designs. The next proposition justifies this restriction.

Proposition 52 For any ξ ∈ Ξ there exists a design κ ∈ Ξ∗, such that

Φ(M(κ)) ≥ Φ(M(ξ)) for all Φ ∈ O

Therefore, for any orthogonally invariant criterion Φ, some convex combination of
j-vertex designs is Φ-optimal.

Proof. Let ξ ∈ Ξ be an arbitrary design. We will show that the symmetrization
κ ∈ Ξ∗ of ξ which is given by
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κ (x) =
(

d
j

)−1∑
x/∈Xj

ξ
(
x/
)

for all x ∈ Xj, j = 0, ..., d

performs equally or better than ξ with respect to any Φ ∈ O.
Let Pi, i = 1, ..., d! be the permutation matrices of type (d + 1) × (d + 1),

which permute the first d components, and leave the last component unchanged. Fix
j ∈ {0, ..., d}. The heart of the proof is based on geometric symmetries of the model,
which can be algebraically stated in these two statements:

(i) The matrix
∑d!

i=1 Pif(x)fT (x)PT
i is the same for all x ∈ Xj;

(ii) The matrix
∑

x∈Xj
Pif(x)fT (x)PT

i is the same for all i = 1, ..., d!.
The reason of (i) (or (ii)) is that different x’es (resp. i’s) lead to sums with

the same terms summed in a possibly different order. Using (i) with
∑

x∈Xj
ξ (x) =∑

x∈Xj
κ (x) and then using (ii) with the fact that κ (x) is the same for all x ∈ Xj we

obtain:

∑
x∈Xj

ξ (x)
∑d!

i=1
1
d!
Pif(x)fT (x)PT

i =
∑

x∈Xj
κ (x)

∑d!
i=1

1
d!
Pif(x)fT (x)PT

i =

=
∑d!

i=1
1
d!

∑
x∈Xj

κ (x)Pif(x)fT (x)PT
i =

∑d!
i=1

1
d!

∑
x∈Xj

κ (x) f(x)fT (x) =
∑

x∈Xj
κ (x) f(x)fT (x)

Therefore

∑d!
i=1

1
d!
PiM(ξ)PT

i =
∑d!

i=1
1
d!
Pi

(∑d
j=0

∑
x∈Xj

ξ (x) f(x)fT (x)
)
PT

i =

=
∑d

j=0

∑
x∈Xj

ξ (x)
∑d!

i=1
1
d!
Pif(x)fT (x)PT

i =
∑d

j=0

∑
x∈Xj

κ (x) f(x)fT (x) = M(κ)

Finally, if Φ ∈ O, then from orthogonal invariance (Pi are orthogonal matri-
ces!) and concavity of Φ we derive

Φ(M(ξ)) =
∑d!

i=1
1
d!

Φ
(
PiM(ξ)PT

i

)
≤ Φ

(∑d!
i=1

1
d!
PiM(ξ)PT

i

)
= Φ (M(κ))

The proof is complete. (It is evident that the proposition is even valid for the
larger class of all permutationally invariant criteria.)

Suppose that w = (w0, ..., wd)
T is a vector of nonnegative weights summing to

1 and denote the convex combination of the j-vertex designs as

κw =
d∑

j=0

wjκj ∈ Ξ∗

It is easy to verify that the information matrix of κw has the following block form.

M (κw) =

( ∑d
j=0wjHj

∑d
j=0wj

cj
d
× 1d∑d

j=0wj
cj
d
× 1T

d c2

)
, where

Hj =
j(d− j)
d(d− 1)

Id +
j(j − 1)

d(d− 1)
1d1

T
d if d > 1 and H0 = 0, H1 = 1 if d = 1.

The next proposition already leads us close to identification of optimal designs
for criteria depending on eigenvalues.
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Proposition 53 Let d ≥ 2, and let w ∈ Rd+1 be a vector of nonnegative weights
which sum to 1. Define u1, ..., ud−1 ∈ Rd+1 by

u1 = 2−1/2 × (1,−1, 0, ..., 0)T

u2 = 6−1/2 × (1, 1,−2, 0, ..., 0)T

u3 = 12−1/2 × (1, 1, 1,−3, 0, ..., 0)T

· · ·
ud−1 = (d− 1 + (d− 1)2)

−1/2 × (1, 1, 1, ..., 1− d, 0)T

Then u1, ..., ud−1 form an orthonormal system of eigenvectors of the information ma-
trix M (κw). The common eigenvalue of M (κw) corresponding to u1, ..., ud−1 is

b(w) =
d∑

j=0

wj
j(d− j)
d(d− 1)

Moreover, the 2-dimensional eigenspace of M (κw) orthogonal to u1, ..., ud−1 is gen-
erated by

u∗d = d−1/2(1, 1, 1, ..., 1, 0)T

u∗d+1 = (0, 0, 0, ..., 0, 1)T

with corresponding eigenvalues of M (κw) equal to the eigenvalues of the matrix

( 1
d

∑d
j=0wjj

2 c√
d

∑d
j=0wjj

c√
d

∑d
j=0wjj c2

)

Proof. Checking that u1, ..., ud−1 are orthonormal eigenvectors corresponding to the
eigenvalue b(w) is lengthy, but elementary. It is also obvious that the orthonormal
vectors u∗d and u∗d+1 are both orthogonal to span(u1, ..., ud−1). Let ud and ud−1 be
orthonormal eigenvectors of M (κw) which belong to the eigenspace span(u∗d, u

∗
d+1).

Consider the matrices U = (ud, ud+1) and U∗ =
(
u∗d, u

∗
d+1

)
of type (d+ 1)×2. Clearly,

there is an orthogonal 2×2 matrix V, such that U∗V = U. The eigenvalues of M (κw)

which correspond to ud and ud−1 are the (two) components of λ
(
UTM (κw)U

)
. But

λ
(
UTM (κw)U

)
= λ

(
VTU∗T M (κw)U∗V

)
= λ

(
U∗TM (κw)U∗

)

One can easily verify that

U∗T M (κw)U∗ =

( 1
d

∑d
j=0wjj

2 c√
d

∑d
j=0wjj

c√
d

∑d
j=0wjj c2

)
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9.2 The D-optimal designs

The aim of this section is to show that the design which distributes weights uniformly
on X is D-optimal.

