
Markov chain Monte Carlo for dummies 
 

• MCMC methods are used for approximate sampling 

from a given target distribution π on a state space X for 

which direct sampling is difficult. 

• X is usually a subset of Rn. X can be both discrete and 

continuous. 

• The main idea is to create an MC taking values at X such 

that the limit distribution of the MC coincides with π. 

• Note that the MC generated by an MCMC method is 

typically composed of dependent random variables (or 

random vectors). 

• While it is often simple to construct an MCMC method 

with the required limit distribution, it is usually hard to 

assess the speed of convergence, i.e., how long should 

the burn-in phase be, and how often should we sample 

from the MC, such that the autocorrelation of the 

sample is negligible.  

• If possible, one should use direct sampling (mostly in 

smaller dimensions), e.g., the rejection method. In 

higher dimensions, direct sampling can suffer from the 

curse of dimensionality and the use of an MCMC 

method can be justified.  

• The most common MCMC method is the so-called 

Metropolis-Hastings method. Another method is Gibbs 

sampling (which can be viewed as a variant of the MH 

method). 

 



Metropolis-Hastings method 
 

• In addition to X and π we need a system of candidate 

distributions indexed by the elements of X, i.e., Q(.|x) 

for all x in X. For the resulting method to have the limit 

distribution π, the system of candidate distributions 

must satisfy some theoretical properties, but we will not 

detail them here. We also need an initial state x1. 

• The MH algorithm proceeds as follows:  

1. Set i=1 

2. Generate the candidate y from Q(.|xi) 

3. Generate u from U(0,1) 

4. If 𝑢 <
𝜋(𝑦)𝑄(𝑥𝑖|𝑦)

𝜋(𝑥𝑖)𝑄(𝑦|𝑥𝑖)
 then accept the candidate (set 

xi+1=y), otherwise reject the candidate, (set xi+1=xi) 

5. Set i=i+1 and proceed by step 2 

• Note a major advantage of the MH algorithm: We do not 

need to know the normalizing constant of the 

distribution π. 

• If Q is symmetric with respect to the two arguments, we 

obtain a simplified version of the MH algorithm called 

Metropolis algorithm. Notice the logic of the acceptance 

and rejection of the candidates in the Metropolis 

algorithm. 

• If Q does not depend on the second argument, we say 

that the MH algorithm is an independence sampler. 

• If Q(y|x) depends only on the distance between x and y 

we have the so-called random walk sampler. 


