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1 Principal Components Analysis

1.1 Mathematical background

We assume that the reader is already familiar with fundamental notions and
results of matrix algebra and multivariate probability, but we will give a brief
review of some of the facts that are particularly important for multivariate
statistics.

Recall that a p×p matrix Σ is non-negative de�nite1, if it is symmetric
and satis�es aTΣa ≥ 0 for any vector a ∈ Rp. If Σu = λu for some λ ∈ R
and u ∈ Rp, u 6= 0, then u is an eigenvector of Σ and λ is the eigenvalue
of Σ that corresponds to u.

Vectors u1, . . . , up form an orthonormal system if these vectors are
mutually orthogonal and each is normalized such that ‖ui‖ = 1 for all i =
1, . . . , p. Matrix U of the type p× p is an orthogonal matrix if UUT = Ip,
where Ip denotes the p × p identity matrix. That is, U is orthogonal if and
only if the columns of U form an orthonormal system of vectors. The linear
mapping corresponding to an orthogonal matrix is a rotation or a composition
of re�ection and rotation.

Theorem 1.1 (Spectral decomposition of a non-negative de�nite matrix).
For any non-negative de�nite p × p matrix Σ there exists an orthonormal
system u1, . . . , up of eigenvectors such that

Σ =

p∑
i=1

λiuiu
T
i = UΛUT , (1)

where λi is the eigenvalue of Σ corresponding to the eigenvector ui for all i =
1, . . . , p, U = (u1, . . . , up) is the orthogonal matrix of normalized eigenvectors

1A non-negative de�nite matrix is sometimes called �positive semide�nite�.
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and Λ = diag(λ1, . . . , λp) is the diagonal matrix with the eigenvalues on the
diagonal. If λ1 > λ2 > · · · > λp, then the eigenvectors u1, . . . , up are uniquely
de�ned (up to a possible change of the sign).

A p × p matrix Σ is positive de�nite, if it is symmetric and satis�es
aTΣa > 0 for any vector 0 6= a ∈ Rp. A matrix Σ is positive de�nite if and
only if Σ is a non-negative de�nite non-singular matrix which is if and only
if Σ is a non-negative de�nite matrix with all eigenvalues strictly positive.

An orthogonal projector onto a k-dimensional linear space A ⊆ Rp

is the unique symmetric matrix P of the type p × p such that Py ∈ A for
all y ∈ Rp, Px = x for all x ∈ A, and x − Px is orthogonal to Px for all
x ∈ Rp, which we denote (x − Px) ⊥ Px. If A is a p × k matrix with rank
k, where k ≤ p, then ATA is a non-singular matrix and P = A(ATA)−1AT is
the orthogonal projector on the linear space C(A) generated by the columns
of A.

For a p-dimensional random vector X = (X1, . . . , Xp)
p, the variance-

covariance matrix is a p × p matrix Σ with elements Σij = cov(Xi, Xj),
i, j = 1, . . . , p. The variance-covariance matrix is always non-negative de�-
nite and, typically2, it is also non-singular, i.e., positive de�nite. Geometri-
cally, Σ determines the �shape� of the multivariate data generated as inde-
pendent samples of X.

More generally, by Cov we will denote the matrix of all mutual covariances
of the components of a pair of random vectors X and Z. For multivariate
statistical analysis, it is very important to know how the variance-covariance
matrix and the matrix Cov changes under linear transformations of the ran-
dom vector(s).

Theorem 1.2 (The e�ect of a linear transformation on the variance-co-
variance matrix). If X is a p-dimensional random vector with covariance
matrix Σ and A is an m× p matrix, then the m-dimensional random vector
Y = AX has variance-covariance matrix AΣAT . More generally: If X is a
p-dimensional random vector, Z is an r-dimensional random vector, A is an
m×p matrix and B is an k×r matrix, then Cov(AX, BZ) = ACov(X,Z)BT .

Principal components are based on a rotation (i.e., a speci�c linear trans-
formation) of an underlying random vector as detailed in the next section.

2For instance if the random vector X has a distribution continuous with respect to the
Lebesgue measure in Rp.
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1.2 Theoretical principal components

Let µ be the mean value vector and let Σ be the variance-covariance matrix
of a random vector X = (X1, . . . , Xp)

T which corresponds to p-dimensional
measurements or observations on n objects3.

Let u1, . . . , up be an orthonormal system of eigenvectors of Σ, let λ1 ≥
. . . ≥ λp be the corresponding eigenvalues and let U = (u1, . . . , up); cf. The-
orem 1.1. Vectors u1, . . . , up determine what we will call �principal variance
directions� and λ1, . . . , λp determine the variances in the principal directions.

Principal variance directions can be illustrated on an example of a random
vector with a two-dimensional normal distribution. For instance, if

Σ =

(
3.25 1.30
1.30 1.75

)
,

then u1 ≈ (0.87; 0.50)T , u2 ≈ (−0.50; 0.87)T , λ1 ≈ 4 and λ2 ≈ 1. In Figure
1 we see points randomly generated from N2((0, 0)T ,Σ). Arrows denote the
directions of vectors u1 a u2. The length of the arrows is proportional to

√
λ1

and
√
λ2.

Clearly, eigenvectors and eigenvalues of the variance-covariance matrix
Σ capture important aspects of the �shape� of the distribution of X. The
essence of principal components analysis is the rotation of X (or a random
sample), to the coordinate system determined by the eigenvectors of Σ (or by
the eigenvectors of the sample variance-covariance matrix Sn, see Subsection
1.3).

An immediate consequence of Theorems 1.1 and 1.2 is:

Theorem 1.3 (De-correlation of a random vector). Random vector Y =
UT (X − µ) has the zero mean value and its variance-covariance matrix is
V ar(Y) = diag(λ1, . . . , λp). That is, the components of Y are uncorrelated,
their variances are λ1 ≥ · · · ≥ λp and their standard deviations are

√
λ1 ≥

· · · ≥
√
λp.

The previous theorem gives a theoretical basis for the following de�nition.

3We will only consider random variables with �nite mean values and variances, that
is, we will assume that all random vectors have well-de�ned, �nite variance-covariance
matrices.
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Figure 1: Principal variance directions de�ned by a pair of orthogonal eigen-
vectors of a two-dimensional normal distribution. In the �gure, the lengths
of the eigenvectors is proportional to the standard deviation of the corre-
sponding principal components.

De�nition 1.1 (Principal components of a random vector). Random vector
Y = (Y1, . . . , Yp)

T from Theorem 1.3 is called the vector of (theoretical)
principal components of the random vector X. For i = 1, . . . , p, the ran-
dom variable Yi = uTi (X−µ) is called the i-th principal component of the
random vector X.4

It is simple to show that for all i ∈ {1, . . . , p} the random vector Yiui
is the orthogonal projection of X onto the 1-dimensional subspace (i.e., a
line) de�ned by all real multiples of ui. In other words, principal components
Y1, . . . , Yp form (random) coordinates of X in the coordinate system de�ned
by the orthonormal vectors u1, . . . , up.

Theorem 1.3 states that principal components Y1, . . . , Yp of a random

4Note that if some of the eigenvalues of Σ are equal, then there is an in�nite number of
possible choices of the corresponding eigenvectors, i.e., feasible de�nitions of the vectors
of principal components.
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vectorX are uncorrelated. Thus, the transformation to principal components
is occasionally referred to as �de-correlation� of X. Importantly, variances
of principal components are in decreasing order. Note also that the sum of
variances of principal components is the same as the sum of sample variances
of variables X1, . . . , Xp which is probably the basis for the expression that
(all) principal components �explain� (all) variation in the data.

Mutual relations of the coordinates of the original random vector X and
the principal components of X are given by the following theorem.

Theorem 1.4 (Relations of original variables and principal components).
Let Y = (Y1, . . . , Yp)

T be the vector of principal components of the random
vector X from Theorem 1.3. Then, for any pair i, j ∈ {1, . . . , p}, we have

cov(Xi, Yj) = uijλj, ρ(Xi, Yj) = uij
√
λj/σi, (2)

where uij = (uj)i is the i, j-th element of the matrix U (that is, the i-th
coordinate of the eigenvector uj), and σi =

√
DXi.

Proof. From Xi = eTi X, where ei is the i-the standard unit vector and from
Yj = uTj (X− µ) we obtain

cov(Xi, Yj) = cov(eTi X, u
T
j (X− µ)) = eTi V ar(X)uj =

= eTi

(
p∑

k=1

λkuku
T
k

)
uj =∗ eTi λjuj = λje

T
i uj = λjuij.

The equality denoted by the asterisk follows from the fact that u1, . . . , up are
mutually orthogonal and have the unit length.

Exercise 1.1. Prove the following claim. Let b1, b2 ∈ Rp, b1, b2 6= 0 and let
X be a p-dimensional random vector with positive de�nite covariance matrix.
Then the random variables bT1 X and bT2 X are uncorrelated if and only if
b1⊥b2.

The following theorem provides an important optimization/probabilistic
interpretation of principal components.

Theorem 1.5 (Maximum variance justi�cation of principal components).
The �rst principal component Y1 of the p-dimensional random vector X has
the largest variance from all normed linear combinations of the components
of X. Formally:

Var(Y1) = max{Var(bTX) : b ∈ Rp, ‖b‖ = 1}

6
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For k ≥ 2, the k-th principal component Yk of the random vector X has
the largest variance from all normed linear combinations of the components
of X that are uncorrelated with Y1, . . . , Yk−1. Formally5

Var(Yk) = max{Var(bTX) : b ∈ Rp, ‖b‖ = 1, b⊥u1, . . . , b⊥uk−1}.

Proof. Let u1, . . . , up be an orthonormal system of eigenvectors of the covari-
ance matrix Σ of the p-dimensional random vector X, and let λ1 > . . . > λp
be the corresponding eigenvalues. Let b ∈ Rp, ‖b‖ = 1, and let b =

∑p
i=1 ciui

be the expression of b in the orthonormal v basis u1, . . . , up of the space Rp.
Since the vectors u1, . . . , up are orthonormal, we obtain uTj b =

∑
i ciu

T
j ui = cj

for any j ∈ {1, . . . , p}, and
∑

i c
2
i =

∑
i c

2
iu

T
i ui =

∑
i(ciui)

T
∑

k(ckuk) =
bT b = 1. Therefore

Var(bTX) = bT

(
p∑
i=1

λiuiu
T
i

)
b =

p∑
i=1

λic
2
i ≤∗ λ1 = Var(Y1). (3)

The inequality denoted by the asterisk follows from the fact that
∑p

i=1 c
2
i = 1,

i.e.,
∑p

i=1 λic
2
i is a weighted average of eigenvalues, which of course cannot

be larger than the largest eigenvalue λ1. Since Y1 = u1X, that is, Y1 is itself
a normed linear combination of the coordinates of X, we obtain the �rst part
of the theorem.

If we have 2 ≤ k ≤ p and an additional condition b⊥u1,. . . , b⊥uk−1, then
ci = 0 for all i = 1, . . . , k − 1, which implies

Var(bTX) =

p∑
i=1

λic
2
i =

p∑
i=k

λic
2
i ≤∗ λk = Var(Yk),

in a way analogous to (3).