Theorem 54 Let d ≥ 1. Let ξ∗0 be the uniform probability on X. Then ξ∗0 is D-
optimal for the model (f,X). Moreover,

M (ξ∗0) =

(
1
4
Id + 1

4
1d1

T
d

c
2
1d

c
2
1T

d c2

)

λ (M (ξ∗0)) =
(
λ1,

1

4
, ...,

1

4
, λd+1

)

where λ1, λd+1 (λ1 < λd+1) are the roots of

4λ2 − (4c2 + d+ 1)λ+ c2

Proof. Clearly, ξ∗0 =
∑d

j=0 2−d
(

d
j

)
κj . It is simple to check that the information

matrix M0 = M (ξ∗0) is the one which is given in the theorem, using the expressions
for the information matrices of κw and the following basic combinatorial identities:

∑d
j=0

(
d
j

)
= 2d, next

∑d
j=0 j

(
d
j

)
= d× 2d−1 and

∑d
j=0 j(j − 1)

(
d
j

)
= d(d− 1)× 2d−2

For d = 1, the vector of eigenvalues of M0 can be directly calculated and for
d ≥ 2 it can be derived from Proposition 53.

Next, we need to show that the roots λ1, λd+1 satisfy λ1 ≤ 1/4 ≤ λd+1. Firstly,
it is clear that the smaller λ1 is at most c2

1+4c2
, because in the opposite case the minimal

eigenvalue of M0 would be higher than the E-optimal value, which is impossible.
Hence, λ1 < 1/4.

On the other hand, the minimum of the polynomial 4λ2 − (4c2 + d+ 1)λ+ c2

is in the point (4c2 +d+1)/8 > 1/4 , which means that the larger root is λd+1 > 1/4.
(The roots λ1, λd+1 can be stated explicitly, but the formulae are long and we can
prove the ordering from the implicit description as well.)

The last step is to prove that ξ∗0 is D-optimal. Take an arbitrary point x =
( xT

0 c )T ∈ X, where x0 ∈ {0, 1}d. It is simple to verify that

xT M−1
0 x = ( xT

0 c )

(
4Id −2

c
1d

−2
c
1T

d
d+1
c2

)(
x0

c

)
= 4xT

0 x0 − 4xT
0 1d + (d+ 1) = d+ 1

The previous equality means that maxx∈Xx
TM−1

0 x = d+1 = m, which proves
D-optimality of ξ∗0 by the equivalence theorem (see e.g. [17], p. 117).
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9.3 The E-optimal designs

In this section, we will construct E-optimal designs for the model (f,X) of any degree.
Firstly, we will find the E-optimal design for the case d = 1.

Proposition 55 Let d = 1 and let

ξ∗−∞ =
1 + 2c2

1 + 4c2
κ0 +

2c2

1 + 4c2
κ1

Then ξ∗−∞ is the unique E-optimal design. Moreover,

M
(
ξ∗−∞

)
=

c2

1 + 4c2

(
2 2c
2c 1 + 4c2

)

λ
(
M
(
ξ∗−∞

))
=

(
c2

1 + 4c2
,
2c2 + 4c4

1 + 4c2

)T

Proof. Suppose that d = 1. The proposition can be proved either by Lemma 3.1. in
[5], or using elementary calculus as follows. Consider an arbitrary design ξ ∈ Ξ and
denote w = ξ (1) ∈ [0, 1]. It is then straightforward to show that

M(ξ) =

(
w wc
wc c2

)
and λ1 (M(ξ)) = 1

2
w + 1

2
c2 − 1

2

√
(1 + 4c2)w2 − 2c2w + c4

The proof can be closed noticing that λ1 is a smooth function of the weight w
and checking that w∗ = 2c2

1+4c2
is a single stationary point on the interval (0, 1).

Using the previous proposition and results of Chapter 5, we can find an E-
optimal design for all degrees of the model.

Theorem 56 If d is even let

ξ∗−∞ =
d+ 2c2

d(1 + 4c2)
κ0 +

(d− 1)4c2

d(1 + 4c2)
κd/2 +

2c2

d(1 + 4c2)
κd

and if d is odd let

ξ∗−∞ =
(d+ 1) + 2c2

(d+ 1)(1 + 4c2)
κ0 +

2dc2

(d+ 1)(1 + 4c2)

(
κ d−1

2

+ κ d+1

2

)
+

2c2

(d+ 1)(1 + 4c2)
κd

Then ξ∗−∞ is an E-optimal design and

M
(
ξ∗−∞

)
=

c2

1 + 4c2
×
(

Id + 1d1
T
d 2c1d

2c1T
d 1 + 4c2

)

λ
(
M
(
ξ∗−∞

))
=

(
c2

1 + 4c2
, ...,

c2

1 + 4c2
,
(d+ 1)c2 + 4c4

1 + 4c2

)T
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Proof. The form of the information matrix of ξ∗−∞ can be easily derived from the
expressions for the information matrices of the designs κw. Next, the eigenvalues of
M
(
ξ∗−∞

)
can be calculated from Proposition 53. The only nontrivial fact is that ξ∗−∞

is E-optimal.
For d = 1, the theorem is identical to Proposition 55. Suppose that d ≥

2. Consider the 2-dimensional orthogonal submodel of (f,X), which we obtain by
deleting the first d − 1 components of f , i.e. the orthogonal submodel (g,X) where
g = UTf and the entries of U ∈ Ud+1,2 are given by the equalities: (U)ij = 1 if
(i, j) ∈ {(d, 1), (d+ 1, 2)} , and (U)ij = 0 otherwise.

Evidently, the model (g,X) has the same Elfving set as the two-dimensional
version of the model (f,X), i.e. for d = 1. Hence, Propositions 21 and 55 imply that
the E-optimal value of (g,X) is vg,X(1) = c2 (1 + 4c2)

−1
. Therefore

ΦE1
(Mf,X

(
ξ∗−∞

)
) = c2

1+4c2
= vg,X(1)

Consequently, ξ∗−∞ is E-optimal by Proposition 17.

Using the methods developed in Chapter 5, it can also be shown that the E-
optimal information matrix is unique for all dimensions d, and the E-optimal design
is unique for d = 1, 2. It turns out that there is a multitude of distinct E-optimal
designs for d ≥ 3. Naturally, under certain practical circumstances, the E-optimal
designs do not have to be equally suitable. For instance, we can have requirements
on the number of ”items in one weighing” and some of the E-optimal designs would
comply to these restrictions, while others would not. However, this is a nontrivial
problem, solution of which is not essential for this work.

Notice also that if c→∞, that is if we focus on estimation of β1, ..., βd, then
the E-optimal design tends to put the mass 1/2d to the extreme vertex designs κ0 and
κd and the mass (d−1)/d to the middle vertex design κd/2 (for an even d; the behavior
for an odd d is similar). As can be verified using Proposition 53 and Theorem 54,
this ”limit” E-optimal design is one of more possible D-optimal designs.

