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Cluster analyses

HierarchicalPartitioning

K-means K-medoids

Model-based

Agglomerative Divisive

Structure of cluster analyses

Spectral

Density-based

Applications: Image segmentation, Recommender systems, Anomaly 

detection, Identification of groups in social networks, Market research, 

Medical imagining, Categorization of astronomic objects,…

Note: partitioning methods can be „hard“ or „soft (fuzzy)“



Partitioning cluster analysis
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Finds a decomposition of objects 1,...,n into k disjoint clusters C1,...,Ck

of „similar“ objects:

The objects are (mostly) characterized by „vectors of features“
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How do we understand „decomposition into clusters of similar objects“? 

How is this decomposition calculated? 

Many different principles and algorithms...



K-means clustering
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The objective function to be minimized with respect to the selection of clusters is

the „within-cluster sum of squares“:

where is the centroid of Ci,

is the Euclidean distance. Equivalent objective function is the „sum of 

average pairwise squared deviations“:
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K-means clustering

Lloyd’s Algorithm

• Create a random initial clustering C1,...,Ck.

• Until a maximum number of iterations is reached, or no 

reassignment of objects occurs do:

• Calculate the centroids c1,...,ck of clusters.

• For every i=1,...,k :

• Form the new cluster Ci from all the points that are closer to 

ci than to any other centroid. 

Computing the clustering that minimizes the k-means objective function is a 

difficult problem. Nevertheless, there are many efficient heuristics able to 

find a „good“ (not always optimal) solution, such as:



Illustration of the Lloyds’ algorithm

Choose an initial clustering
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Calculate the centroids of clusters
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Calculate the centroids of clusters
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Assign the points to the closest centroids
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Create the new clustering
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Create the new clustering
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Calculate the new centroids of clusters
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Calculate the new centroids of clusters
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Assign the points to the closest centroids
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Create the new clustering
p=2

k=3

n=11

Illustration of the Lloyds’ algorithm
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Calculate the new centroids of clusters
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Calculate the new centroids of clusters
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Illustration of the Lloyds’ algorithm

Assign the points to the closest centroids



Create the new clustering
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Create the new clustering

The clustering is the 

same as in the 

previous step, 

therefore STOP.

p=2

k=3

n=11

Illustration of the Lloyds’ algorithm



Properties of the k-means as a method

+ Simple to understand and the naive implementation is trivial

+ Reasonably fast in practice (always convergent in a finite number of steps)

+ Usually converges to a “good” solution in practice

- Worst case super-polynomial in the input size

- Different initial clusterings can lead to different final clusterings. The result

can be arbitrarily bad compared to the true optimum. This is ameliorated by 

the k-means++ initialization

+ The principle is simple to understand

+ Many efficient heuristic methods (some better than the Lloyds’)

- The number k of clusters must be given in advance

- The resulting clustering depends on the units of measurement

- The variables must be real vectors („dissimilarities” are not enough)

- Not suitable for finding clusters with nonconvex shapes

- The optimization problem itself is very difficult (NP hard)

Properties of the Lloyds’ algorithm



Computation of k-means in R

kmeans(x, centers, iter.max, nstart, algorithm) 

In R (library stats):

Dataframe of 

real vectors of 

features

Maximum 

number of 

iterations

The method used
("Hartigan-Wong", 

"Lloyd", "Forgy", 

"MacQueen" )

The number 

of clusters 

or a set of 

centers

Number of 

restarts

Many R packages deal with clustering, e.g.: cluster, clusterR, flexclust



The “elbow” method to determine k
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K-medoids clustering
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The aim is to find the clusters C1,...,Ck that minimize the objective function:

Instead of centroids uses „medoids“ – the most central objects (the „best

representatives“) of each cluster.

This allows using only „dissimilarities“ d(r,s) of all pairs (r,s) of the objects. 

where for each i the medoid mi minimizes 

GoodBad



K-medoids algorithm

• (BUILD) „Greedily“ select k objects m1,...,mk as initial medoids.

• (SWAP) Until the maximum number of iterations is reached or no 

improvement of the target function has been found do:

1. Calculate the clustering based on m1,...,mk by associating each point to 

the nearest medoid and calculate the value of the target function.

2. For all pairs (mi , xs), where xs is a non-medoid point, try to improve the

target function by taking xs to be a new medoid point and mi to be a 

non-medoid point.

3. Stop, if no exchange from Step 2 improves the objective function

4. Realize the best possible exchange from Step 2

„Partitioning around medoids“ (PAM)

k-medoids as an optimization problem is difficult. There are many efficient

heuristics that find a „good“ (although not always optimal) solution. Example:

Alternative algorithm: “Voronoi iteration” (similar to the Lloyd’s method) 



Comparison of k-medoids to k-means

+ k-medoids allows using general dissimilarities d of objects

+ If d is the Euclidean distance, k-medoids is less sensitive to outliers

+ The result is a list of medoids, i.e., a list of „representative objects“

- Fewer algorithms for computing, less available theory

Many general properties of k-medoids are the same as k-means (see the list 

of properties for k-means). Differences of k-medoids and k-means include:



Computational issues

of k-medoids

pam(x, k, diss, metric, medoids, stand,…) 

In R (library cluster):

Dataframe of 

real vectors of 

features or a 

matrix of 

dissimilarities Is x a 

dissimilarity 
matrix? (TRUE, 

FALSE)

Metrics used 
(euclidean, 

manhattan)

Standardize 
data? (TRUE, 

FALSE)

The number 

of clusters

Vector of initial 

medoids



The silhouette
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“Silhouette” of the object r … the measure of “how well” is r “clustered” 

… the average dissimilarity of 

the object r and the objects of 

the same cluster

)(rb … the average dissimilarity of the 

object r and the objects of the 

“neighboring” cluster

)(rs close to 1 … the object r is well clustered

close to 0 … the object r is at the boundary of clusters

less than 0 … the object r is probably placed in a wrong cluster



The silhouette



K-medians clustering

k-medians is a rarely used approach (which is moreover understood

differently in different sources). In general, it minimizes the objective
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k-medians can be specified for instance as:

A) Geometric median + Euclidean distance

B) Manhattan („taxicab“, „l1“) median + Manhattan distance