The transformation of a random vector to principal components has sev-
eral alternative geometric/optimization interpretations. For instance, let
X ∼ Np(0,Σ) and by PA denote the orthogonal projector on a linear space A.
Let A∗ ⊆ Rp be the k-dimensional hyperplane that optimally �ts the distri-
bution of X in the sense of least squares, i.e., A∗ minimizes E(‖X−PA∗X‖2).
Then, it is possible to show that A∗ is spanned by the eigenvectors u1, . . . , uk
of Σ corresponding to the k largest eigenvalues.

A measure of proportion of variance �explained� by the �rst k prin-
cipal components Y1, . . . , Yk, k ≤ p, or a �goodness of �t� measure of the

5See also Exercise 1.1.
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k-dimensional hyperplane A∗ from the previous paragraph, is the quantity

αk =
λ1 + · · ·+ λk
λ1 + · · ·+ λp

.

The quantity αk is important for the selection of the number of princi-
pal components that capture signi�cant amount of variability of the original
p-dimensional data. It turns out that the variance-covariance matrix of mul-
tidimensional data is often such that αk is close to 1 for values of k that are
small relative to p. Geometrically, this means that the ellipsoid of dispersion
is �thick� in a few orthogonal directions and �thin� in all others.

1.3 Sample principal components

In real applications, the mean value µ and the variance-covariance matrix Σ
are rarely known, and the �theoretical� principal components from De�nition
1.1 cannot be calculated. Usually, we only have a random sampleX1, . . . ,Xn,
n ≥ p, from an otherwise unknown distribution, and the parameters µ,Σ need
to be estimated by the vector of mean values X̄n = 1

n

∑n
i=1 Xi and the

sample variance-covariance matrix

Sn =
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T .

De�nition 1.2 (Sample eigenvalues and eigenvectors). Ordered eigenval-

ues of Sn will be called sample eigenvalues and denoted by λ̂
(n)
1 > . . . >

λ̂
(n)
p . The corresponding normalized eigenvectors of Sn will be called sample

eigenvectors and denoted by û
(n)
1 , . . . , û

(n)
p .6

Note that (from the point of view before collecting the data) the sample

eigenvalues λ̂
(n)
i are random variables and the sample eigenvectors û

(n)
i are

random vectors. In general, λ̂
(n)
i → λi and û

(n)
i → ui as n → ∞, but the

6In theory, some of the eigenvalues of Sn could be equal, but for the case of an in-
dependent sample of size n ≥ p from a continuous p-dimensional distribution, which is
typical for applications, the probability of this event is zero. Moreover, even in the case

of distinct eigenvalues λ̂
(n)
i , the eigenvectors are not uniquely de�ned in the sense that if

û
(n)
i is a normalized eigenvector, so is −û(n)i . We assume that we have some consistent

way of selecting which of these two eigenvectors is the normalized eigenvector. It would
be counter-productive to be too mathematically rigorous at this point.
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analysis of the stochastic convergence is usually very non-trivial. For the
case of a normal sample, the convergence is given by the following result.7

Theorem 1.6. For any i ∈ {1, . . . , p}, we have the following convergence in
distribution:

√
n− 1 (λ̂

(n)
i − λi) → N(0, 2λ2

i ),

√
n− 1 (û

(n)
i − ui) → Np

(
0,
∑
i 6=j

λiλj(λi − λj)−2uju
T
j

)
.

Thus, if the sample size is large enough (n � p), the values of λ̂
(n)
i

and û
(n)
i can usually be taken as reliable approximations of the eigenvalues

and eigenvectors of Σ, and the �speed of convergence� of the estimators is
approximately

√
n. Note, however, that the variances and covariances of

the limiting distributions depend on the estimated parameters. Moreover,
the variance covariance matrix of û

(n)
i 's tends to be large, if some of the

eigenvalues are very similar.

For actual realizations x1, . . . ,xn of the random vectors X1, . . . ,Xn
8,

it is often useful to compute the vectors yi = (û
(n)
1 , . . . , û

(n)
p )T (xi − x̄),

i = 1, . . . , n, which are called principal components scores. These vec-
tors are estimates of the coordinates determined by the principal component
directions of xi, i = 1, . . . , n.

In other words, assume that A∗ is the k-dimensional hyperplane that best
�ts the data in the sense of least squares in the p-dimensional space9 and let
z1, . . . , zn be the orthogonal projections of the feature vectors x1, . . . ,xn onto
A∗. Then, the �rst k coordinates of the scores y1, . . . ,yn correspond to the
coordinates of z1, . . . , zn in the hyperplane A

∗. They can be used to represent
the n objects in the k-dimensional space, usually in plane (k = 2).

The proportion αk, k ∈ {1, . . . , p}, of the variance explained by the �rst
k principal components can be estimated by

α̂
(n)
k =

λ̂
(n)
1 + · · ·+ λ̂

(n)
k

λ̂
(n)
1 + · · ·+ λ̂

(n)
p

.

7Note, however, that in applications the normality is usually not required; the aim of
the principal component analysis is almost always a reduction of dimensionality, with the
aim to compress the data or to discover new knowledge, see Subsection 1.4, not hypothesis
testing.

8The realizations x1, . . . ,xn are sometimes called feature vectors of objects.
9Hyperplane A∗ is sometimes called �perpendicular regression� hyperplane.
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For the random variables α̂
(n)
k , a theorem similar to 1.6 can be proved for

the case of normality, stating that the random variables α̂
(n)
k converge to the

values αk with a speed proportional to
√
n.

The values λ̂
(n)
i , and α̂

(n)
k form the basis of several rules of thumb for

choosing an appropriate number k, i.e., for selecting how many principal
components to retain to capture most variability in the data. Often, k is
simply chosen to be the smallest number with the property α̂

(n)
k > c, where

c is some constant, for instance 0.8. The Kaiser's rule suggests to take
the smallest k, such that all values λ̂

(n)
k are larger than the average of all

values λ̂
(n)
1 , . . . , λ̂

(n)
p

10. Another popular method is to draw the so-called
scree plot which is a piece-wise linear function connecting the points (0, 0),

(1, α̂
(n)
1 ),. . . ,(p, α̂

(n)
p ). If this line forms an �elbow� at a point k, it suggests

that k could be an appropriate number of principal components to summarize
the original data.

1.4 Applications of principal components

The simplest principal component analysis, as described in this chapter, is
intended to be applied on a random sample of p-dimensional vectors without
speci�c structure and without division of variables into the sets of dependent
and independent variables. Although some theoretical results about principal
components assume normality, it is routinely applied also to non-normal
data.11

The results of principal component analysis are sometimes used as an end
to itself, for instance as a means for visualization of multidimensional data
using the �rst two12 components of the vectors of scores or for getting an
insight into the data based on a possible interpretation of coe�cient vectors
û

(n)
1 , . . . , û

(n)
k . Note, however, that there are also many other methods for the

visualisation of multidimensional data, such as various projection pursuit
methods, or the so-called multidimensional scaling, which we will describe in
the next section.

10Note that the average of eigenvalues λ̂
(n)
i , i = 1, . . . , p, is equal to the average of

variances of variables X1, . . . , Xp, which is in turn equal to tr(Sn)/p.
11Indeed, when the sample principal components are used for visual display of data,

i.e., for exploration of the structure of data, assumption of normality makes little sense.
Moreover, real-world, highly multidimensional data rarely follow a multivariate normal
distribution.

12It can be expected that in near future 3-dimensional data visualisation based on prin-
cipal components will also become common.
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Sometimes the results of principal component analysis (usually the vec-
tors of �rst k coordinates of scores) form an input to a subsequent statistical
procedure that bene�ts from a small-dimensional representation of the orig-
inally large-dimensional dataset; an example is reducing the number of ex-
planatory variables for a regression analysis. Principal components analysis
is used across all �elds that handle multivariate data. A particularly famous
application uses principal components for face recognition, see, e.g.,

http://en.wikipedia.org/wiki/Eigenface

The most problematic aspect of principal components is its dependence
on the scale of individual variables, i.e., principal components are not scale
invariant. For instance, if we change the units with which we measure some
distance variable (say, from meters to millimetres), the principal components
can signi�cantly change. This is particularly problematic if the variables have
very di�erent magnitudes or if we simultaneously use variables of completely
di�erent nature (such as distances, times and weights) where it is impossible
to express all variables in the same units. This is the reason why principal
components analysis is sometimes based on the correlation matrix, instead of
variance-covariance matrix, that is, all variables are scaled to unit standard
deviation before the application of principal components.

2 Multidimensional Scaling

Suppose that we study a set of n objects and the relations of the objects are
described by an n × n matrix D of their mutual dissimilarities. Multidi-
mensional scaling is a class of methods that assign vectors x̃1, . . . , x̃n ∈ Rk

to the objects, such that the mutual distances of pairs x̃i, x̃j are �close� to
dissimilarities Dij of the objects i and j. The usual aim is to discover a hid-
den structure in the data by means of visualizing the �map� of dissimilarities
in a two or three dimensional space, i.e., k = 2 or k = 3.

As we saw in the previous section, a reasonable k-dimensional representa-
tion of the data can be obtained from sample principal components, but for
the direct application of principal components analysis, we need to know the
p-dimensional vectors of features of all objects. The so-called metric multi-
dimensional scaling13 is closely related to the principal component analysis;
here, however, only the matrix D of dissimilarities is required. Note that
methods of multidimensional scaling usually do not make assumptions about
the probability distribution that generated the data.

13There is also an interesting variant called non-metric multidimensional scaling.
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2.1 Theory for Classical Multidimensional Scaling

First, we will describe a classical solution of the following problem: How do
we construct an n-touple x̃1, . . . , x̃n of points in Rk, k ≤ n, if we only know
Euclidean distances between these points? Clearly, the solution is not unique,
because for any solution, an orthogonal rotation or a shift also provides a
feasible solution. Therefore, we can search for a solution x̃1, . . . , x̃n with the
center of mass in 0k, that is,

∑n
i=1 x̃i = 0k.

It is simple to prove the following lemma.

Lemma 2.1. Let X = (x1, . . . ,xn)T be an n × k matrix, let
∑n

i=1 xi = 0k,
and let B = XXT . Then (i) the sum of all elements of any row (and any
column) of B is zero. (ii) ‖xi − xj‖2 = Bii +Bjj − 2Bij.

Matrix B = XXT from the previous lemma is called theGram matrix of
vectors x1, . . . ,xn (its ij-th element is the scalar product of xi and xj). The
following theorem14 shows that the Gram matrix of vectors x1, . . . ,xn can
be computed from the mutual distances of x1, . . . ,xn, element by element.

Theorem 2.1. Let X = (x1, . . . ,xn)T be a matrix of the type n × k, let∑n
i=1 xi = 0k and let B = XXT . Denote Dij = ‖xi − xj‖ for i, j ∈

{1, . . . , n}. Then

Bij = −1

2

(
D2
ij −

1

n

n∑
r=1

D2
ir −

1

n

n∑
l=1

D2
lj +

1

n2

n∑
l=1

n∑
r=1

D2
lr

)
, (4)

for all i, j ∈ {1, . . . , n}.

