
Stochastické optimalizačné metódy - zadania úloh

3. decembra 2025

Poznámky ku skúške
Každý z Vás si vyberie jednu úlohu z prvej pätice a jednu úlohu z druhej pätice (pozri zadania
uvedené nižšie). Jednu z úloh je možné nahradiť Vašou vlastnou optimalizačnou úlohou (niekedy
majú študenti vlastný zaujímavý optimalizačný problém), pokiaľ Vám ju schválim. Za riešenie
úlohy budem považovať optimalizačný/é program/y. Používať môžete R, MATLAB, Python, Julia,
C++, ale pokiaľ nepoužijete R, prineste si vlastný notebook s funkčnou inštaláciou zvoleného pro-
stredia. Vaše programy budete demonštrovať počas skúšky. Pokiaľ napíšete riešenia v R a budete
chcieť používať môj počítač, pošlite mi ich pred skúškou na radoslav.harman@fmph.uniba.sk. Po-
užiť môžete akúkoľvek optimalizačnú metódu, čiže aj takú, ktorú sme na prednáške nespomínali,
samozrejme pokiaľ je vhodná a veľmi dobre jej rozumiete. Môžete tiež akýmkoľvek spôsobom
využívať kódy programov, ktoré sme používali na prednáške. Zadania aj riešenia môžete pred-
iskutovať so spolužiakmi, ako aj s umelou inteligenciou, budem však kontrolovať, či riešeniam
detailne rozumiete. Programový kód zapisujte prehľadne, napríklad v štýle tidyverse. Pokiaľ je to
v danej úlohe možné, ilustrujte názorne graficky výsledok výpočtu, prípadne aj priebeh výpočtu.
Vypracovaný program si dôkladne prekontrolujte na viacerých čo najodlišnejších vstupoch. Vy-
užite pochopenie problému, teoretické vedomosti a nadhľad na overenie správnosti výstupu. Ku
kontrole som Vám pri každej úlohe pripísal nejaké poznámky (viď Test).

Organizačné informácie ku skúške nájdete na stránke k predmetu: http://www.iam.fmph.
uniba.sk/ospm/Harman/teaching.htm.

Pri hodnotení programov budem zohľadňovať nasledovné kritériá: vhodnosť použitej metódy,
správnosť, úplnosť a efektívnosť riešenia, presnosť výsledkov (cca 0b-20b), kvalita prezentácie, pres-
nosť vyjadrovania v súlade so zaužívanou terminológiou, schopnosť reagovať na otázky a schopnosť
modifikovať program podľa požiadaviek (cca 0b-20b), originalita prístupu, kritické zhodnotenie ne-
dostatkov, tvorivé nápady týkajúce sa možností vylepšenia a rozšírenia riešenia (cca 0b-10b)1.

Orientačné hodnotenie: 𝐹𝑥[0, 20), 𝐸[20, 25), 𝐷[25, 30), 𝐶[30, 35), 𝐵[35, 40), 𝐴[40, ∞).

Poznámka: Ak v zadaniach nájdete nejaké chyby (alebo iné námety na vylepšenie), oznámte
mi to prosím; prvému z Vás, ktorý ma chybu upozorní, udelím prémiové body.

1Keďže hodnotím aj originalitu vzhľadom k už prezentovaným riešeniam ostatných študentov, môžu mať výhodu
tí študenti, ktorí sa prihlásia na skorší termín a tiež tí študenti, ktorí si zvolia pre ostatných menej atraktívne úlohy.

1

mailto:radoslav.harman@fmph.uniba.sk
https://style.tidyverse.org/index.html
http://www.iam.fmph.uniba.sk/ospm/Harman/teaching.htm
http://www.iam.fmph.uniba.sk/ospm/Harman/teaching.htm

1 Turbína
Na obvod kruhovej turbíny chceme do 𝑛 evidištantných pozícií umiestniť lopatky so známymi
hmotnosťami 𝑚1, . . . , 𝑚𝑛, a to tak, aby ich ťažisko bolo čo najbližšie stredu turbíny. Napíšte dva
programy implementujúce dve principálne rôzne optimalizačné metódy;2 vstupom každého z týchto
programov bude vektor hmotností lopatiek a výstupom bude poradie, v ktorom je vhodné tieto
lopatky umiestniť. Môžete využiť to, že táto úloha má blízko úlohe travelling salesman problem.