9.4 Bounds on the Ek-optimal values

For the model in consideration, it seems to be difficult to find the exact Ek-optimal
values, except of some special cases as k = 1 or k = d + 1. Nevertheless, ideas from
Chapter 5 allow us to find upper bounds on the Ek-optimal values, and consequently
lower bounds on the O-minimal efficiency.

Suppose that d ≥ 2 and consider u1, ..., ud−1 ∈ Rd+1 as defined in Proposition
53. Set

u
/
d =

(
4c2d+ d2

)−1/2 × (2c, 2c, ..., 2c,−d)T

The vectors u1, ..., ud−1, u
/
d are mutually orthogonal, normalized, and chosen such that

U =
(
u1, ..., ud−1, u

/
d

)
∈ Ud+1,d

Notice that the projector P = UTU projects orthogonally in the direction of the
”central axis” (1/2, ..., 1/2, c)T of the Elfving set E corresponding to the model (f,X).
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Let 1 ≤ k ≤ d. By Proposition 52 we know that there exists an Ek-optimal
design κw that is a convex combination of the j-vertex designs defined by a vector of
weights w = (w0, ..., wd)

T . It is straightforward to show that

(
u

/
d

)T
·M (κw) · u/

d =
c2

d2 + 4dc2
×

d∑

j=0

wj(2j − d)2 =: b∗(w)

Therefore, Propositions 16 and 53 imply that

ΦEk
(M (κw)) ≤ ΦEk

(
UTM (κw)U

)
≤ ΦEk

(
b(w)× Id−1 0d−1

0T
d−1 b∗(w)

)

Consequently, if 1 ≤ k ≤ d, then we have the following upper bounds on the
Ek-optimal values. (The maximum is taken with respect to all possible vectors w of
weights.)

v(k) ≤ maxw min {kb(w), (k − 1)b(w) + b∗(w)} if 1 ≤ k ≤ d− 1
v(k) ≤ maxw ((d− 1)b(w) + b∗(w)) if k = d

We can rewrite the previous inequalities into a form which does not require
maximization over anm-dimensional simplex, as is shown in the following proposition.

Proposition 57 The Ek-optimal values v(k) of the model (f,X) satisfy

v(1) = c2

1+4c2

v(k) ≤ minq∈[0,1] max
j=0,...,d

{
(k−q)j(d−j)

d(d−1)
+ qc2(2j−d)2

d2+4dc2

}
if d ≥ 3 and 1 < k < d

v(d) ≤ max
j=0,...,d

{
j(d−j)

d
+ c2(2j−d)2

d2+4dc2

}

v(d+ 1) = d+ c2

Proof. The E-optimal value v(1) comes from Theorem 56. Suppose that d ≥ 3 and
1 < k < d. We can write

maxw min {kb(w), (k − 1)b(w) + b∗(w)} ≤
≤ maxw minq∈[0,1] ((1− q)kb(w) + q ((k − 1)b(w) + b∗(w))) ≤
≤ minq∈[0,1] maxw ((1− q)kb(w) + q ((k − 1)b(w) + b∗(w)))

The last inequality follows from Lemma 36.1 in [22]. As b(w) and b∗(w) depend
linearly on the vector w of weights, the maximum is attained on the vertices of the
(d+ 1)-dimensional unit simplex, that is on the basic unit vectors e1, ..., ed+1 ∈ Rd+1.
Consequently

maxw min {kb(w), (k − 1)b(w) + b∗(w)} ≤
≤ minq∈[0,1] max

i=1,...,d+1
((1− q)kb(ei) + q ((k − 1)b(ei) + b∗(ei))) =

= minq∈[0,1] max
i=1,...,d+1

((k − q) b(ei) + qb∗(ei))
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We can use the expressions for the functions b and b∗ to get the form of the
bound given in the theorem. The bound for v(d) can be proved analogously, and the
T -optimal value v(d+1) is based on the easy to verify fact that the T -optimal design
is the singular measure on (1, ..., 1, c)T .

For example if d = 2 then the previous proposition yields

v(2) ≤ max

{
c2

1 + 2c2
,
1

2
,

c2

1 + 2c2

}
=

1

2

Similarly, if d = 3 then we obtain

v(2) ≤ minq∈[0,1] max
{

3qc2

3+4c2
, 2−q

3
+ q

3
c2

3+4c2

}
=





2c2

4c2+1
if c ≥

√
3

2
1
3

3+5c2

3+4c2
if c ≤

√
3

2

v(3) ≤ max
{

3c2

3+4c2
, 2+3c2

3+4c2
, 3c2

3+4c2

}
= 2+3c2

3+4c2

In order to find the bound on v(k) given by Proposition 57 for d ≥ 3 and
1 < k < d, we only need to minimize a (known) piecewise-linear convex function on
the interval [0, 1]. Hence, the bounds can be mechanically calculated for a general
dimension of the model.

If, for instance, c = 1, then we can compute and summarize the (bounds on)
the values v(k) in the table given below. (Notice that the lower bounds are based on
the E-optimal designs.)

d=1 d=2 d=3 d=4
k=1 1/5 1/5 1/5 1/5
k=2 2 [2/5, 1/2] 2/5 2/5
k=3 - 3 [3/5, 5/7] [3/5, 2/3]
k=4 - - 4 [4/5, 1]
k=5 - - - 5

Using Proposition 57, we can also derive very simple bounds on the Ek-optimal
values (for k ≤ d), which do not depend on d and c.

Theorem 58 Let 1 ≤ k ≤ d. Then v(k) ≤ k/4.

Proof. From Proposition 57 we see that

v(d) ≤ maxj=0,...,d

{
j(d−j)

d
+ c2(2j−d)2

4dc2

}
= d/4

But Proposition 8 entails that the point (k, v(k)) must lie below the line con-
necting (0, 0) and (d, v(d)). The inequality v(k) ≤ k/4 is now evident.
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9.5 The O-minimal efficiency of the E- and D-optimal designs

After proving the necessary auxiliary results in the previous section, we are able to
formulate the following theorem about the O-minimal efficiency of E-, and D-optimal
designs.

Theorem 59 Consider designs ξ∗−∞ and ξ∗0 given in Theorems 56 and 54. Then

mineff(ξ∗−∞|O) =
c2 (4c2 + 1 + 2d)

(c2 + d) (4c2 + 1)

mineff(ξ∗0 |O) ≥ min

{
1 + 4c2

d+ 1 + 4c2
,
d+ 2c2

2d+ 2c2

}

mineff(ξ∗0 |O) ≤ min

{
1 + 4c2

d+ 1
1+4c2

+ 4c2
,
d+ 2c2

2d+ 2c2

}

Proof. Using Theorems 55, 56, 58 and the T -optimal value v(d + 1) = d + c2 from
Proposition 57 we obtain for all 1 ≤ k ≤ d:

eff (ξ∗−∞|ΦEk
) ≥ 4c2

1 + 4c2
≥ (4c2 + 1 + 2d) c2

(1 + 4c2) (c2 + d)
= eff (ξ∗−∞|ΦEd+1

)

According to Theorem 11, this proves the formula for the O-minimal efficiency
of the E-optimal design ξ∗−∞.