Proof. Fix i, j ∈ {1, . . . , n}. Using Lemma 2.1, we have

n∑
r=1

D2
ir =

n∑
r=1

(Bii +Brr − 2Bir) = nBii + tr(B), (5)

n∑
l=1

D2
lj =

n∑
l=1

(Bll +Bjj − 2Blj) = nBjj + tr(B), (6)

n∑
r=1

n∑
l=1

D2
lr =

n∑
r=1

(nBrr + tr(B)) = 2ntr(B). (7)

14sometimes called the Young-Householder theorem

12
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From (7) we obtain tr(B) = (2n)−1
∑n

r=1

∑n
l=1 D

2
lr, which can be substituted

to (5) and (6), yielding

Bii =
1

n

n∑
r=1

D2
ir −

1

2n2

n∑
r=1

n∑
l=1

D2
lr, (8)

Bjj =
1

n

n∑
l=1

D2
lj −

1

2n2

n∑
r=1

n∑
l=1

D2
lr. (9)

From Lemma 2.1 we see that Bij = −1
2

(
D2
ij −Bii −Bjj

)
, which together

with (8) and (9) provides the equality from the statement of the theorem.

Exercise 2.1. Show that the matrix B from the previous theorem can be
obtained using the following matrix computation. Let P = In − 1

n
1n1Tn

15 and
let A be the matrix with elements Aij = −1

2
D2
ij, i, j ∈ {1, . . . , n}. Then

B = PAP .

Therefore, distances of vectors directly provide the Gram matrix of the
vectors. We will show that from the Gram matrix it is a simple step to obtain
a solution x̃1, . . . , x̃n of the original problem. In other words, if B = XXT

for some n× k matrix X, then we can easily �nd some n× p matrix X̃, such
that B = X̃X̃T .

Clearly, the Gram matrix B = XXT is non-negative de�nite, that is,
B = UΛUT , where U = (u1, . . . ,un) is an orthogonal matrix of eigenvectors
of B and Λ is a diagonal matrix with eigenvalues λ1 ≥ . . . ≥ λn ≥ 0 on the
diagonal. Since X is of the type n × k, where k ≤ n, the rank of B is at
most k, i.e., λk+1 = . . . = λn = 0. Now we can easily verify that the matrix
X̃ = (

√
λ1u1, . . . ,

√
λkuk) satis�es B = X̃X̃T . That is, the k-dimensional

columns x̃1, . . . , x̃n of X̃T are the required solutions.

It is interesting to note that as a method of �dimensionality reduction�,
multidimensional scaling is essentially equivalent to the principal components
analysis. In other words, if we do have p-dimensional vectors x1, . . . ,xn of
features of n objects (or measurements of p variables on n objects), we can
decide to compute the matrix D of mutual Euclidean distances of x1, . . . ,xn,
and then use the classical multidimensional scaling with some k ≤ p, as de-
scribed above. Then, the resulting vectors x̃1, . . . , x̃n ∈ Rk are just orthog-
onally rotated vectors of the �rst k-coordinates of the principal component
scores.

15Note that P is a projector.
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2.2 Application of Classical Multidimensional Scaling

For real objects, the matrix D of dissimilarities is usually not based on Eu-
clidean distances of some unknown vectors. Nevertheless, if we tentatively
assume that D is a matrix of Euclidean distances of some vectors in Rk (or
in a k-dimensional subspace of Rp) and imitate the theoretical construction
of the vectors x̃1, . . . , x̃n from the previous subsection, we often obtain a
reasonable �t with the dissimilarities given by D.

If we use the matrix D of dissimilarities, it is always possible to compute
the symmetric matrix B with elements given in Theorem 2.1. If D is not a
perfect matrix of Euclidean distances, then B is not necessarily non-negative
de�nite. However, if k largest eigenvalues λ1, . . . , λk of B are positive and
large compared to the absolute values of the remaining eigenvalues16, then the
mutual Euclidean distances of the k-dimensional rows of (

√
λ1u1, . . . ,

√
λkuk)

give a good �t with dissimilarities Dij.

Classical multidimensional scaling, as a means to visualize data given
by their matrix of dissimilarities, have been used for instance in psychology
to create a �perceptual map� of stimuli, in marketing to crate a �product
(diss)similarity map�, in social networks to create �friendship/collaboration
maps� and so on.

Note that there are several more advanced alternatives to the classical
multidimensional scaling: the so-called general metric multidimensional scal-
ing and non-metric multidimensional scaling. These methods are beyond the
scope of this introductory lecture.

3 Canonical Correlations

3.1 Mathematical background for Canonical Correla-

tions

The theory of canonical correlation can be easily explained using the notion
of the square-root matrix. Let Σ be a non-negative de�nite p × p matrix
and let Σ =

∑p
i=1 λiuiu

T
i be the decomposition of Σ from Theorem 1.1.

Let Σ1/2 :=
∑p

i=1

√
λiuiu

T
i . Clearly, Σ1/2 is a non-negative de�nite matrix

satisfying Σ1/2Σ1/2 = Σ, i.e., it is natural to call it the square-root matrix
of Σ17. If Σ is positive de�nite, its square-root matrix is also positive de�nite

16A common rule of thumb is that
∑k
i=1 λi/

∑n
i=1 |λi| > 0.8.

17It is also possible to show that Σ1/2 is unique even in the case when the orthonormal
system u1, . . . , up of eigenvectors of Σ is not uniquely de�ned.
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and its inverse Σ−1/2 := (Σ1/2)−1 satis�es Σ−1/2 =
∑p

i=1 λ
−1/2
i uiu

T
i .

Let u ∈ Rq be a vector of norm 1 and let M be a non-negative de�nite
matrix of the type q × q. Then uTMu ≤ λ1(M), where λ1(M) is the largest
eigenvalue of M , which is sometimes called the Railegh-Ritz theorem.
Similarly, assume that M has m ≤ p distinct positive eigenvalues λ1(M) >
. . . > λp(M) (and p−m zero eigenvalues). Let 2 ≤ k ≤ m. If u is orthogonal
on k − 1 eigenvectors of M corresponding to the k − 1 largest eigenvalues of
M , then uTMu ≤ λk(M).

Recall also that, if F is any matrix, then the linear space generated by
the columns of F is the same as the linear space generated by the columns
of the matrix FF T . If A,B are s × r matrices then tr(ATB) = tr(BAT ) =
tr(ABT ) = tr(BTA). Note that the largest eigenvalue of a non-negative
de�nite matrix of rank 1 is equal to the trace of the matrix.

3.2 Theoretical Canonical Correlations

Consider the random vector X = (XT
(1),X

T
(2))

T where X(1) is the subvector
of dimension p and X(2) is the subvector of dimension q. Correspondingly,
let the covariance matrix of X be divided into sub-blocks as follows:

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

We will assume that Σ11 and Σ22 are positive de�nite, i.e., there exist matrices
Σ
−1/2
11 and Σ

−1/2
22 . Let

B := Σ
−1/2
11 Σ12Σ

−1/2
22 ,

N1 := BBT = Σ
−1/2
11 Σ12Σ−1

22 Σ21Σ
−1/2
11 ,

N2 := BTB = Σ
−1/2
22 Σ21Σ−1

11 Σ12Σ
−1/2
22 .

Clearly, N1, N2 are both non-negative de�nite. Moreover, N1, N2 have
the same rank, because rank(N1) = rank(BBT ) = rank(B) = rank(BT ) =
rank(BTB) = rank(N2). We will denote the common rank of matrices N1, N2

by the symbol m.

Lemma 3.1. Let α1, . . . , αm be an orthonormal system of eigenvectors of N1,
with corresponding eigenvalues λ1(N1) > · · · > λm(N1) > 0. Similarly, let
β1, . . . , βm be the orthonormal system of eigenvectors of N2, with correspond-
ing eigenvalues λ1(N2) > · · · > λm(N2) > 0. Then, for every i = 1, . . . ,m,
we have λi(N1) = λi(N2) =: λi and

βi =
BTαi√
λi
, or βi = −B

Tαi√
λi
.
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Proof. For the proof that all non-zero eigenvalues of N1 and N2 are equal, it
is enough to show that each eigenvalue of N1 is an eigenvalue of N2

18. For any
i ∈ {1, . . . ,m}, a normalized eigenvector αi of N1 = BBT and corresponding
eigenvalue λi(N1) we can write:

BBTαi = λi(N1)αi,

BTBBTαi = λi(N1)BTαi,

N2B
Tαi = λi(N1)BTαi (10)

In addition, observe that

‖BTαi‖2 = αTi BB
Tαi = αTi N1αi = αTi λi(N1)αi = λi(N1) > 0, (11)

which implies BTαi 6= 0. That is (10) entails that λi(N1) is an eigenvalue
of N2 and BTαi is a corresponding eigenvector of N2 (not necessarily nor-
malised). Moreover, since all eigenvalues of N2 are assumed to be distinct,
the corresponding orthonormal system of eigenvectors of N2 is uniquely de-
termined, up to the possible reversal of the direction. Therefore

βi = ± BTαi

‖BTαi‖
= ±BTαi√

λi
,

where the second equality follows from (11).

De�nition 3.1 (Canonical variables and canonical correlations). For i =
1, . . . ,m let

ai = Σ
−1/2
11 αi, bi = Σ

−1/2
22 βi,

Ui = aTi X(1), Vi = bTi X(2),

ρi =
√
λi,

where αi, βi a λi are de�ned in Lemma 3.1, such that βi = BTαi√
λi

. Then
random variables U1, . . . , Um, V1, . . . , Vm are called canonical variables and
numbers ρ1, . . . , ρm, 0, . . . , 0

19 are called canonical correlations.

It is possible to show that the vectors ai of coe�cients that de�ne the �rst
group of canonical variables are eigenvectors of Σ−1

11 Σ12Σ−1
22 Σ21, and canonical

18Clearly, then, the symmetry of the problem implies that each eigenvalue of N2 will be
an eigenvalue of N1.

19The number of zeros here is min(p, q) −m, that is all canonical correlations of order
higher than m = rank(N1) = rank(N2) are de�ned to be zero.
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correlations ρi are square roots of corresponding eigenvalues. Analogously,
vectors bi of coe�cients that de�ne the second group of canonical variables
are eigenvectors of Σ−1

22 Σ21Σ−1
11 Σ12 and, as above, canonical correlations ρi

are square roots of corresponding eigenvalues. That is, we can obtain canon-
ical variables and correlations without actually computing the square root
matrices; however, the square root matrices are useful for the theoretical re-
sults, because they allow us to work exclusively with non-negative de�nite
matrices.

Theorem 3.1 (Mutual correlations of canonical variables). For all i, j ∈
{1, . . . ,m} we have

cov(Ui, Uj) = ρ(Ui, Uj) = δij,

cov(Vi, Vj) = ρ(Vi, Vj) = δij,

cov(Ui, Vj) = ρ(Ui, Vj) = δijρi,

where δij is the Kronecker delta20.

Proof.

cov(Ui, Uj) = cov(aTi X(1), a
T
j X(1)) = aTi Σ11aj

= αTi Σ
−1/2
11 Σ11Σ

−1/2
11 αj = αTi αj = δij

and, similarly, we obtain cov(Vi, Vj) = δij. In particular, this implies V ar(Ui) =
V ar(Vi) = 1, that is, the covariances are equal to correlations. We can con-
clude the proof by observing that:

cov(Ui, Vj) = cov(aTi X(1), b
T
j X(2)) = aTi Σ12bj = αTi Σ

−1/2
11 Σ12Σ

−1/2
22 βj

= αTi Bβj =∗
√
λiβ

T
i βj = δijρi,

where for the equality denoted by the asterisk we used βi = BTαi√
λi

.

