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Structure of cluster analyses
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Applications: Image segmentation, Recommender systems, Anomaly
detection, ldentification of groups in social networks, Market research,
Medical imagining, Categorization of astronomic objects,...




Partitioning cluster analysis

Finds a decomposition of objects 1,...,n into K disjoint clusters C,,...,C,
of ,similar” objects:
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The objects are (mostly) characterized by ,vectors of features® X;,...,X € RP
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How do we understand ,decomposition into clusters of similar objects*?
How is this decomposition calculated?

Many different principles and algorithms...



K-means clustering

The objective function to be minimized with respect to the selection of clusters is
the ,within-cluster sum of squares®:
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z 2 p2(x,,c;) Where ¢ = mz xr  is the centroid of C,,
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p Is the Euclidean distance. Equivalent objective function is the ,sum of
average pairwise squared deviations®:
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K-means clustering

Computing the clustering that minimizes the k-means objective function is a
difficult problem. Nevertheless, there are many efficient heuristics able to
find a ,good” (not always optimal) solution, such as:

Lloyd’s Algorithm

» Create a random initial clustering C,,...,C,.

« Until a maximum number of iterations is reached, or no
reassignment of objects occurs do:

« Calculate the centroids Cy,...,C; of clusters.
« Foreveryi=1,...K:

« Form the new cluster C; from all the points that are closer to
C; than to any other centroid.



lllustration of the Lloyds’ algorithm

Choose an initial clustering
p=2
k=3
n=11



lllustration of the Lloyds’ algorithm

Calculate the centroids of clusters
p=2
k=3
n=11



lllustration of the Lloyds’ algorithm

Calculate the centroids of clusters
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lllustration of the Lloyds’ algorithm

Assign the points to the closest centroids
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lllustration of the Lloyds’ algorithm

Create the new clustering
p=2
k=3
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lllustration of the Lloyds’ algorithm

Create the new clustering
p=2
k=3
n=11




lllustration of the Lloyds’ algorithm

Calculate the new centroids of clusters
p=2
k=3
n=11




lllustration of the Lloyds’ algorithm

Calculate the new centroids of clusters
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lllustration of the Lloyds’ algorithm

Assign the points to the closest centroids
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p=2
k=3
n=11



lllustration of the Lloyds’ algorithm

Create the new clustering
p=2
k=3

:



lllustration of the Lloyds’ algorithm

Create the new clustering




lllustration of the Lloyds’ algorithm

Calculate the new centroids of clusters




lllustration of the Lloyds’ algorithm

Calculate the new centroids of clusters
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lllustration of the Lloyds’ algorithm

Assign the points to the closest centroids
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n=11



lllustration of the Lloyds’ algorithm

Create the new clustering
p=2
k=3

:



lllustration of the Lloyds’ algorithm

Create the new clustering
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The clustering is the
same as in the
previous step,
therefore STOP.




Properties of the k-means as a method

+ The principle is simple to understand
+ Many efficient heuristic methods (some better than the Lloyds’)

- The number k of clusters must be given in advance

- The resulting clustering depends on the units of measurement

- The variables must be real vectors (,dissimilarities” are not enough)
- Not suitable for finding clusters with nonconvex shapes

- The optimization problem itself is very difficult (NP hard)

Properties of the Lloyds’ algorithm

+ Simple to understand and the naive implementation is trivial
+ Reasonably fast in practice (always convergent in a finite number of steps)
+ Usually converges to a “good” solution in practice

- Worst case super-polynomial in the input size

- Different initial clusterings can lead to different final clusterings. The result
can be arbitrarily bad compared to the true optimum. This is ameliorated by
the k-means++ initialization



Computation of k-means in R

In R (library stats):

kmeans (x, centers, iter.max, nstart, algorithm)

e h

Dataframe of The number Maximum The method used
real vectors of of clusters number of ("Hartigan-Wong",
features or a set of iterations "Lloyd", "Forgy",
centers "MacQueen")
Number of
restarts

Many R packages deal with clustering, e.g.: cluster, clusterR, flexclust



The “elbow” method to determine k

k
a(k)= Z sz(xr —Ci(k)) Cl(k) . ,Cék) ... optimal clustering obtained

i=1 rec®) by assuming K clusters
(k) (k) . :
C, .-G " ... corresponding centroids
» sev o, 2
2 - :‘. : . :. o o; =
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K-medoids clustering

Instead of centroids uses ,medoids” — the most central objects (the ,best
representatives”) of each cluster.

This allows using only ,dissimilarities” d(r,s) of all pairs (I,S) of the objects.

The aim is to find the clusters C,,...,C, that minimize the objective function:

K
> > d(r,m;) where for each i the medoid m; minimizes Zd (r,m)

i=1 I’eCi rECi
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K-medoids algorithm

k-medoids as an optimization problem is difficult. There are many efficient
heuristics that find a ,good” (although not always optimal) solution. Example:

,Partitioning around medoids” (PAM)

« (BUILD) ,Greedily” select k objects m,,...,m, as initial medoids.

* (SWAP) Until the maximum number of iterations is reached or no
Improvement of the target function has been found do:

1. Calculate the clustering based on m,,...,m, by associating each point to
the nearest medoid and calculate the value of the target function.

2. For all pairs (m;, ), where x, is a non-medoid point, try to improve the
target function by taking x, to be a new medoid point and m; to be a
non-medoid point.

3. Stop, if no exchange from Step 2 improves the objective function
4. Realize the best possible exchange from Step 2

Alternative algorithm: “Voronoi iteration” (similar to the Lloyd’s method)



Comparison of k-medoids to k-means

Many general properties of k-medoids are the same as k-means (see the list
of properties for k-means). Differences of k-medoids and k-means include:

+ k-medoids allows using general dissimilarities d of objects
+ If d is the Euclidean distance, k-medoids is less sensitive to outliers
+ The result is a list of medoids, i.e., a list of ,representative objects”

- Fewer algorithms for computing, less available theory



Computational iIssues
of k-medoids

In R (library cluster):

, k, diss, metric, medoids, stand,...)

Rl

\

Dataframe of
real vectors of
features or a
matrix of
dissimilarities

Standardize
data? (TRUE,
FALSE)

dissimilarity
matrix? (TRUE,
FALSE)

;

The number Metrics used
of clusters (euclidean,
manhattan)

Is x a

Vector of initial
medoids




The silhouette

a(r) ...the average dissimilarity of ~ D(r) ... the average dissimilarity of the
the object r and the objects of object r and the objects of the
the same cluster “neighboring” cluster

“Silhouette” of the object r ... the measure of “how well” is r “clustered”

__bn-alr) _._
S(1) = max (b(r), a(r)) -]

S(r) close to 1 ... the object r is well clustered
close to O ... the object r is at the boundary of clusters

less than O ... the object r is probably placed in a wrong cluster
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K-medians clustering

k-medians is a rarely used approach (which is moreover understood
differently in different sources). In general, it minimizes the objective

k
ZZp(xr,mi) where m; is ,a“ median of C;, p Iis,a" distance

i=1r€eC;
k-medians can be specified for instance as:

A) Geometric median + Euclidean distance
B) Manhattan (,taxicab®, ,I1%) median + Manhattan distance