Test: Pre 𝑛 = 10 a 𝑚𝑖 = 𝑖, 𝑖 = 1, . . . , 10, je možné umiestniť lopatky do evidištantných pozícií
na obvode turbíny tak, že ich ťažisko je v úplne presnom strede kruhu turbíny, napríklad v poradí
6, 3, 2, 7, 10, 5, 4, 1, 8, 9. Váš program by mal byť schopný nachádzať pre tento prípad optimálne
riešenie v rozmedzí maximálne niekoľkých sekúnd.

2 Drony
Roj 𝑀 dronov sa nachádza vo formácii určenej pozíciami (𝑥𝑏

1, 𝑦𝑏
1), . . . , (𝑥𝑏

𝑀 , 𝑦𝑏
𝑀). (Pre jednodu-

chosť uvažujeme len rovinnú situáciu, nie priestorovú.) Cieľom je, aby sa tento roj preskupil
do novej formácie, ktorá pozostáva z pozícií {(𝑥𝑓

1 , 𝑦𝑓
1), . . . , (𝑥𝑓

𝑀 , 𝑦𝑓
𝑀)}. Každý dron letí rovna-

kou konštantnou rýchlosťou. Tiež predpokladáme, že si drony navzájom neprekážajú, čiže všetky
drony budú letieť k svojej určenej pozícii po priamke. Napíšte program, ktorého vstupom bude
postupnosť 𝐵 = (𝑥𝑏

1, 𝑦𝑏
1), . . . , (𝑥𝑏

𝑀 , 𝑦𝑏
𝑀) iniciálnych pozícií dronov 1, . . . , 𝑀 a množina pozícií

𝐹 = {(𝑥𝑓
1 , 𝑦𝑓

1), . . . , (𝑥𝑓
𝑀 , 𝑦𝑓

𝑀)} požadovanej finálnej formácie a výstupom bude priradenie, ktorý
z dronov má letieť ku ktorému bodu z 𝐹 . Chceme pritom minimalizovať 𝐿𝑝-normu (∑︀𝑀

𝑖=1 𝑡𝑝
𝑖)1/𝑝,

kde 𝑡1, . . . , 𝑡𝑀 sú časy letov dronov do dosiahnutia ich určenej pozície v 𝐹 a 𝑝 ∈ [1, ∞) je ďalší
vstupný parameter.3 Táto úloha má blízko k úlohám označovaným ako assignment problems.

Test: Pre 𝑀 ≤ 10 by mal Váš program na bežnom počítači nachádzať (takmer) optimálne
riešenia do niekoľkých sekúnd. Vyskúšajte viacero vstupov, ale aj také, v ktorých je optimálne
riešenie “evidentné”. Výsledky sa dajú pekne zobraziť (ako množina šípok určujúcich trasy dronov
z východzích pozícií do cieľových pozícií).

3 Batoh
Do batohu s nosnosťou 𝑀 kilogramov chceme povyberať predmety tak, aby sme maximalizovali
ich celkovú cenu. Vyberať môžeme z 𝑛 predmetov so známymi hmotnosťami 𝑚1, . . . , 𝑚𝑛 kilogra-
mov a známymi cenami 𝑐1, . . . , 𝑐𝑛. Napíšte dva programy implementujúce dve principálne rôzne
optimalizačné metódy;4 vstupom každého z týchto programov bude vektor hmotností všetkých

2Maximálne jeden z týchto programov môže používať optimalizačnú procedúru, ktorú ste nepísali Vy.
3Všimnite si, že ak 𝑝 = 1, tak minimalizujeme celkovú preletenú trasu, čiže cca celkovú spotrebu energie a pre

𝑝 → ∞ minimalizujeme čas, za ktorý roj nadobudne konfiguráciu 𝐹 . Iné hodnoty parametra 𝑝 môžu reprezentovať
kompromis medzi “ekonomickosťou” a “rýchlosťou” dosiahnutia 𝐹 .

4Maximálne jeden z týchto programov môže používať optimalizačnú procedúru, ktorú ste nepísali Vy.