In a manner similar to principal components, canonical variables and
canonical correlations have a probabilistic justi�cation:

Theorem 3.2 (Maximum correlation justi�cation of canonical variables and
correlations). Canonical variables U1 = aT1 X(1) a V1 = bT1 X(2) have the
maximum possible correlation among all pairs aTX(1), b

TX(2) of non-zero
linear combinations of the components of vectors X(1) and X(2). Formally:

ρ(U1, V1) ≥ ρ(aTX(1), b
TX(2)) for all 0 6= a ∈ Rp, 0 6= b ∈ Rq.

20δii = 1 and δij = 0 if i 6= j.
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For k ≥ 2, the canonical correlations Uk = aTkX(1) and Vk = bTkX(2) have
the largest correlation coe�cient among all pairs aTX(1), b

TX(2) of non-
zero linear combinations of the components of vectors X(1) a X(2) that are
uncorrelated with U1, . . . , Uk−1 and V1, . . . , Vk−1, respectively. Formally:

ρ(Uk, Vk) ≥ ρ(aTX(1), b
TX(2)) for all 0 6= a ∈ Rp, 0 6= b ∈ Rq

s.t. aTΣ11ai = bTΣ22bi = 0 for all i = 1, . . . , k − 1.

Proof. As ρ(U1, V1) =
√
λ1 and

ρ(aTX(1), b
TX(2)) =

aTΣ12b√
aTΣ11a

√
bTΣ22b

,

which is invariant with respect to multiples of vectors a, b, for the proof of
the �rst part of the theorem it is enough to show that λ1 ≥ (aTΣ12b)

2 under

the constraint aTΣ11a = bTΣ22b = 1. Denote u := Σ
1/2
11 a and v := Σ

1/2
22 b and

note that aTΣ11a = bTΣ22b = 1 implies ‖u‖ = ‖v‖ = 1. We obtain:

(aTΣ12b)
2 = (uTΣ

−1/2
11 Σ12Σ

−1/2
22 v)2

= uTΣ
−1/2
11 Σ12Σ

−1/2
22 vvTΣ

−1/2
22 Σ21Σ

−1/2
11 u

≤∗ λ1(Σ
−1/2
11 Σ12Σ

−1/2
22 vvTΣ

−1/2
22 Σ21Σ

−1/2
11 )

= tr(Σ
−1/2
11 Σ12Σ

−1/2
22 vvTΣ

−1/2
22 Σ21Σ

−1/2
11 )

= vTΣ
−1/2
22 Σ21Σ

−1/2
11 Σ

−1/2
11 Σ12Σ

−1/2
22 v

= vTN2v ≤∗ λ1(N2) = λ1.

The inequalities denoted by the asterisk follow from the Raileigh-Ritz in-
equality.

The second part of the theorem follows similarly as the �rst one, ob-
serving that the conditions bTΣ22bi = 0 for all i = 1, . . . , k − 1 imply that
v is orthogonal to the eigenvectors of N2 that correspond to k − 1 largest
eigenvalues, hence vTN2v ≤ λk(N2) = λk.

Note that unlike principal components, canonical correlations ρ1, . . . , ρm
do not depend on the units of individual variables, i.e., they are scale invari-
ant.

3.3 Sample Canonical Correlations

In practice, we do not know the theoretical variance-covariance matrices of
the random vector that we observe and we need to based the estimate of the
canonical correlations on a random sample X1, . . . ,Xn from the underlying
(p+q)-dimensional distribution. The following de�nition is motivated by the
remark after De�nition 3.1.
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De�nition 3.2 (Sample canonical correlations). Let m = min(p, q). Sample
canonical correlations ρ̂1, . . . , ρ̂m are de�ned to be the square roots of the m
largest eigenvalues of S−1

22 S21S
−1
11 S12 (or, equivalently, of S−1

11 S12S
−1
22 S21),

where S11,S12, S21, and S22 are the p× p, p× q, q× p, and q× q sub-blocks
of the sample variance-covariance matrix

S =

(
S11 S12

S21 S22

)
.

In the case of normal errors and a large sample size, we can test the
hypothesis that all theoretical canonical correlations are zero, i.e., that the
sub-vector of the �rst p variables is independent with the sub-vector of the
last q variables:

Theorem 3.3. If X1, . . . ,Xn follow Np+q(µ,Σ) and the upper-right p × q
submatrix Σ12 of Σ is zero21, then the statistics

W = det(I− S−1
22 S21S

−1
11 S12)

has asymptotically the Wilks distribution Λ(p, n− 1− q, q) and the statistics

Z = − (n− (p+ q + 3)/2) ln(W )

has asymptotically the distribution χ2
pq.

The tests using the Z statistics from the previous theorem is called the
Bartlett ξ2 test.

3.4 Applications of Canonical Correlations

Canonical correlations are used in the situations where variables can be logi-
cally divided into two distinct groups. For instance, in a psychological survey
we can have a set of variables measuring one �personality dimension�, and a
set of variables measuring a second �personality dimension�. The �rst canon-
ical correlation ρ1 then measures the overall degree of correlation of the �rst
group of variables with the second group of variables.

Note that for q = 1 the �rst canonical correlation corresponds to the
so-called coe�cient of multiple correlation, which, in the context of linear
regression, is closely related to the square of the coe�cient of determina-
tion. (It is a useful theoretical exercise to simplify the theory of canonical
correlations for q = 1.)

21This is of course if and only if the lower-left q × p submatrix Σ21 of Σ is zero.
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4 Factor Analysis

In factor analysis, we assume that the random vector X = (X1, . . . , Xp)
T

of observed (or �manifest�) variables can be described in terms of an m-
dimensional random vector F = (F1, . . . , Fm)T of hidden (or �latent�) vari-
ables, where m is substantially smaller than p. More precisely, we assume
that the following statistical model holds:

Xi =
m∑
j=1

aijFj + Ui, i = 1, . . . , p, (12)

or, in a matrix form,
X = AF + U . (13)

The elements aij of A are called factor loadings22, the random vector F is
called the vector of common factors, and the random vector U is called
the vector of speci�c factors, speci�c variates, or uniqueness. The factor
loadings are assumed to be unknown parameters of the model.

Hence, we consider a model similar to the multivariate regression, but
in factor analysis the �regressors� or �explanatory variables� F1, . . . , Fm are
assumed to be random, and cannot be directly observed23.

Usual theoretical assumptions are that the common factors F and unique-
ness U are uncorrelated, i.e., Cov(F ,U) = 0m×p, the common factors them-
selves are standardized and uncorrelated, which means that the variance-
covariance matrix of F is Im

24, and the variance-covariance matrix of U
is assumed to be a diagonal matrix D = diag(d1, . . . , dp). Note that the
variances d1, . . . , dp are additional unknown parameters of the model.

The mean values of F and U are assumed to be 0, which directly implies
that the mean value of X is 0. In this text, we also adopt a simplify-
ing assumption that the manifest variables X1, . . . , Xp are normalized, i.e.,
V ar(Xi) = 1, which is common in applications25.

22That it, the p×m matrix A is called the matrix of factor loadings.
23Another di�erence is that in factor analysis, we allow the variances of the components

of the �error vector� U to di�er, while in regression analysis the errors are usually assumed
to be homoscedastic.

24This is then called the orthogonal model, as opposed to a non-orthogonal model, where
no restrictions on the variance-covariance matrix of F are imposed.

25Especially in some behavioral sciences, where Xi represent standardized responses of
subjects.
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The theoretical assumptions, together with the standard transformation
rules stated in Theorem 1.2 imply that the correlation matrix Ψ of the vector
X26 is

Ψ = AAT +D. (14)

Note that the elements of the matrix A are simply correlations between
the manifest variables and hidden factors:

Theorem 4.1 (Interpretation of factor loadings). Under the model of factor
analysis described above, we have aij = ρ(Xi, Fj) for all i = 1, . . . , p and
j = 1, . . . ,m.

Proof. Consider the model (13). We have Cov(X,F ) = Cov(AF +U ,F ) =
ACov(F ,F )+Cov(U ,F ) = A, taking into account assumptions Cov(F ,F ) =
Im and Cov(U ,F ) = 0p×m. Since the variables of X as well as of F are nor-
malized, we obtain that ρ(Xi, Fj) = cov(Xi, Fj) = aij.

A crucial observation is that the model (13) is over-parametrized: Based
on the observations of the manifest variables X, we will never be able to
distinguish between models X = AF + U and X = (AV )(V TF ) + U ,
where V is any m×m orthogonal matrix. In other words, the factor loadings
A with factors F provide as good a �t to the observations as factor loadings
AV with �rotated� factors V TF 27.

The previous point is the crux of the main criticism of factor analysis from
the point of view of traditional statistical philosophy. Note that statisticians
traditionally assume a single, �xed model, which is unknown, yet possible to
identify with increasing precision as the sample size increases. Clearly, the
model of factor analysis does not �t into this view. Rather, in factor analysis,
we can adopt the attitude that all models of the form X = (AV )(V TF )+U ,
where V is an orthogonal matrix, are equally good representations of reality,
and it is perfectly justi�able to select one of these models that leads to our
understanding of the origin of data, based on a clear interpretation of what
do the factors V TF represent. In fact, there is a large body of literature on
methods called �rotation of factors� that help us �nd a suitable matrix V ;
see the section on rotation of factors.

26Note that since the manifest variables are standardized, the correlation matrix of X
coincides with the variance-covariance matrix Σ of X.

27Note that if F satis�es the assumptions of factor analysis, then so does V TF .
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4.1 Estimation of factor loadings

The �rst step in factor analysis is to use the observations of the manifest
variables to �nd some appropriate estimates of the parameters aij and di.
Here, two methods are most popular: the method of maximal likelihood
and the method of principal factors which we very brie�y describe.

Consider the formula Ψ = AAT + D. If we knew D = diag(d1, . . . , dp),
then we would be able to evaluate the so-called reduced correlation ma-

trix Ψ −D = AAT , which would enable us the computation of a matrix A
of factor loadings. Note that di = 1 − h2

i , where h
2
i =

∑m
j=1 a

2
ij are called

communalities, i.e., the estimation of the variances of speci�c factors is
essentially equivalent to the estimation of communalities.

The method of principal factors uses the sample correlation matrix R
as an estimator of Ψ, and d̂1 = 1/(R−1)11, . . . , d̂p = 1/(R−1)pp as (initial)
estimators of d1, . . . , dp. Thus, we can obtain an estimate

R∗ = R− diag(d̂1, . . . , d̂p)

of the reduced correlation matrix, which can be viewed as the sample cor-
relation matrix with diagonal elements replaced by the estimates ĥ2

1 = 1 −
1/(R−1)11, . . . , ĥ

2
p = 1 − 1/(R−1)pp of the communalities. Then we calculate

the eigenvalues λ1 ≥ . . . ≥ λp of R∗ and the corresponding orthonormal
eigenvectors u1, . . . , up. If the �rst m eigenvalues of R∗ are non-negative, and
the remaining eigenvalues are �small�, we can estimate the matrix of factor
loadings as

Â = (
√
λ1u1, . . . ,

√
λmum).

We remark that once we have Â, we can repeat the process using new esti-
mates

∑m
j=1(Â)2

ij, i = 1, . . . , p, of communalities and iterate it until possible
convergence.

In the method of principal factors the number m of factors is consid-
ered satisfactory based on analogous criteria as in the method of principal
components, for instance, if

∑m
j=1 λj/

∑p
i=1 |λi| > 0.8.