Next, we will derive the bounds for the D-optimal design ξ∗0 . By Theorem 11
we need to find bounds on the E1-, Ed- and Ed+1-efficiency of ξ∗0 .

By Theorem 54, the minimal eigenvalue λ1 of M (ξ∗0) is a root of 4λ2 − (d +
1 + 4c2)λ + c2. Therefore λ1 = ρ (λ1), where the function ρ : (0,∞] → R is defined
by

ρ (λ) = c2 (d+ 1 + 4c2 − 4λ)
−1

Notice, that ρ is increasing on (0,∞]. Clearly, λ1 is positive and, in the same
time, less than the E-optimal value given by Theorems 55 and 56. The inequalities
λ1 > 0 and λ1 < c2 (1 + 4c2)

−1
then entail:

λ1 = ρ (λ1) > ρ(0) = c2 (d+ 1 + 4c2)
−1

λ1 = ρ (λ1) < ρ(c2 (1 + 4c2)
−1

) = c2
(
d+ (1 + 4c2)

−1
+ 4c2

)−1

The E-optimal (i.e. E1-optimal) value and the previous inequalities give

eff(ξ∗0 |ΦE1
) =

λ1

c2 (1 + 4c2)−1 ∈
(

1 + 4c2

d+ 1 + 4c2
,

1 + 4c2

d+ 1
1+4c2

+ 4c2

)
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Moreover, Theorem 58 implies v(d)
c (d) ≤ d/4, which means

eff(ξ∗0 |ΦEd
) ≥

(
c2

d+ 1 + 4c2
+
d− 1

4

)
: (d/4) ≥ 1 + 4c2

d+ 1 + 4c2

where the second inequality is easy to show by direct algebraic manipulations.
Finally, as the T -optimal (Ed+1-optimal) value is v(d+ 1) = d+ c2 we can write

eff(ξ∗0 |ΦEd+1
) =

trM (ξ∗0)

d+ c2
=

2d+ 4c2

4d+ 4c2

Consequently, the value mineff(ξ∗0 |O) = mink∈{1,d,d+1} eff(ξ∗0 |ΦEk
) is between

the bounds given in the theorem.

Although we have not the exact value of mineff(ξ∗0|O) identified, the bounds
given in Theorem 59 are very tight, as is also obvious from the illustrative graphs
in Figures 3 and 4 for selected degrees d = 2 and d = 8. Notice also, that there
exist values of d and c such that mineff(ξ∗−∞|O) is greater than mineff(ξ∗0 |O) and vice
versa.

In the last part of this section, we will briefly point out some implications of
Theorem 59 for the limiting cases of c and d.

Under the assumption that c → ∞ and d is fixed, the O-minimal efficiencies
of E- and D-optimal designs converge to 1. This means that if the parameter of
intercept is unknown, but of negligible interest, then E- and D-optimal designs have
both very high performance with respect to all orthogonally invariant criteria.

If d → ∞ and c is fixed, then mineff(ξ∗0 |O) converges to 0, while the O-
minimal efficiency of the E-optimal design remains bounded from below by 2c2

4c2+1
.

Consequently, for a large value of d and a moderate c, the E-optimal design should
be preferred to the D-optimal design, provided that we require a design which is
robust with respect to selection of a criterion from the class O.

The last observation has a theoretical value. If c → 0 and d is fixed, then
the upper bound on mineff(ξ∗0 |O) converges to 1/(d + 1) = 1/m. Hence, Theorem
32 gives the strongest lower bound on the O-minimal efficiency of D-optimal designs
which depends only on the number m of parameters.



Chapter 10

QUADRATIC, CUBIC AND BIQUADRATIC REGRESSION ON
THE INTERVAL [−1, 1]

10.1 Definition of the model and the Ek-optimal values

Consider the polynomial regression of degree d on the experimental domain X =
[−1, 1] given by the model equation

y = β1 + β2x+ ...+ βd+1x
d + ε

In the notation of this article, the vector of unknown parameters of interest β =
(β1, β2, ..., βd+1)

T is m = d + 1 dimensional and the vector of regression functions is
f(x) = (1, x, ..., xd)T .

We will analyze this model for degrees d ∈ {1, 2, 3, 4} with the aim to evaluate
the minimal efficiency of Φp-optimal designs, p ∈ [−∞, 1], with respect to the class
O of all orthogonally invariant criteria. As special cases, we will obtain the O-
minimal efficiency for the D-, A-, and E-optimal designs. Moreover, for the quadratic
regression (d = 2), we will identify the design which is O-maximin efficient.

Firstly, we need to find the optimal values for the criteria of Ek-optimality. It
turns out that the Ek-optimal designs for degrees d = 1, 2, 3, 4, and for k = 1, ..., d+1
can be found explicitly. For k = 1, that is for the ordinary E-optimality, the optimal
designs are known (see [20] or [19] p. 232-237), and we denote them by ζ

(d)
1 . In

particular, the simplest design ζ
(1)
1 assigns the weight 1

2
to −1 and 1. Next, by ζ

(4)
3

we denote the design which assigns the weight 1/6 to −1,1, and the weight 2/3 to
0. Using Theorem 6, it is simple to verify that for any considered combination of
d and k, some of the five designs described (i.e. ζ

(1)
1 , ..., ζ

(4)
1 or ζ

(4)
3 ) is Ek-optimal.

The Ek-optimal designs and the corresponding optimal values are summarized in the
following table.

d=1 d=2 d=3 d=4

k=1 ζ
(1)
1 ; 1 ζ

(2)
1 ; 1/5 ζ

(3)
1 ; 1/25 ζ

(4)
1 ; 1/129

k=2 ζ
(1)
1 ; 2 ζ

(1)
1 ; 1 ζ

(2)
1 ; 1/5 ζ

(3)
1 ; 1/25

k=3 - ζ
(1)
1 ; 3 ζ

(1)
1 ; 2 ζ

(4)
3 ; 1/3

k=4 - - ζ
(1)
1 ; 4 ζ

(1)
1 ; 2

k=5 - - - ζ
(1)
1 ; 5
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Notice that in the case of line regression (d = 1) the design ζ
(1)
1 is Ek-optimal

for both k = 1, 2. This means that ζ
(1)
1 is optimal with respect to all orthogonally

invariant criteria.