2

predmetov, ktoré sú k dispozícii, vektor ich cien, nosnosť batoha a výstupom bude zoznam (pod-
množina) predmetov, ktoré je vhodné vybrať. Táto úloha sa v angličtine nazýva 0-1 knapsack
problem. Berte na vedomie, že hmotnosti aj ceny môžu byť necelé čísla.

Test: Pre 𝑛 ≤ 20 by mal Váš program na bežnom počítači nachádzať optimálne, alebo takmer
optimálne riešenia do niekoľkých sekúnd. Úlohy na testovanie by mali byť rozmanité, ale majte
na pamäti, že ťažšie, a teda zaujímavejšie prípady tejto úlohy sú také, v ktorých sú ceny približne
úmerné hmotnostiam. (Pre celočíselné vstupy môžete program otestovať v prostredí R napríklad
pomocou funkcie knapsack z knižnice adagio.)

4 Vrtuľníky
V dvoch zadaných bodoch (𝑥𝐴, 𝑦𝐴) a (𝑥𝐵, 𝑦𝐵) v rovine máme k dispozícii dva vojenské vrtuľníky
𝐴, resp. 𝐵. Cieľom je, aby 𝐴 a 𝐵 ako tandem zlikvidovali 𝑛 cieľov v bodoch so známymi pozíciami
(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) a vrátili sa do východzej pozície. (Na zlikvidovanie cieľa v istej pozícii sa musí
vrtuľník do tejto pozície dostať.) Napíšte optimalizačný program, ktorého vstupom budú súrad-
nice stanovíšť (𝑥𝐴, 𝑦𝐴), (𝑥𝐵, 𝑦𝐵) a pozície cieľov (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛). Výstupom programu bude
zoznam cieľov určených pre vrtuľník 𝐴 (usporiadaný podľa poradia likvidácie príslušných cieľov
vrtuľníkom 𝐴) a zoznam cieľov určených pre vrtuľník 𝐵 (usporiadaný taktiež podľa poradia likvi-
dácie príslušných cieľov vrtuľníkom 𝐵). Výstupný plán pre vrtuľníky by mal byť čo najefektívnejší
v zmysle minimalizácie (𝑙𝑝

1 + 𝑙𝑝
2)1/𝑝, 𝑝 > 0, kde 𝑙1, 𝑙2 sú dĺžky trasy pre prvý, resp. druhý vrtuľník.5

Test: Túto úlohu nemám otestovanú; ak si ju vyberiete, idete do neznámeho terénu. Taktiež
neviem o tom, že by toto zovšeobecnenie problému obchodného cestujúceho malo svoj názov.
Odhadom by ale mal byť Váš program schopný spoľahlivo počítať optimálne trasy pre niekoľko
desiatok cieľov v rozmedzí maximálne niekoľkých desiatok sekúnd.

5 Korelácia
Máme výberovú korelačnú maticu 𝑀 náhodných premenných, pričom chceme zredukovať túto
množinu premenných bez veľkej straty informácie. Rozhodli sme sa to riešiť tak, že z daných
𝑀 premenných vybrieme len 𝑚 premenných (𝑚 ≪ 𝑀), a to tak, aby sme ku každej pôvodnej
premennej mali v našom výbere nejakú vysoko korelovanú premennú. Čiže hľadáme takú 𝑚-
prvkovú podmnožinu 𝐴 množiny všetkých premenných, aby sme maximalizovali

max
𝑖/∈𝐴, 𝑗∈𝐴

|𝑟(𝑋𝑖, 𝑋𝑗)|,

kde 𝑟(𝑋𝑖, 𝑋𝑗) je výberový korelačný koeficient 𝑖-tej a 𝑗-tej náhodnej premennej.

Test programu: Funkčnosť programu si môžete otestovať napríklad na korelačnej matici veľ-
kosti 4096 × 4096, získanej z dátového súboru olivetti_X.csv. Tieto dáta reprezentujú hodnoty

5Interpretácia voliteľného parametra 𝑝 je podobná ako to bolo pre príklad s dronmi.