4.2 Rotation of Factors

As mentioned above, if we have any estimate Â of A, and V is any m ×m
orthogonal matrix, then Ã = ÂV is as good an estimate of A as Â. For a
given estimate Â, the methods of factors rotation provide, in a sense, optimal
rotation V ∗ in order to achieve a suitable form of the new matrix ÂV ∗ of
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factor loadings. A general aim is to achieve the so called simple structure of
the matrix of factor loadings. Omitting details, a matrix of factor loadings
has a simple structure, if it contains many entries close to 0, 1 and −1,
because, viewed as correlations, such factor loadings usually lead to a simple
interpretation of common factors.

De�nition 4.1 (Varimax and Quartimax rotation methods). Varimax rota-
tion of the p ×m matrix Â of factor loadings is the orthogonal matrix V of
the type m×m that maximizes the value of

fv(V ) =
1

m

m∑
t=1

1

p

p∑
j=1

(
(ÂV )2

jt −
1

p

p∑
k=1

(ÂV )2
kt

)2
 . (15)

Quartimax rotation of the p×m matrix Â of factor loadings is the orthogonal
matrix V of the type m×m that maximizes the value of

fq(V ) =
1

mp

m∑
t=1

p∑
j=1

(
(ÂV )2

jt −
1

mp

m∑
s=1

p∑
k=1

(ÂV )2
ks

)2

. (16)

Let BV be the m× p matrix with elements corresponding to the squares
of the elements of ÂV , that is, BV = ÂV � ÂV , where � is the Hadamard
(entry-wise) product of matrices. Observe that it is possible to interpret (15)
as the average �sample variance� of the entries of the columns of BV , and (16)
can be interpreted as the �sample variance� of all elements of BV . Clearly,
the elements of ÂV are correlations, i.e., the elements of BV are bounded
by 0 from below and by 1 from above. Therefore, the maximization of the
�variance� of the elements of BV forces the elements to be close to 0 or 1,
i.e., forces the elements of ÂV to be close to the numbers 0, 1, and −1.

Using the formula 1
N

∑N
i=1(xi − x̄)2 = 1

N

∑N
i=1 x

2
i − x̄2 for any x1, . . . , xN

and the observation

m∑
s=1

p∑
k=1

(ÂV )2
ks = ‖ÂV ‖2 = tr(ÂV (ÂV )T ) = tr(ÂÂT ) = ‖Â‖2,

the quartimax utility function can be simpli�ed as follows:

fq(V ) =
1

mp

m∑
t=1

p∑
j=1

(ÂV )4
jt −

1

(mp)2
‖Â‖4.

Therefore, the quartimax method maximizes the sum of the fourth powers
of factor loadings, hence the name.
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The problem of �nding optimal V in the sense of the varimax or the quar-
timax rotation method is a di�cult problem of mathematical programming
and description of the appropriate numerical methods goes beyond this text.
However, all advanced statistical packages implement some form of factor
rotation optimization.

4.3 Estimation of Factor Scores

Lemma 4.1. Let the random vector (XT ,F T )T follows the p+m-dimensional
normal distribution with the zero mean value. Then the conditional distribu-
tion of F given X = x is

Nm

(
Cov(F ,X)Σ−1

X x, ΣF − Cov(F ,X)Σ−1
X Cov(X,F )

)
=

Nm

(
AT (AAT +D)−1x, Im − AT (AAT +D)−1A

)
.

Consider a random sample X1, . . . ,Xn of the p-dimensional observable
variables on n objects, satisfying the model of factor analysis. Suppose that
our aim is to estimate the realizations of the common factors F 1, . . . ,F n for
individual objects; these realizations are called factor scores. Lemma 4.1
motivates the following estimators:

F̂ r = ÂT (ÂÂT + D̂)−1Xr, r = 1, . . . , n, (17)

where Â is the selected estimate of the matrix of factor loadings and D̂ is the
estimate of the diagonal matrix of variances of speci�c variates. This kind of
estimation of factor scores is sometimes called the method of regression

analysis28.

If the number p is very large, it may be di�cult to compute the inverse
of the p× p correlation matrix R̂ = ÂÂT + D̂29. However, the matrix ÂT R̂−1

that appears in the formula (17) can be computed by only inverting a usually
much smaller m×m matrix, and a p× p diagonal matrix:

Lemma 4.2. Let R = AAT +D be a non-singular matrix, where A is a p×m
matrix and D is a p× p matrix. Then ATR−1 = (Im + ATD−1A)−1ATD−1.

Proof.

(Im + ATD−1A)−1ATD−1R =

(Im + ATD−1A)−1ATD−1(AAT +D) =

(Im + ATD−1A)−1(ATD−1A+ Im)AT = AT .

28The reason is that it can also be motivated by techniques similar to multivariate
regression analysis.

29It was especially di�cult in the past.
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5 Partitioning Methods of Cluster Analysis

The general aim of clustering is to reveal relationships or similarities of n ob-
jects, typically characterized by either multidimensional real-valued vectors
of features or by a matrix of mutual dissimilarities. In particular, the aim
of the partitioning methods of cluster analysis30 is to divide the objects into
k groups called clusters, in such a way that the elements within the same
cluster are as similar as possible and the elements of di�erent clusters are
as dissimilar as possible. It is the speci�cation of the notions of �as sim-
ilar as possible� and �as dissimilar as possible� that distinguishes di�erent
partitioning methods.

First, let us introduce some notation. Let n be the number of objects and
let k be the number of clusters. That is, the objects will be denoted by the
numbers 1, . . . , n and the clusters by the numbers 1, . . . , k. We will assume
that n ≥ k; the case n < k is meaningless and in real situations, the number
n of clusters is usually greater than k by several orders of magnitude.

De�nition 5.1 (Clustering and clusters). Let Γn,k be the set of all vectors
γ ∈ Rn with elements from {1, . . . , k}, such that each of the values 1, . . . , k
occurs at least once in γ31. Any vector γ ∈ Γn,k will be called a �clustering� (
or �partitioning�). The set Cj(γ) = {i ∈ {1, . . . , n} : γi = j} will be called the
j-th cluster for the clustering γ32. The number nj(γ) of elements of Cj(γ)
will be called the size of the j-th cluster for the clustering γ.

If the objects are characterized by features x1, . . . ,xn ∈ Rp, we can de�ne
the following characteristics for each cluster Cj(γ), γ ∈ Γn,k.

De�nition 5.2 (Centroid of a cluster). Let γ ∈ Γn,k and let j ∈ {1, . . . , k}.
The centroid of the cluster Cj(γ) is33

x̄j(γ) = n−1
j (γ)

∑
i∈Cj(γ)

xi.

30Partitioning methods are sometimes called non-hierarchical methods to highlight the
contrast with the hierarchical methods of cluster analysis.

31As we will see, the interpretation of this requirement is that all clusters contain at
least one object.

32That is, for j ∈ {1, . . . , k} and i ∈ {1, . . . , n} the equality γi = j means that the
clustering γ assigns the i-th object into the j-th cluster.

33Note that the centroid of a cluster is its �center of mass�, if the objects are assumed
to have mass 1 and xi is the position of the i-object, i = 1, . . . , n.
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De�nition 5.3 (Variance-covariance matrix of a cluster). Let γ ∈ Γn,k and
let j ∈ {1, . . . , k}. The variance-covariance matrix of the cluster Cj(γ) is34

Sj(γ) = n−1
j (γ)

∑
i∈Cj(γ)

(xi − x̄j(γ))(xi − x̄j(γ))T .

Partitioning methods di�er in the way they de�ne the notion of �optimal�
clustering γ∗ ∈ Γn,k and in the way they search for this clustering35.

5.1 Clustering using k-means and k-medoids

The best known and popular partitioning method is called �k-means�. The
basic idea of k-means is to �rst �x k36 and then select γ∗k ∈ Γn,k that mini-
mizes

Errk(γ) :=
k∑
j=1

∑
i∈Cj(γ)

d2(xi, x̄j(γ)), (18)

where d is some distance measure, usually the Euclidean distance d(x,y) =
‖x − y‖, which we will further assume. In words, k-means tries to �nd the
partitioning γ∗k that minimizes the sums of squared distances of objects to
the centroid of their clusters.

The de�nition of Errk implies that k-means can only produce �convex�
clusters with a tendency towards a spherical shape. An important drawback
of k-means is that its result depends on the units in which the individual
components of the feature-vectors are expressed. Moreover, the computation
of the minimum of Errk is in general a di�cult problem of discrete optimiza-
tion. In some special cases, the optimal γ∗ is not unique and there is a large
number of local optima of the objective function37, some of which can be
very di�erent from what we would intuitively deem to be a good partition-
ing. However, k-means often does provide a reasonable clustering and there
exist simple optimization heuristics that rapidly lead to small values of Errk.

34The Variance-covariance matrix is a matrix representation of the �shape� of the cluster.
Note, however, that in some pathological cases it can be singular.

35Finding the optimal optimal clustering is typically a di�cult algorithmic problem, or
a problem of discrete optimization.

36The number k of clusters can be known or it can be determined using various methods
that we mention later. For now, we assume that k is given.

37Of course, the notion of a local optimum requires that we de�ne what we mean a
�neighbourhood� of a partitioning γ, but the claim that the problem can have many local
optima is valid for most natural de�nitions of the structure of neighbourhoods.
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One such heuristic is the so-called Lloyd's algorithm, which creates a
sequence γ0, γ1, . . . , γstop of partitionings as follows:

1. Set t← 0 and create γ0 randomly.

2. Until a given limit tmax on t is reached or no reassignment of objects
occurs38 repeat the following steps:

(a) Compute the centroids x̄j(γt) for all clusters j = 1, . . . , k.

(b) Create γt+1 by assigning objects i = 1, . . . , n to the nearest cen-
troid x̄j(γt) of the previous clustering

39.

(c) Set t← t+ 1.

Since the Lloyd's algorithm can get stuck in a local optimum, it is common
to run it multiple times (with multiple initial clusterings γ0), and select the
one of the �nal clusterings γstop that provides the minimum value of Errk.
Note that there exist some more e�cient (and more complex) heuristics for
minimizing Errk than the basic Lloyd's method.

An interesting modi�cation of k-means is the method called k-medians.
Note that k-means requires that we compute the centroids of clusters, which
in turn assumes that each object is characterised by a real-valued vector of
features. In some cases, however, we only have an n×n matrix D of mutual
�dissimilarites� of all pairs of objects.

The matrixD (with elementsDij) is enough to de�ne the so-called medoid
of a set C ⊆ {1, . . . , n}. A medoid of C is any40 object iC ∈ C minimizing
the average dissimilarity to all other objects of C, i.e.,∑

i∈C

DiiC = min
l∈C

∑
i∈C

Dil.

The method of k-medoids then tries to choose the clustering γDk that mini-
mizes

ErrDk (γ) :=
k∑
j=1

∑
i∈Cj(γ)

D
iiCj(γ)

.

38That is γt = γt−1. Note that this must occur sooner or later.
39Formally, this means that γt+1(i) = j if ‖xi − x̄j(γt)‖ ≤ minl=1,...,k ‖xi − x̄l(γt)‖. If

the current centroid is one of the centroids closest to xi, then we do not change the cluster
of i. All other ambiguities in the assignment of the closest centroid are resolved randomly.

40usually uniquely de�ned
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Note that the medoids of the optimal clustering γDk can be considered
as �the most typical representatives� of individual clusters. Compared to k-
means, the partitioning obtained by k-medians can be more robust to outliers.
Computing optimal clustering with respect to the method of k-medoids is a
di�cult problem, similarly to k-means. An analogue of the Lloyd's algorithm
for is here a method called �partitioning around medoids�, or PAM.