10.2 The O-minimal efficiency of Φp-optimal designs

The Ek-optimal values allow us to compute the O-minimal efficiency for the Φp-
optimal designs, p ∈ [−∞, 1]. For polynomial regression on [−1, 1], the E ≈ Φ−∞,
A ≈ Φ−1, and D ≈ Φ0-optimal designs are known (see e.g. [19] Chapter 9). For these
designs, the following tables give the Ek-efficiencies. According to Theorem 10, the
minimum of these d+ 1 efficiencies equals to the O-minimal efficiency.

eff E1 E2 E3 O-minimal
D 0.730745 0.812816 0.777778 0.730745
A 0.954915 0.690983 0.666667 0.666667
E 1.000000 0.600000 0.600000 0.600000

d=2

eff E1 E2 E3 E4 O-minimal
D 0.744733 0.717848 0.608890 0.656000 0.608890
A 0.967451 0.721081 0.432425 0.523166 0.432425
E 1.000000 0.638861 0.396386 0.501250 0.396386

d=3

eff E1 E2 E3 E4 E5 O-minimal
D 0.738857 0.714339 0.683360 0.603928 0.577976 0.577976
A 0.969005 0.709550 0.637469 0.443494 0.448069 0.443494
E 1.000000 0.627669 0.603550 0.433000 0.441860 0.433000

d=4

For an arbitrary p ∈ [−∞, 1], the Φp-optimal design can be computed using
general iterative methods (see [17] Chapter V). The graphs in Figures 5, 6, 7 exhibit
the numerically computed Ek-efficiencies, and the O-minimal efficiency of Φp-optimal
designs. The parameter r, which corresponds to the horizontal axis, relates to the
parameter p via the function p(r) = 2r

1+r
for r ∈ (−1, 1] and p(r) = −∞ for r = −1.

Hence, E-, A-, D- and T -optimality correspond to r = −1,−1/3, 0, resp. 1. Notice
also that the function p(·) is chosen such that p(r)+p(−r) = p(r)p(−r), which means
that p(r) and p(−r) are conjugate numbers.

From the graphs of the minimal efficiency with respect to O we see that the
D-optimal design performs well, yet it does not maximize the O-minimal efficiency
even within the class of Φp-optimal designs.

10.3 The O-maximin efficient design for quadratic regression

In general, it is difficult to find the O-maximin efficient design without resorting to
numerical procedures for maximization of a nondifferentiable function. Nevertheless,
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for the case of the quadratic regression, we can construct the maximin efficient design
explicitly:

Theorem 60 ([8]) Let ξ be the design which assigns the weight w = 46
251

+ 15
502

√
22

.
=

0.32342 to the points −1,1 and the weight 1 − 2w
.
= 0.35316 to the point 0. Then

ξ is maximin efficient with respect to O for the quadratic regression on [−1, 1]. The
O-minimal efficiency of ξ is 145

251
+ 10

251

√
22

.
= 0.76456.

Proof. It is simple to verify that the eigenvalues of M = M(ξ) (cf. [19] p.333) are

λ1(M) = 29
251

+ 2
251

√
22

.
= 0.15291, λ2(M) = 92

251
+ 15

251

√
22

.
= 0.64684,

λ3(M) = 314
251

+ 13
251

√
22

.
= 1.49393

We already know that the optimal values for ΦEk
, k = 1, 2, 3 are v(1) = 1/5,

v(2) = 1, and v(3) = 3, therefore

ΦE1
(M)/v(1) = 5λ1(M) = 145

251
+ 10

251

√
22

.
= 0.76456

ΦE2
(M)/v(2) = λ1(M) + λ2(M) = 121

251
+ 17

251

√
22

.
= 0.79975

ΦE3
(M)/v(3) = 1

3
{λ1(M) + λ2(M) + λ3(M)} = 145

251
+ 10

251

√
22

.
= 0.76456

Thence the O-minimal efficiency of ξ is

ΦO(M) = min
k=1,2,3

Φ̃Ek
(M)/v(k) = 145

251
+ 10

251

√
22

.
= 0.76456

The eigenvalues of M are mutually distinct, hence by the discussion following
Proposition 4 we know that ΦEk

’s are differentiable in M, which means that there
exist unique gradients of Φ̃Ek

in M for all k. Moreover, as the active set used in
Proposition 13 is I = {1, 3}, we see that the subgradients of Φ̃O in M are of the form

Y = α∇Φ̃E1
(M)/v(1) + (1− α)∇Φ̃E3

(M)/v(3), α ∈ [0, 1].

In the sequel, we shall use the subgradient Y which corresponds to α = 11
251

+
285
5522

√
22

.
= 0.28591. From Proposition 4, it can be calculated that

∇Φ̃E1
(M) =



a 0 b
0 0 0
b 0 c


, where a = 59+12

√
22

313
, b = −90−13

√
22

313
, c = 254−12

√
22

313
.

Moreover, Φ̃E3
is simply the trace, therefore ∇Φ̃E3

(M) = I3. Using algebraic
simplifications and elementary calculus we finally obtain

fT (x)Yf(x) = 220+145
√

22
5522

×
(
7x4 − 7x2 +

√
22
)

max
x∈[0,1]

fT (x)Yf(x) = 145
251

+ 10
√

22
251

= ΦO(M)
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By Theorem 14, this proves that ξ is the O-maximin efficient design.

It can be shown that in the case of quadratic regression, the O-maximin effi-
cient design ξ must be Φpξ

-optimal for some pξ ∈ [−∞, 1]. (More generally, if d = 2
then any design which is optimal with respect to some Φ ∈ O is also Φp-optimal for
some p; see the considerations in [19] p. 334. On the other hand, our preliminary
numerical computations suggest that for d > 2 the O-maximin efficient design does
not belong to the class of Φp-optimal designs). One can calculate that pξ

.
= −0.0648

(i.e. rξ
.
= −0.0314; cf. with Figure 5).

At the end of this chapter, let us use the quadratic regression to demonstrate
the methods of Section 4.3 leading to a convex combination ξw∗ of Ek-optimal designs,
proposed with the intention to guarantee a stable performance under all orthogonally
invariant criteria.

To calculate the vector of weights w∗ we need to solve a linear programming
problem: find max y, where

x = (w1, w2, w3, δ1, δ2, δ3, y)
T ∈ R7

+




1 0 0 −1 0 0 −1
3/5 1 1 0 −1 0 −1
3/5 1 1 0 0 −1 −1
1 1 1 0 0 0 0


 x =




0
0
0
1




A solution of this problem is x∗ = (5/7, 2/7, 0, 0, 0, 0, 5/7)T (calculated using
the program R). Hence, the design

ζw∗ =
5

7
× ζ (2)

1 +
2

7
× ζ (1)

1 =

(
−1 0 1
2/7 3/7 2/7

)

has O-minimal efficiency bounded below by the last component of x∗ which
is equal to 5/7

.
= 0.7143. (In fact, one can check that 5/7 is the exact value of this

efficiency.) This is substantially more than the O-minimal efficiency of the E-optimal
design we used for construction of ζw∗ , and only slightly less than the O-minimal
efficiency of the known O-maximin efficient design given by Theorem 60.