3

úrovní šedej pre 400 fotografií tvárí veľkosti 64 × 64 pixlov. Zvoľte 𝑚 v rádoch desiatok, vypo-
čítajte (v zmysle zadania úlohy) optimálny výber 𝑚 premenných a zobrazte príslušné indexy na
obrázku rozmerov 64×64. Zobrazené body by nemali vytvárať príliš veľké "diery", pretože v týchto
dierach by sa zrejme nachádzali premenné, ktorú málo korelujú aj s najkorelovanejšou premennou
z nájdeného výberu.

6 Štvoruholník
Uvažujme konvexný štvoruholník 𝐴𝐵𝐶𝐷. Napíšte programy implementujúce dve rôzne metódy,6
ktorých vstupom sú súradnice bodov 𝐴, 𝐵, 𝐶, 𝐷 a výstupom sú také súradnice bodu 𝐸 vo vnútri
štvoruholníka 𝐴𝐵𝐶𝐷, aby plochy trojuholníkov 𝐴𝐵𝐸, 𝐵𝐶𝐸, 𝐶𝐷𝐸, 𝐷𝐴𝐸 boli “čo najpodobnej-
šie”. Rozumné kritérium podobnosti plôch všetkých štyroch trojuhoníkov zvoľte samostatne, určite
však tak, aby optimálne riešenie bolo v bode 𝐸, pre ktorý sú všetky štyri plochy rovnaké, pokiaľ
taký bod 𝐸 existuje. Ak sa Vám toto zadanie bude zdať ľahké, môžete sa pokúsiť riešiť analogickú
úlohu pre všeobecný konvexný 𝑛-uholník. Tento problém je trochu príbuzný skupine problémov
označovaných pojmom fair division problem.

Test: Program musí nachádzať očividné správne riešenie pre jednoduché štvoruholníky, naprí-
klad pre kosodĺžnik, a to na bežnom počítači v priebehu maximálne niekoľkých sekúnd.

7 Cesty
Máme 𝑛 miest v rovine, ktoré reprezentujeme bodmi so súradnicami (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛). Napíšte
program, ktorého vstupom budú tieto súradnice miest a výstupom bude mapa najkratšej cestnej
komunikácie, ktorá spája každé mesto s každým. Na výpočet najlacnejšej euklidovskej kostry (angl.
minimum spanning tree) spájajúcej 𝑚 ≥ 𝑛 uzlových bodov môžete použiť už existujúci program
napísaný pre Vaše prostredie. Napríklad pre prostredie R môžete použiť funkciu mst z knižnice
ape. Pomôcka: Tento problém je známy pod názvom “problém Steinerovho stromu” (angl. Steiner
tree problem).

Test: Pre 𝑛 = 4 a (𝑥1, 𝑦1) = (0, 0), (𝑥2, 𝑦2) = (0, 1), (𝑥3, 𝑦3) = (1, 1), (𝑥4, 𝑦4) = (1, 0) je
najkratšia cestná komunikácia spájajúca všetky štyri body zobrazená na druhom obrázku na
stránke http://en.wikipedia.org/wiki/Steiner_tree_problem. Celková dĺžka prepojení je v
tomto prípade 1 +

√
3. Váš program by mal byť schopný na bežnom počítači nachádzať toto

optimálne riešenie v rozmedzí maximálne niekoľkých sekúnd. Vo všeobecnosti by mal program
nájsť kvalitné riešenie pre 𝑛 ≤ 10 v rozmedzí niekoľkých desiatok sekúnd.

8 Kaviareň
Máme obdĺžnikovú kaviareň rozmerov 𝐿𝑥 × 𝐿𝑦 metrov, do ktorej chceme umiestniť 𝑛 okrúhlych
stolov s polomerom 𝑟. Napíšte program, ktorého vstupom bude 𝐿𝑥, 𝐿𝑦, 𝑟, 𝑛 a výstupom bude

6Maximálne jeden z týchto programov môže používať optimalizačnú procedúru, ktorú ste nepísali Vy.

4

http://en.wikipedia.org/wiki/Steiner_tree_problem

zoznam súradníc stredov stolov, tak, aby vzdialenosť dvoch najbližších stolov bola maximálna
možná. Pomôcka: Táto úloha je veľmi príbuzná úlohe, ktorá je známa pod anglickým názvom
circle packing problem.