Both k-means and k-medoids assume that we already know the appro-
priate number k of clusters. However, in most application, k is not known
in advance41. There are several rules of thumb of selecting the �best� k. The
most common is an �elbow� diagram, similar to the one that we used for
selecting an appropriate number of principal components. In this approach,
we plot the piece-wise linear function interpolating the points

(1,Err1(γ∗1)), (2,Err2(γ∗2)), . . . , (K,ErrK(γ∗K))

for some reasonably large K. We will then choose the value of k∗ that
corresponds to an �elbow� in this diagram. An intuitive explanation of this
procedure is that increasing the number of clusters from k∗ to k∗+1 has only
a small e�ect on the improvement of the ��t� of the data by the centroids.

Naturally we can also plot the elbow diagram for k-medoids, with ErrDk
instead of Errk. Nevertheless, a graphical method typically used to �nd the
appropriate k for k-medoids (and provide additional information about the
quality of a given k-medoid clustering) is the so-called silhouette plot. This
is a simple heuristic method an interested readers are referred to abundant
online materials on this topic.

5.2 Model-based Clustering

In this approach, the optimal clustering γ∗ is de�ned by means of an un-
derlying model assumption. More precisely, we assume that the n objects
are characterized by feature vectors x1, . . . ,xn ∈ Rp that are realizations of
random vectors X1, . . . ,Xn which are independent, with a distribution that
depends on γ, i.e., γ is considered to be a model parameter. In the model-
based clustering, we obtain the optimal clustering as an estimate γ̂ of the
parameter γ, typically by the principle of maximum likelihood.

First, let us analyse the following very simple model: X i ∼ Np(µγi , σ
2Ip)

for all i = 1, . . . , k, where γ ∈ Γn,k, σ > 0 is known and Ip denotes the p× p
41As as exercise, try to �nd some problems, where the number k of clusters is known in

advance.
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identity matrix. Here, the unknown model parameters are γ̂, µ̂1, . . . , µ̂k and
the parametric space is Γn,k × Rp × · · · × Rp. The likelihood function is

L(γ, µ1, . . . , µk|x1, . . . ,xn) =
n∏
i=1

fµγi (xi), (19)

where

fµ(x) =
exp

(
− 1

2σ2‖x− µ‖2
)

(2πσ2)p/2
; x ∈ Rp

is the density of Np(µγi , σ
2Ip). The log-likelihood of (19) is

lnL(γ, µ1, . . . , µk|x1, . . . ,xn) = ln
n∏
i=1

fµγi (xi) =

n∑
i=1

{
−p

2
ln(2πσ2)− 1

2σ2
‖xi − µγi‖2

}
= A−B

n∑
i=1

‖xi − µγi‖2,

where B > 0. Therefore, the maximum likelihood estimate γ̂, µ̂1, . . . , µ̂k
minimizes

∑n
i=1 ‖xi − µγi‖2.

For a �xed γ ∈ Γn,k we have

n∑
i=1

‖xi − µγi‖2 =
k∑
j=1

∑
i∈Cj(γ)

‖xi − µγi‖2 =
k∑
j=1

∑
i∈Cj(γ)

‖xi − µj‖2.

Now, recall that the point that minimizes the sum of the squared Euclidean
distances to the points of a �nite set C is the center of mass of C. That
is, minimizing

∑
i∈Cj(γ) ‖xi − µj‖2 with respect to µj leads to the solution

µ̂j = x̄j(γ), i.e., the centroid. Consequently, to �nd the maximum likelihood
estimate of γ ∈ Γn,k, we need to minimize

k∑
j=1

∑
i∈Cj(γ)

‖xi − x̄j(γ)‖2, (20)

which is exactly the problem (18) of k-means. Therefore, the clustering
based on the simplest meaningful multivariate normal model is exactly the
k-means clustering. Incidentally, this clari�es why the k-means method has
the tendency to create not only spherical clusters, but spherical clusters of
similar size.

Now, we could gradually relax the assumptions on the covariance matrices
of the normal distributions of X1, . . . ,Xn, i.e., taking σ

2 as unknown, taking
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the covariance matrices equal to σγ1Ip, . . . , σγnIp with unknown and possibly
di�erent σ1, . . . , σk > 0, etc. However, here we will directly move to the most
general assumption: X i ∼ Np(µγi ,Σγi), where γ ∈ Γn,k, µ1, . . . , µk ∈ Rp, and
Σ1, . . . ,Σk ∈ S

p
++, all unknown.

By ΓRn,k denote the set of all �regular� clusterings, i.e., clusterings γ ∈ Γn,k
such that the variance-covariance cluster matrices S1(γ), . . . , Sk(γ) are non-
singular. By

γ̂, µ̂1, . . . , µ̂k, Σ̂1, . . . , Σ̂k

denote the model parameters that, on the set ΓRn,k × Rp × · · · × Rp × S
p
++ ×

· · · × S
p
++

42, maximize the likelihood function

L(γ, µ1, . . . , µk,Σ1, . . . ,Σk|x1, . . . ,xn) =
n∏
i=1

fµγi ,Σγi (xi), (21)

where

fµ,Σ(x) =
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2π)p/2

√
det(Σ)

; x ∈ Rp

is the density of the distribution Np(µ,Σ) with a positive de�nite variance-
covariance matrix Σ. In the sequel, we will again derive an optimization
problem of a simple form which provides the maximum likelihood estimate
γ̂, without the need to explicitly compute µ̂1, . . . , µ̂k, Σ̂1, . . . , Σ̂k.

Consider the log-likelihood function of (21):

lnL(γ, µ1, . . . , µk,Σ1, . . . ,Σk|x1, . . . ,xn) = ln
n∏
i=1

fµγi ,Σγi (xi)

=
n∑
i=1

[
−p

2
ln(2π)− 1

2
ln det(Σγi)−

1

2
(xi − µγi)TΣ−1

γi
(xi − µγi)

]

=
k∑
j=1

∑
i∈Cj(γ)

[
−p

2
ln(2π)− 1

2
ln det(Σj)−

1

2
(xi − µj)TΣ−1

j (xi − µj)
]
.

For any �xed γ ∈ ΓRn,k and j ∈ {1, . . . , k} the sum∑
i∈Cj(γ)

[
−p

2
ln(2π)− 1

2
ln det(Σj)−

1

2
(xi − µj)TΣ−1

j (xi − µj)
]
,

42S
p
++ is the set of all positive-de�nite p× p matrices.
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attains the maximum for µ̂j = x̄j(γ) a Σ̂j = Sj(γ)43. Moreover, the con-
stant −p

2
ln(2π) plays no role in our optimization problem, therefore γ̂ is the

solution of the problem:

argmaxγ∈ΓRn,k

k∑
j=1

−nj(γ) ln det(Sj(γ))−
∑

i∈Cj(γ)

(xi − x̄j(γ))TS−1
j (γ)(xi − x̄j(γ))


(22)

Using the basic properties of the trace we obtain that for any γ ∈ ΓRn,k and
j ∈ {1, . . . , k}: ∑

i∈Cj(γ)

(xi − x̄j(γ))TS−1
j (γ)(xi − x̄j(γ))

=
∑

i∈Cj(γ)

tr
[
(xi − x̄j(γ))TS−1

j (γ)(xi − x̄j(γ))
]

= tr

S−1
j (γ)

∑
i∈Cj(γ)

(xi − x̄j(γ))(xi − x̄j(γ))T


= tr

[
S−1
j (γ)nj(γ)Sj(γ)

]
= tr [nj(γ)Ip] = pnj(γ),

which means that the optimization problem (22) is equivalent to

argminγ∈ΓRn,k

k∑
j=1

nj(γ) ln det(Sj(γ)) +
p

2

k∑
j=1

nj(γ).

Clearly,
∑k

j=1 nj(γ) = n, which does not depend on γ, therefore

γ̂ = argminγ∈ΓRn,k

k∑
j=1

nj(γ) ln det(Sj(γ)). (23)

Note that, roughly speaking, the optimal clustering is the one that mini-
mizes a weighted average of logarithms of �volumes� of clusters44. The form
of the problem (23) is simple, but its generally di�cult to �nd its solution.
Often, the algorithm used to compute γ̂ is the so-called EM algorithm45 or
some algorithm of stochastic combinatorial optimization.

43The proof of this statement is analogous to the proof that the sample mean and the
sample variance-covariance matrix are the maximum likelihood estimates based on the
random sample from the multivariate normal distribution.

44As an exercise, justify the view that det(Sj(γ)) is relates to the �volume� of Cj(γ).
45EM means �Expectation-Maximization�.
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Model-based clustering (under the most general assumptions) is signi�-
cantly more di�cult � theoretically and computationally � than the standard
clustering methods; however, it has several advantages. For instance, the
version of the model based clustering that we described above46 is invariant
under changes of the scale of variables (changes of the units of measure-
ments), and can detect �clusters inside other clusters�. One disadvantage
of the model-based clustering is that it cannot be directly used if we only
know the matrix of dissimilarities of the objects (we will see examples of this
phenomenon).47

5.3 Clustering using the density-based scan

A powerful partitioning method of completely di�erent kind is the so-called
density-based scan (DBScan). Here, the clustering is not de�ned as a solution
of an optimization problem, but as a split of objects into implicitly de�ned
classes.48

Let ε > 0 and minPts ≥ 3 be parameters. Let us de�ne the classes as
follows:

1. An object i∗ is a �core object� if the feature vectors of at least minPts
of objects are within the distance ε from the feature vector of i∗, i.e., if

|Nε(xi∗)| := |{i ∈ {1, . . . , n} : ‖xi − xi∗‖ ≤ ε}| ≥ minPts,

where | · | denotes the size of a set.

2. An object i is �directly reachable� from i∗ if i∗ is a core point and
‖xi − xi∗‖ ≤ ε.

3. An object ir is �reachable� from an object i∗1, if there is a sequence
i∗1, i

∗
2, . . . , i

∗
r−1, ir of objects such that i∗l+1 is directly reachable from i∗l

for all l such that 1 ≤ l ≤ r − 2, and ir is directly reachable from i∗r−1.

46Note that there are many types of �model-based clustering�, for instance there are
methods that impose restrictions on the underlying variance-covariance matrices of the
clusters.

47Note, however, that we can be creative and suggest the following application of the
model based clustering even in the case that we only know D: �rst, use some form of the
multidimensional scaling (which uses only D) to embed the object to Rk. Then apply the
model based clustering to this embedding.

48An alternative view is that the DBScan clustering is de�ned via an algorithm that
computes this split.
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4. All objects that are not reachable from any other object are classi�ed
as �noise�.

5. Two objects ia and ib are �density-connected� if there is a point i
∗, such

that ia is reachable from i∗ as well as ib is reachable from i∗.

6. It is clear that density-connectedness is an symmetric relation49 on the
set �non-noise� objects. DBScan clustering is any partitioning of non-
noise objects into classes such that two objects are in the same class
only if they are density-connected.

Let us compare DBScan to other clustering methods that we already
introduced.