Chapter 11

IMPROVING PERFORMANCE OF ALGORITHMS FOR

CONSTRUCTION OF D-OPTIMAL DESIGNS

11.1 Deletion of points which do not support a D-optimal design

The problem of numerical construction of D-optimal designs has gained much atten-
tion in the experimental design literature. The main problem of existing iterative
algorithms (see e.g. [17], Chapter V) is their slow convergence, especially for a large
dimension of the parameter. Also, the support of the design measures obtained in
the iterative process does not have a tendency to shrink, that is the output of a pro-
gram which implements these algorithms contains many points with small weights,
or groups of points, which are very close together.

To address this problem, we will describe a geometrically based method pub-
lished in [7] which allows us to remove some unnecessary points of the experimental
domain, that is some of the points of X, which can not support any D-optimal design
measure.

We remark that the iterative algorithms used for construction of a D-optimal
design need to scan the experimental domain in every iteration. (This is best seen if
X is finite.) Using the methods of this chapter, we are able to restrict our attention
to a set which is smaller than X and, as a rule, gain an increase in the computational
speed as well as obtain the final design in a compact, small-support form.

One possible approach to this problem is to delete the points x ∈ X, such that
f(x) is not an extreme point of the Elfving set of the m-dimensional model (f,X)
in consideration (cf. [27], [17] p.56 see also Proposition 21). However, in majority
of commonly used models this method removes only small parts of X, and does not
help us use the knowledge gained during the iterative process of computation of a
design. Moreover, the method is difficult from the computational point of view. The
method proposed in this chapter is completely different and does not have these
disadvantages.

The main idea of the method is formulated in the following simple proposition:

Proposition 61 ([7]) Let P ⊆ Sm
++ be a set containing the D-optimal information

matrix M0. If sup
M∈P fT (x)M−1f(x) < m for some x ∈ X, then x does not support

any D-optimal design, i.e. for all D-optimal designs ξ∗0:

ξ∗0{x ∈ X : supM∈P f
T (x)M−1f(x) < m} = 0
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In particular, if M0 ∈ P = conv {Q1, ...,Qr} for some Q1, ...,Qr ∈ Sm
++, and if

maxi=1,...,r f
T (x)Q−1

i f(x) < m, then x ∈ X does not support any D-optimal design.

Proof. If ξ∗0 is a D-optimal design, then ξ∗0- almost all points from X satisfy the
condition fT (x)M−1 (ξ∗0) f(x) = m (cf. [32], Theorem 1c), which entails the first part
of the proposition. The second part is a consequence of the fact that the function
ψx : M→ fT (x)M−1f(x) is convex on Sm

++ (see [17], p. 62).

Naturally, we would use the full potential of Proposition 61 if we knew M0,
simply setting P = {M0}. However, we rarely can find the value of the D-optimal
information matrix exactly. Nevertheless, as we show in the next section, we are able
to construct a polyhedral set P = conv {Q1, ...,Qr} ⊆ Sm

++ containing M0 without
knowing M0. The set shall depend only on an information matrix M = M(ξ), which
is ”close” to M0, i.e. on a suboptimal design ξ.

11.2 Construction of the double-simplex cage

In this section, we will describe a method of construction of a polyhedral set P ⊆ Sm
++

containing the D-optimal information matrix M0.

Choose any matrix M = M (ξ) ∈ Sm
++. It is clear that M0 is an element of

CM =
{
A ∈ Sm

+ : det(A) ≥ det(M)
}
.

Next, for ξ ∈ Ξ we can write

trM0M
−1 = tr

(∑
x;ξ∗(x)>0 ξ

∗(x)f(x)fT (x)M−1
)

=

=
∑

x;ξ∗(x)>0 ξ
∗(x)fT (x)M−1f(x) ≤ supx∈X f

T (x)M−1f(x),

which means that M0 also belongs to

HM(c) =
{
S ∈ Sm : trSM−1 ≤ c+m

}
,

where

c = supx∈X f
T (x)M−1

0 f(x)−m ≥ 0.

Notice, that HM(c) has a simple geometric interpretation: it is the minimal
half-space in Sm from all the half-spaces which containM and which have the normal
vector equal to ∇ ln det(M) = M−1.

Consider the set

BM(c) = CM ∩HM(c).

This set is closed, convex, and contains M0. Moreover, BM(c) is bounded,
which is a simple consequence of a proposition proven in the sequel.

Let us introduce the function:
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ϕM : Sm → Sm; ϕM(S) = M−1/2SM−1/2.

One can see that the function ϕM is linear, regular (bijective), ϕM(Sm
++) =

Sm
++, and ϕM(M) = Im. This function allows us to normalize the problem, because
ϕM(CM) = CIm , ϕM(HM(c)) = HIm(c), resp. ϕM(BM(c)) = BIm(c), which is easy to
check. Therefore, it suffices to study the set

BIm(c) =
{
A ∈ Sm

+ : det(A) ≥ 1 and tr(A) ≤ m+ c
}
.

Lemma 62 Let m ≥ 2. Then for any A ∈ BIm(c), such that tr(A) = m+ c :

∥∥∥A−
(
1 + c

m

)
Im

∥∥∥
F
≤ rm(c), where rm(c) =

√
m−1

m
c2 + (m2 −m)c.