Test: Výsledky programu je možné otestovať pomocou hodnôt (a obrázkov) uvedených na
stránkach http://en.wikipedia.org/wiki/Circle_packing_in_a_square. Pre 𝑛 ≤ 4 by Váš
program mal byť schopný na bežnom počítači nachádzať optimálne riešenia v rozmedzí maximálne
niekoľkých sekúnd. Výborný výsledok je, ak program nájde do minúty optimálne rozloženie stolov
pre štvorec a 𝑛 = 8 (a dostatočne malé 𝑟).

9 Kružnice
Napíšte dva programy implementujúce dve principálne rôzne optimalizačné metódy na riešenie
nasledovného problému. Vstupom programu sú tri body v rovine (𝑥𝐶

𝑖 , 𝑦𝐶
𝑖), 𝑖 = 1, 2, 3 a tri kladné

čísla 𝑟1, 𝑟2, 𝑟3. Výstupom sú tri body (𝑥*
𝑖 , 𝑦*

𝑖), 𝑖 = 1, 2, 3, pričom pre každé 𝑖 leží bod (𝑥*
𝑖 , 𝑦*

𝑖) na
kružnici7 so stredom v (𝑥𝐶

𝑖 , 𝑦𝐶
𝑖) a polomerom 𝑟𝑖, avšak tak, aby sa minimalizoval obvod trojuholníka

s vrcholmi (𝑥*
𝑖 , 𝑦*

𝑖), 𝑖 = 1, 2, 3.

Test: Ide o výrazne nekonvexný problém.8 Existuje však veľa špeciálnych situácií, kde je rie-
šenie geometricky jasné. Pokúste sa vymyslieť niekoľko takých prípadov a otestovať, či ich Vaše
programy nachádzajú. Ak by Vás úloha zaujala, môžete sa pokúsiť ju zovšeobecniť na viacej kruž-
níc; môže ísť o relatívne ťažký mnohorozmerný benchmark pre optimalizačné algoritmy. Výsledok
(aj priebežné riešenia) sa dajú pekne zakresliť do obrázka.

10 exGauss
Napíšte dva programy9 využívajúce dve principálne rôzne optimalizačné metódy na riešenie nasle-
dovného problému. Vstupom je realizácia 𝑥1, . . . , 𝑥𝑛 jednorozmerného náhodného výberu. Výstu-
pom je odhad metódou maximálnej vierohodnosti pre parametre 𝜇, 𝜎2, 𝜆 takzvaného “exponen-
ciálne modifikovaného gaussovského rozdelenia”, pozri
https://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution.10

Test: Bolo by pekné nájsť reálne dáta, ktoré sa dajú dobre fitovať týmto rozdelením, avšak
na otestovanie Vašich procedúr je ideálna simulačná metóda: Rozdelenie exGauss totiž zodpovedá
súčtu normálneho a exponenciálneho rozdelenia, takže si z tohto rozdelenia veľmi ľahko nagene-
rujete umelú sadu dát (s parametrami 𝜇, 𝜎2, 𝜆, ktoré si zadáte, pričom tieto paramatere by mal
Váš program približne lokalizovať len z nasimulovaných dát.) Výsledok sa dá pekne zakresliť do
obrázka, napríklad ako hustota určená odhadnutými parametrami preložená cez histogram dát.

7Pozor, nie v kruhu, ale na kružnici.
8Zaujímavé je ale, že limitný prípad, čiže hľadanie troch bodov 𝐴, 𝐵, 𝐶 na priamkach 𝑎, 𝑏, 𝑐, aby bol minimálny

obvod trojuholníka 𝐴𝐵𝐶, je konvexná úloha.
9Maximálne jeden z týchto programov môže používať optimalizačnú procedúru, ktorú ste nepísali Vy.

10Všimnite si, že funkcia erfc sa dá počítať pomocou distribučnej funkcie rozdelenia 𝑁(0, 1).

5

http://en.wikipedia.org/wiki/Circle_packing_in_a_square
https://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution

	1 Turbína
	2 Drony
	3 Batoh
	4 Vrtuľníky
	5 Korelácia
	6 Štvoruholník
	7 Cesty
	8 Kaviareň
	9 Kružnice
	10 exGauss