First, a unique advantage of DBScan is that it can produce a special
class of �noise� objects, which can be viewed as outliers; this makes DBScan
robust to outliers. Second, DBScan does not require to choose the number
k of clusters; the number of clusters is automatically determined by ε and
minPts. Third, DBScan can identify clusters of various shapes, for instance
two interlocked banana-shaped clusters, which is unattainable using the pre-
vious methods. Fourth, DBScan can be easily modi�ed to work with only a
dissimilarity matrix, similarly to k-medoids. Fifth, there exists an e�cient
algorithm that computes the DBScan clustering.50

The most important disadvantage of DBScan is that it can be very sen-
sitive to the choice of the two parameters; it may be di�cult to choose them
properly.51 Moreover, DBScan cannot split the objects into clusters of sig-
ni�cantly di�erent densities and the DBScan clustering generally depends on
the units of variables (units of measurement of individual features); these two
problems do not occur with the model based clustering in the form that we
presented in Subsection 5.2. A minor disadvantage is that the result of DB-
Scan is not fully deterministic (some �border� points may end up in di�erent
clusters depending on the actual algorithm and the order of the objects in
the database).

49It is not, however, an equivalence relation, because it is not transitive. There are some
variants of the DBScan principle that lead to the relation of equivalence, and therefore a
uniquely de�ned split into the equivalence classes.

50We will not describe the algorithm in this text, and for applications it is not in fact
necessary to know it (unlike the principle of the method itself).

51There is an entire body of literature on choosing ε and minPts which goes beyond the
scope of the current version of this text.
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An algorithm related to DBScan is called �Optics� (Ordering Points to
Identify the Clustering Structure). This algorithm also depends on two pa-
rameters, ε and minPts; however, the result of Optics is not a split into
clusters (plus noise objects) but rather a speci�c ordering of the objects52

in the feature space. This ordering is then used to construct the so-called
�reachability plot�. We can illustrate the key idea of the algorithm for the
case ε =∞ as follows.

For i ∈ {1, . . . , n}, we de�ne the �core distance� as dcore(xi) = ‖xi−xi+‖,
where i+ is the index of the minPts-th closest point to xi. If i 6= j ∈
{1, . . . , n}, we de�ne the �reachability distance� dreach(xj | xi) of xj from xi
as

dreach(xj | xi) = max{dcore(xi), ‖xj − xi‖}.

Brie�y formulated, the Optics algorithm generates the ordering as follows.
The �rst object is selected at random (or simply as the �rst object in the
database). Then, other objects are added to the ordering in such a way
that each newly selected object minimizes the reachability distance from the
objects that have already been selected.

Let x̃1, . . . , x̃n be the sequence of feature vectors in the ordering generated
by Optics. To each j ∈ {2, . . . , n}, we assign the reachability distance rj =
mini<j dreach(x̃j | x̃i). The �reachability plot� is then the plot of the values
rj as a function of j = 2, . . . , n. The �valleys� in this plot suggest blocks of
points that may form clusters, while the �peaks� indicate transitions between
separated clusters.

Optics has properties somewhat similar to those of DBScan. Compared
to DBScan, Optics is better equipped to identify clusters of varying densities.
The reachability plot also provides information on the approximate density
of each cluster. However, Optics is still not fully invariant under linear trans-
formations of the variables. For instance, the reachability plot (and hence
the clustering) may change if we alter the units of measurement for a single
variable.

5.4 Using clustering for anomaly detection

The identi�cation of anomalies (or outliers) is directly inbuilt into the DB-
Scan method - the noise objects are �anomalous� by de�nition. By decreasing
the value of ε, we can obtain a list of candidates, with decreasing �magnitude

52Again, we will not go into the complex speci�cs of the algorithm itself.
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of anomalousness�. Such an ordering is exactly what we require if our aim
is to closely inspect anomalies one by one but our inspection capacities may
be limited, for example in the process of insurance fraud detection.

However, other clustering methods can also be used for anomaly detec-
tion. For instance, we can deem small clusters to be automatically anoma-
lous, or order the objects based on the distance to the nearest centroid/medoid
of a cluster.

Alternatively, we can order the objects according to the estimated den-
sity of the mixture of normal distributions (in the case of the model-based
clustering): If γ∗ is the optimal clustering based on the mixture of normal
distributions, then an approximation of the data-generating density can be

f̂(x) =
k∑
j=1

nj(γ
∗)

n
fx̄j(γ∗),Sj(γ∗)(x), x ∈ Rp,

where fµ,Σ is the density of Np(µ,Σ). If f̂(xi) is very small, then the object
i can be an outlier or anomaly.

Several techniques of identi�cation of outliers and anomalies can also be
based on discrimination/classi�cation methods which we study next.

6 Classi�cation methods in general

The aim of the classi�cation analysis is to construct a classi�er C for pre-
dicting the classes of objects based on the vectors of features of the
objects.53 To this end, we must specify m classes, or categories. Often, the
classi�cation is binary54, that is, m = 2, but more than two categories, the
so-called multiclass55 classi�cation, are also common.

The construction of C is based on the training data set, which consists
of n objects described by their vectors of features x1, . . . ,xn ∈ Rp56, together

53The classes of objects are sometimes called predicted variables and the vectors of
features explanatory variables.

54For instance �acceptable/unacceptable�, �female/male�, �infected/noninfected�, etc.
55For example the age of a person from m age categories, the soil type from m possible

types, a disease from m possible diseases, etc.
56Note that if we do not directly have real vectors of features of objects, we can usually

embed the objects into Rp using various methods. For instance, if we can meaningfully
measure the distances between the objects, we can use the multidimensional scaling for
the embedding. Also, if the number of features is too large to process, we can use various
techniques of dimensionality reduction or feature extraction.
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with their known correct classi�cations c1, . . . , cn ∈ {1, . . . ,m}. The classi-
�cations of the objects in the training set are pre-determined by an expert
or by another reliable method, which, however, tends to be costly or time
consuming. Our goal is to develop an inexpensive and rapid classi�cation
rule, usually implemented as a computer program, that can categorize future
objects using only their known vectors of features57.

Note the distinction between partitioning clustering and classi�cation
methods. While clustering methods work only with the data x1, . . . ,xn ∈ Rp

representing the vectors of features and try to devise a �natural� split of
objects into categories without any additional information58, classi�cation
methods try to mimic the categorization c1, . . . , cn ∈ {1, . . . ,m} provided by
a �teacher� in order to automatically classify new objects, without further
help from the �teacher�. That is why the clustering methods are sometimes
called unsupervised learning, while the classi�cation methods are called
supervised learning.

6.1 Representations of classi�ers

Often, a classi�er is formally represented via real-valued discrimination

functions l1, . . . , lm de�ned on Rp. In an abstract way, the value lj(x)
quanti�es the �degree of belief� of the classi�er that the object with features
x belongs to the class j.59 Such a classi�er is sometimes called soft. If
we systematically convert the values l1(x), . . . , lm(x) into a single �winning�
category j ∈ {1, . . . ,m} that maximizes60 lj(x), we obtain a hard classi�er.61

It is important to add that l1, . . . , lm can be very complicated functions,

57Naturally, it is rarely the case that we are able to construct an error-free classi�cation
rule, but we can often achieve an acceptably small error rate. The reliability of a classi�er
is an important topic and will be discussed in the next sections.

58Except for the number of classes. Some clustering techniques, such as the DBScan,
do not even require the number of classes.

59If l1(x), . . . , lm(x) are non-negative and sum to one, they can be viewed as probabilities
of individual categories. However, note that the decision that the object be classi�ed into
the class i can also be based on other factors, not only on the probability that it originated
from the class i, but also on the degree of loss incurred by an incorrect classi�cation.

60An observant student could ask what if there are two distinct categories j1 and j2
such that both lj1(x) and lj2(x) are maximal. In that case we usually select the winning
category at random. In this text, we can for simplicity assume that we select the smallest
of the maximizing indices. In practice, this does not happen too frequently.

61Of course, by converting a soft classi�er into a hard classi�er we loose some informa-
tion. The soft classi�er is always more informative than the corresponding hard classi�er,
but in most applications we are ultimately forced to make a de�nitive decision about the
class of the object.
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sometimes requiring a complex algorithm to evaluate.

Any hard classi�er62 can also be represented by a decomposition of Rp

into m classi�cation regions R1, . . . , Rm, 1 ≤ i < j ≤ m ⇒ Ri ∩ Rj = ∅.
Here, the object with features x is classi�ed into the i-th category if and only
if x falls into Ri.

Clearly, any system l1, . . . , lm of discrimination functions automatically
generates classi�cation regions R1, . . . , Rm; a possible choice can be formally
de�ned by x ∈ Rj ⇔ j = min (argmaxili(x)), x ∈ Rp. The inverse, that
is, converting R1, . . . , Rm into a system of discrimination functions is also
simple; we can just use the indicator functions of the regions. However, such
a system of discriminant functions does not provide nuanced di�erences in
the degrees of beliefs.

Various classi�cation methods di�er in the way they utilize the training
set of data to construct either the discrimination functions, or the decompo-
sition R1, . . . , Rm.

6.2 Reliability of a classi�er

The most prominent characteristic of a classi�er is its �reliability�.63 Assess-
ing the reliability of a classi�er is in fact an intricate problem, both theo-
retically and practically. To put it on a mathematically �rm ground, let us
adopt the following model of how the data are produced: Let us assume that
for each object its class j ∈ {1, . . . ,m} is �rst generated with prior class

probabilities q1, . . . , qm
64 and then, depending on j (and independent of the

previous objects) its vector of features is generated from the class density pj
on Rp.65 For this section we will formalize the classi�er via the decomposition
R1, . . . , Rm of Rp.66

62In this study material, we will mostly focus on the hard classi�ers.
63Many sources use the term �performance� to denote what I call reliability. However,

performance is a too general term which would presumably cover for instance the speed of
the classi�cation and other characteristics of the classi�er. The term reliability indicates
that here we only focus on the frequency of errors.

64Less formally, the probabilities q1, . . . , qm represent the frequencies of the m classes.
65It is straightforward to use general probability distributions of features, which could

also formally describe discrete (or any) random variables. We choose to only work with
densities for simplicity.

66That is, we will only deal with hard classi�ers in this section; it more di�cult to
estimate the precision of a soft classi�er. One method of measuring the performance of a
predictor which predicts probabilities of classes if the so-called Brier score, which is out of
the scope of this text.
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Now, the reliability of our classi�er can be represented by two related
matrices: First, we could de�ne the matrix with elements

P (j|i) =

∫
Rj

pi(x)dx, i, j ∈ {1, . . . ,m},

which is the probability that an object from class i will be categorized into
class j. That is, P (j|i) is the �conditional� probability that the object will
be categorized into the class j provided we (only) know that it belongs to
the class i.

However, the most commonly used is the so-called confusion matrix

matrix C, in which the element Cij is the probability that a �generic� object
will be from the class i and, at the same time, it will be categorized into the
class j.67 Clearly, Cij = qiP (j|i) for any i, j ∈ {1, . . . ,m} and, for a �xed i,
the row sums of C is the prior frequency of the class i:

m∑
j=1

Cij =
m∑
j=1

qiP (j|i) = qi

m∑
j=1

P (j|i) = qi.

We could also de�ne the column sums of C, say rj =
∑m

i=1 Cij. The inter-
pretation is that ri is the probability that a generic object will be classi�ed
to the class j. The sum of all elements of C is 1.

The o�-diagonal elements of C are called theoreticalmiss-classi�cation
rates. Clearly, large values of the diagonal elements of C and small values
of the non-diagonal elements of C, i.e., small miss-classi�cation rates, signify
a reliable classi�er. However, there is no universal way of comparing confu-
sion matrices. That is, we often cannot unambiguously decide which of the
classi�ers A and B is better, based only on their confusion matrices CA and
CB. To this end, we need a real-valued measure de�ned on the set of possible
confusion matrices.