Proof. Let A ∈ BIm(c), tr(A) = m + c, A = UΛUT , where U is the orthonormal
matrix of eigenvectors of A, and Λ = diag (λ1, ..., λm), where λ1, ..., λm are corre-
sponding eigenvalues of A. The inequality 1 ≤ det(A) =

∏
k λk and the relation

between geometric and arithmetic means implies that for any i 6= j, i, j ∈ {1, ..., m}:

1 ≤ ((λiλj)
∏

k 6=i,k 6=j
λk)

m−1 ≤ 1
m−1

((λiλj) +
∑

k 6=i,k 6=j
λk)

Summing up all the
(

m
2

)
inequalities for i < j, and noticing that

∑
i<j

∑
k 6=i,k 6=j

λk =
(

m−1
2

)∑
i
λi we obtain:

(
m
2

)
(m− 1)−

(
m−1

2

)∑
i
λi ≤

∑
i<j

λiλj

From the previous inequality, the equality tr(A2) =
∑
i
λ2

i =
(∑

i
λi

)2

−2
∑
i<j

λiλj,

and tr(A) =
∑

i λi = m+ c, we get:

∥∥∥A−
(
1 + c

m

)
Im

∥∥∥
2

F
= (m+ c)2 − 2

∑
i<j

λiλj − 2(1 + c
m

)(m+ c) +m(1 + c
m

)2 ≤

(m+ c)2 − 2
((

m
2

)
(m− 1)−

(
m−1

2

)
(m+ c)

)
− 2(1 + c

m
)(m+ c) +m(1 + c

m
)2 =

m−1
m
c2 + (m2 −m)c

Proposition 63 Let m ≥ 2. Then BIm(c) is a subset of R = conv (R∗ ∪R∗), where

R∗ =
{
A ∈ Sm :

∥∥∥A−
(
1 + c

m

)
Im

∥∥∥
F
≤ rm(c), and tr(A) = m+ c

}
, and

R∗ = R∗ − c
m
Im.

Proof. It is simple to verify the proposition for c = 0. Let c > 0, A ∈ BIm(c), R∗ =

A+
(
1 + c

m

)
Im−

(
1
m

tr(A)
)
Im, R∗ = R∗− c

m
Im, and β = 1

c
(m+ c− tr(A)). Notice,

that tr(R∗) = m+c, and R∗ ≥ A in Loewner ordering, therefore det(R∗) ≥ det(A) ≥
1. Consequently, the previous lemma entails R∗∈R∗, and hence also R∗∈R∗. Ob-
viously β ∈ [0, 1], because m ≤ tr(A) ≤ m + c. Moreover, βR∗+(1−β)R∗ =
R∗ − β c

m
Im= A, as is easy to check.
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The set R from the previous proposition forms a multi-dimensional cylinder,
because the k = 1

2
m(m + 1) − 1 dimensional circles R∗ and R∗ are parallel. Hence,

we are able to encase R into a convex polyhedral set generated by 2k + 2 = m(m+
1) symmetric matrices R1, ...,R2k+2, where R1, ...,Rk+1 are vertices of a simplex
circumscribing R∗, and Rk+2 = R1 + c

m
Im, ...,R2k+2 = Rk+1 + c

m
Im are vertices of

a simplex circumscribing R∗. (Naturally, this construction is a compromise between
the volume and the number of vertices; we can construct a polyhedral supperset of
R with somewhat smaller volume but with more vertices.)

It is obvious that we can construct the matrices R1, ...,R2k+2 as follows:

Ri = k.rm(c).Ai + Im, Ri+k+1 = Ri + c
m
Im for i = 1, ..., k + 1,

where A1, ...,Ak+1 correspond to the vertices of a regular simplex circum-
scribed by the unit sphere in the k dimensional linear space I⊥m∩Sm, that is A1, ...,Ak+1

are symmetric matrices which satisfy: 〈Ai,Aj〉 = tr(AiAj) = −1/k for all i 6= j,

〈Ai, Im〉 = tr(Ai) = 0, and ‖Ai‖F =
√

tr(A2
i ) = 1 for all i = 1, ..., k + 1.

Transforming the vertices R1, ...,R2k+2 by ϕ−1
M

, and summarizing all the per-
tinent results above, we obtain the following theorem:

Theorem 64 ([7]) Let M ∈M∩ Sm
++, k = 1

2
m(m+ 1)− 1,

c = sup
x∈X

fT (x)M−1f(x)−m, and r =

√
m− 1

m
c2 + (m2 −m)c.

Next, let A1, ...,Ak+1 be a set of symmetric matrices of the type m×m which satisfy:
〈Ai, Im〉 = 0, ‖Ai‖F = 1, 〈Ai,Aj〉 = −1/k for all i 6= j, i, j = 1, ..., k + 1. Define

P = conv
{
Q1, ...,Qm(m+1)

}
,

where

Qi = k.r.M1/2AiM
1/2 + M, Qi+k+1 = Qi +

c

m
M, for i = 1, ..., k + 1.

Then the D-optimal information matrix belongs to P. Moreover, if k.r < 1 then
P ⊆ Sm

++.

Proof. The fact that M0 ∈ P follows from Proposition 63 and the considerations
above. We shall prove that k.r < 1 implies P ⊆ Sm

++. Clearly, it is enough to
guarantee that Ai + Im are positive semidefinite for all i = 1, ..., k+ 1. To prove this,
we denote the eigenvalues of Ai by γ1, ..., γm then 1 = tr(A2

i ) =
∑

j γ
2
j , which means

γj ≥ −1 for all j = 1, ..., m. But the eigenvalues of Ai + Im are γ1 + 1, ..., γm + 1.
Consequently, the symmetric matrix Ai + Im has all the eigenvalues nonnegative,
hence it is positive semidefinite.

An important fact to notice is that M → M0 implies c → 0 which in turn
guarantees that rm(c)→ 0. Therefore, the condition k.r < 1 shall be satisfied if M is
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close enough to M0, and we shall have P ⊆ Sm
++. Also, the diameter of P converges

to 0 as M→M0, although the convergence is relatively slow: diamP . constant .
√
c

for the values of c approaching 0.

The matrices A1, ...,Ak+1 in Theorem 64 depend only on the number m of
parameters, so we need to compute them only once. Moreover, there exists a very
fast (finite) iterative method how to find a set of such matrices, as we will outline.

Consider the following system of 2k equalities (the symbols a1, ..., ak, d1, ..., dk

represent unknowns):

a1 = 1, a1d1 = − 1
k
,

d2
1 + ... + d2

i−1 + a2
i = 1 for i = 2, ..., k,

d2
1 + ... + d2

i−1 + aidi = − 1
k

for i = 2, ..., k.

It is not difficult to show that this system has a unique vector of solutions
(α1, ..., αk, δ1, ..., δk) ∈ R2k, such that αi ≥ 0 for all i = 1, ..., k and that the solutions
satisfy:

δ2
1 + ... + δ2

k−1 − α2
k = −1

k
Note, that it is simple to derive the solutions if we keep the order of calculations given
by a scheme

α1 → δ1 → α2 → δ2 → ...→ αk → δk

Thus, for example if p = 2 (k = 2) we get the solution
(
1,
√

3/2,−1/2,−
√

3/2
)
, and

for p = 3 (k = 5) we obtain

1/10×
(
10,
√

96,
√

90,
√

80,
√

60,−2,−
√

6,−
√

10,−
√

20,−
√

60
)

Let B1, ...,Bk be any orthonormal basis of I⊥m ∩Sm. The method of construc-
tion of scalars αi and δi guarantees that we can construct the vertices of the simplex
as:

A1 = α1B1,
Ai = δ1B1 + ...+ δi−1Bi−1 + αiBi for i = 2, ..., k,
Ak+1 = δ1B1 + ...+ δk−1Bk−1 − αkBk.

For example, if m = 2 (k = 2) we can choose

B1 = 1√
2

(
1 0
0 −1

)
,B2 = 1√

2

(
0 1
1 0

)
,

and the method described above gives

A1 = 1√
2

(
1 0
0 −1

)
,A2 = 1

2
√

2

(
−1

√
3√

3 1

)
,A3 = 1

2
√

2

(
−1 −

√
3

−
√

3 1

)
.

The computation of the matrices Qi from Theorem 64 is thus algorithmically
simple and rapid. Consequently, according to Proposition 61, the matrices Qi can
be used to delete those points from the experimental domain, which can not support
any D-optimal design.
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11.3 Example: Cubic regression without an intercept term

As an illustrative example we have chosen the problem of a D-optimal design for the
linear regression model given by the formula

y = β1x+ β2x
2 + β3x

3 + ε,

where the values x are from the experimental domain X = {0, 0.1, 0.2, ..., 4.9, 5.0}.
For the computation of a D-optimal design, we will use an algorithm, which

is specially suited for a discrete design space ([29]). We shall begin with the uniform
initial design ξ(0); ξ(0)(x) = 1/51 for all x ∈ X. Then we shall perform the iterations
setting at the step number n = 0, 1, 2, ...:

ξ(n+1)(x) =
1

m
ξ(n)(x).

[
fT (x)M

(
ξ(n)

)−1
f(x)

]
for all x ∈ X

Evidently, in any iteration of the algorithm we have ξ(n)(x) > 0 for all x ∈
X\ {0}. It means that the algorithm (resp. a computer program) must take all
the points (except of 0) into account, even when the majority of weights of ξ(n) are
negligibly small. Naturally, the computations with very small positive values take
approximately as much time as those with large real numbers. The method described
in the previous sections allows us to remove many such points, and consequently
speed up the computations.

More precisely, we incorporated a modification to the algorithm, such that at
every 100-th step, we remove all the points x ∈ X for which

max
i=1,...,12

fT (x)Q−1
i f(x) < 3

where the matrices Qi are defined in Theorem 64. After each removal of points from
the support of ξ(n), we standardized the remaining measure to 1.

At Figure 8 we see which points were removed (grey dots) and kept (black
dots) at each iteration. (The vertical axis corresponds to X and the horizontal axis
represents the number of iterations.) Notice that we finally arrived at a 3-point
support, which is the smallest size possible. After the last deletion, the convergence of
weights was very rapid, shortly arriving at the optimal design - the uniform probability
on {1.4, 3.6, 5.0} - within the limits of the numerical precision of the software.

While the overall speed of convergence was observed to be higher using the
deletion method, the number of iterations needed to obtain a given precision was
almost the same as for the unmodified algorithm (except of the very final stage with
the support identified by the deletion method exactly). The deletions usually remove
points with very small weights, hence they do not change the quality of the design
significantly.
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APPENDIX

12.1 Graphs

Figure 1 A lower bound on the O-minimal efficiency of D-optimal designs depending
on the eigenvalues of the information matrix (see Theorem 34).

Figure 2 A lower bound on the O-minimal efficiency of A-optimal designs depending on
the eigenvalues of the information matrix (see Theorem 34).
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Figure 3 The model from Chapter 8, degree 2. The bounds for the O-minimal efficiency
of the D-optimal design (solid line). The O-minimal efficiency of the E-optimal design
(dashed line). (See Theorem 59)

Figure 4 The model from Chapter 8, degree 8. The bounds for the O-minimal efficiency
of the D-optimal design (solid line). The O-minimal efficiency of the E-optimal design
(dashed line). (See Theorem 59.)
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Figure 5 The E1, E2, E3 and the O-minimal efficiency of Φp(r)-optimal designs for the
quadratic polynomial regression model. (See Chapter 10.)

Figure 6 The E1, E2, E3, E4 and the O-minimal efficiency of Φp(r)-optimal designs for
the cubic polynomial regression model. (See Chapter 10.)
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Figure 7 The E1, E2, E3, E4, E5 and the O-minimal efficiency of the Φp(r)-optimal
designs for the biquadratic polynomial regression model. (See Chapter 10.)

Figure 8 Deletion of points which do not support a D-optimal design for the cubic
polynomial regression without an intercept term. (See Section 11.3.)
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12.2 Notation

R set of all real numbers
Rm

+ set of m-dimensional vectors with nonnegative real components
Rm

++ set of m-dimensional vectors with positive real components
Rm

≤ set of m-dimensional vectors with components in a nondecreasing order
N set of natural numbers
Ef,X Elfving set corresponding to the model (f,X)
span(H) set of all linear combinations of vectors in H ⊆ Rm

conv(H) set of all convex combinations of vectors in H (the convex hull of H)
diam(H) supremal Euclidean distance of vectors in H (the diameter of H)

Sm set of symmetric matrices of type m×m
Sm

+ set of positively semidefinite symmetric matrices of type m×m
Sm

++ set of positively definite symmetric matrices of type m×m
Um,k set of matrices of type m× k with orthonormal columns
Pm,k set of all orthogonal projectors of type m×m and rank k
Mf,X set of all information matrices for the model (f,X)

λ(A) vector of eigenvalues of the matrix A ∈ Sm in a nondecreasing order
λ↓(A) vector of eigenvalues of the matrix A ∈ Sm in a nonincreasing order
‖A‖F Frobenius (l2) norm of the matrix A ∈ Sm

Im identity matrix of type m×m
Mf,X(ξ) information matrix of the design ξ for the model (f,X)

1m vector (1, ..., 1)T ∈ Rm

0m vector (0, ..., 0)T ∈ Rm

diag(a) diagonal matrix with elements of the vector a on the diagonal

O set of all orthogonally invariant criteria
ΦEk

criterion of Ek-optimality

Φ̃Ek
sum of the k smallest eigenvalues of a symmetric matrix

Φp Kiefer’s criterion of Φp-optimality, p ∈ [−∞, 1]
∇Φ(A) gradient of the function Φ in A

∂Φ(A) subdifferential of the concave function Φ in A

vf,X(k) Ek-optimal value of the model (f,X)
efff,X (ξ : ζ |Φ) efficiency of ξ relative to ζ for (f,X) with respect to Φ
efff,X (ξ|Φ) absolute efficiency of the design ξ for (f,X) with respect to Φ
minefff,X (ξ|O) O-minimal efficiency of the design ξ for the model (f,X)
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