One such measure is based on the expected �gain� from the classi�cation.
Let G(j|i) be the estimated gain that we obtain from classifying an object
into the category j, if the correct classi�cation of the object is the category
i.68 Then, the expected gain is

∑m
i=1

∑m
j=1G(j|i)Cij.

67This is a �normalized� version of the confusion matrix, which can be interpreted via
probabilities. Often, a non-normalized version of the confusion matrix is used representing
the frequencies, i.e., nC, where n is the number of objects. Or, more precisely, an estimate
of C or nC is used, as described in the next subsection.

68Notice that this is closely related to the loss L from the section on the Bayes classi�er.
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If we are unsure about the gains, we can set G(i|i) = 1 for all i and
G(j|i) = 0 for all i 6= j. This measure is sometimes call the accuracy of
the classi�er, and can also be interpreted as the probability of the correct
classi�cation of a generic new object. Note however, that sometimes this is a
misleading measure.69 There are many other possible measures of precision
of a classi�er, most of which are specialized to binary classi�cation (that is
m = 2); we will mention them later.

6.3 Estimation of misclassi�cation rates

We could in principle calculate the matrix C from the probabilities q1, . . . , qm
and the densities p1, . . . , pm. However, a fundamental problem is that in prac-
tical applications we do not know these characteristics. Therefore, our only
hope is to use some method of estimating the rates of correct classi�cation
and miss-classi�cation rates from the available data. To this end, the most
popular are the so-called resampling methods.

Suppose that we have a method A, often a computer algorithm, of con-
structing a classi�er from any training set (X, c).70 Here, X = (x1, . . . ,xk)

T

is the matrix of the feature vectors of the objects in the training set, and
c = (c1, . . . , ck) is the vector of �correct� classi�cations of the objects, some-
times called labels. That is, given any training set (X, c) as the input, the
method A produces some classi�er C = C(X, c,A) represented by a decom-
position R1, . . . , Rm of Rp. How do we estimate the real misclassi�cation
rates of C applied to future data?

The simplest approach, sometimes called the in-sample method, or
the �re-substitution� method, is the following: We �rst apply A to the full
training dataset to obtain our classi�er C. Next, we go through all objects of
the training set one by one and predict their classes using C; let us say that
the predicted classes are c̃1, . . . , c̃n. Then, the estimate of the element (c, c̃)
of C is the proportion of the pairs (ci, c̃i), i = 1, . . . , n, equal to (c, c̃). This
method typically yields overly optimistic estimates of C.71

From the category of the out-of-sample methods, the simplest is the

69For instance if one category is frequent, for instance if q1 = 0.9, then the trivial
classi�er that classi�es all objects into the category 1 has accuracy 0.9.

70(X, c) can be for instance the original, full training set, or its proper subset.
71Intuitively, the reason is that we test the classi�er based on the same data that had

been used for its training.
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validation-set method:72 We �rst split the full training dataset into two
parts, the training part (Xt, ct) and the validation part (Xv, cv), and use A

to create a classi�er C = C(Xt, ct,A).73 Next, we use C to classify the objects
from the validation set; let us say that the validation set is composed of the
last k objects of the full training set74 and their categories predicted by C are
c̃n−k+1, . . . , c̃n. Then, the estimate of the element (c, c̃) of C is the proportion
of the pairs (ci, c̃i), i = n − k + 1, . . . , n, equal to (c, c̃). This method often
yields good estimates of the real miss-classi�cation rates of C. However, its
disadvantage is that it is not trained on the full dataset, i.e., it may be less
precise than ít could have been if trained on the the full dataset.75

Finally, we will mention advanced and more computationally demand-
ing out-of-sample estimation methods, called cross-validation. In cross-
validation, we do construct the classi�er C from the entire training dataset,
but to estimate its miss-classi�cation rates, we e�ectively rely on systematic
aspects of the general method A that we used for constructing C.

A simple cross-validation method is called leave-one-out. Here, we re-
peat the validation-set method n times. In the i-th loop, i = 1, . . . , n, we
take the object i to be a single-point validation set, construct the classi�er
Ci on the training data excluding the object i, and produce an estimate Ĉi

of the matrix C.76 The �nal estimate of C is the average of matrices Ĉi.
The leave-one-out method generally leads to better estimates of C than the
in-sample method and does not waste training data. However, a big disad-
vantage is that we need to construct n classi�ers. In many applications, the
number n of objects is thousands or even millions, and the computation time
of this validation method would be prohibitive.

Probably the most frequently used cross-validation method is called the k-
fold cross-validation, where the validation-set method is repeated k times.

72Some literature uses a di�erent and more nuanced terminology: the validation set is
a set of data used in the course of training and the so-called �test set� is a completely
independent dataset used for the evaluation of the �nal model. Confusingly, sometimes
the terms are used in the opposite meaning.

73(Xt, ct) usually contains a �xed proportion, say 80% of objects selected from the full
training set.

74Often, the training set is produced by a random selection of n− k objects, but for the
notational simplicity we assume here that it is the �rst n− k objects.

75In a sense, we exchanged the precision of the classi�er for the precision of the estima-
tion of its miss-classi�cation rates.

76This will be a very coarse estimate with just zeros, except for one number 1 at the
position determined by the real and the predicted class of the i-th object.
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We split the training data randomly into k subsets77 (X1, c1), . . . , (Xk, ck).
In the t-th loop, t = 1, . . . , k, we take (Xt, ct) to be the validation set,
construct the classi�er Ct on all training data excluding (Xt, ct), and produce
an estimate Ĉt of the matrixC. Similarly as in the leave-one-out method, the
�nal estimate of C is the average of the matrices Ĉt. Clearly, leave-one-out
is a special case of the k-fold cross-validation for k = n. However, in practice
we usually choose k to be much smaller than n.78 The k-fold cross-validation
seems to be a good compromise between the precision of the estimation of C
and the computation time to produce the estimate.

There are many other variants of cross-validation, for instance leave-p-
out, repeated random sub-sampling cross-validation, and so on. Also, some
classi�cation methods may have their own, speci�c, techniques for the esti-
mation of the miss-classi�cation rates.

6.4 Other important properties of a classi�er

While the precision of a classi�er is an important characteristic, there is a
number of other factors that we must take into account when choosing a
classi�er for our application. Here are some of them:79

� How di�cult is to construct/prepare the classi�er? That is, how com-
plex is the method A? Some classi�ers are based on straightforward al-
gebra, such as the classi�er corresponding to the classical linear discrim-
inant analysis (LDA), others require relatively advanced algorithms to
construct, for example the classi�cation trees (CTs), or classi�cation
forests (CFs). Still other classi�ers need solving a di�cult optimization
problem, a typical examples are the arti�cial neural networks (ANNs).
Note that in the machine learning literature, the process of construction
of the classi�er is informally called training.

� How simple/rapid is the process of classi�cation of new objects once
the classi�er is ready to use? That is, how fast can we evaluate the dis-
criminant functions or �nd the region Ri that contains a given x? Some
classi�ers are fast to apply, for instance the LDA, or the support-vectors
machine (SVM) classi�er. A shallow CT can be applied rapidly even
without a computer. However, some methods require time-consuming

77For simplicity, we assume that n is a multiple of k.
78A common choice is k = 10.
79You may wish to review this list later when you will known details about several kinds

of classi�ers.
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computation to classify new objects (for instance the k-nearest neigh-
bours classi�er, KNN, especially without advanced tricks and for a large
training set).

� How easy or di�cult is to �understand� the inner workings of the classi-
�er? Can we easily summarize the reason why did the classi�er decide
for one or the other class; can we learn something from the classi-
�er? In some methods, such as LDA and CT, we can directly �see�
the classi�cation rule, while the reason for the chosen classi�cation of
some methods, most famously the ANNs, are notoriously di�cult to
understand. In the literature, this problem is called the problem of

interpretability and the classi�ers that are di�cult to understand are
often called black-box classi�ers. The black-box classi�ers are not
suitable for some speci�c applications, for instance if we must be sure
about the robustness or �fairness� of the results.

There are many other considerations when choosing the best classi�er:
Do we require a soft classi�er or a hard one is enough?80 Can the classi�er
be applied only to binary classi�cation or to a multi-class classi�cation?81

Can unequal class frequencies q1, . . . , qm be incorporated into the process of
training of the classi�er? How easy is to update the classi�er if we happen to
obtain new training data? Can the classi�er directly handle the categorical
explanatory variables? Can it deal with missing data (i.e., missing parts of
the feature vector of the object to be classi�ed)? And so on.

In general, the appropriateness of the classi�er strongly depends on var-
ious speci�cs of the application as well as on the training data. It is often
impossible to say in advance which classi�cation method is the best one; we
usually attempt to use several of them and select a well-performing method
empirically. However, a very rough rule of thumb is that the simplest meth-
ods (CT, LDA, linear SVM) should be chosen for small training data with a
simple structure, while huge and complicated training data are best handled
with more complex methods (KNN, CF, ANN).

6.5 Binary classi�cation

An important special case is the binary classi�cation (m = 2). A (hard)
binary classi�er is fully determined by a decomposition R1, R2, where R1 ∪

80For instance the classical CTs are hard classi�ers and it is not completely straightfor-
ward to modify them for soft classi�cation.

81For standard SVM is just for the binary classi�cation, although there exist sophisti-
cated multi-class SVMs.
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R2 = Rp, R1 ∩ R2 = ∅. The boundary between the sets R1 and R2 is called
the decision boundary.

Let us call the two categories �positives� and �negatives�.82 It is usual to
name the elements of the normalized confusion matrix C as follows: C11 is
the true positives rate, C12 is the false negatives rate, C21 is the false
positives rate, and C22 is the true negatives rate.

83 Note that the sum of
the true positive and the false negative rates is q1, i.e., the overall frequency
of the positives in the �population� and the sum of the true negative and the
false positive rates is q2, i.e., the overall frequency of the negatives in the
population.

The ratio of the true positives rate to q1, schematically P (+|+) is called
the sensitivity of the classi�er/test. The ratio of the true negatives rate to
q2, that is, P (−|−), is called the speci�city of the classi�er/test.84

Besides sensitivity and speci�city, there exists a plethora of other mea-
sures of the reliability of a classi�er. We mentioned some of them, in particu-
lar the accuracy, in subsection 6.2. Another popular measure is the Pearson-
Yule phi coe�cient, that is the standard correlation coe�cient calculated
from C seen as the probability mass function of two binary random vari-
ables.85

Let us also mention the so-called �positive predicted value�, or precision,
formally de�ned as C11/(C11 + C21). Precision is analogous to sensitivity:
while sensitivity is the probability that an object will be classi�ed to the
class 1 provided that it is from the class 1, precision is the probability that
an object is from the class 1 provided that it has been classi�ed to the class 1.
A good classi�er has high values of both sensitivity and precision. Therefore,
to quantify the �reliability� of a classi�er by a single number, some researchers

82This is a terminology particularly common in medical applications, where the medical
test is in fact a (physical) classi�er.

83In the Babylon of the machine learning literature, the true positive rate is sometimes
call the �probability of detection� and the false positive rate is called the �probability of
false alarm�. If instead of the normalized confusion matrix we use a non-normalized version,
we simply use the terms true positives, true negatives, false positives, false negatives.

84In some �elds of application, the authors use the term �recall� or �hit rate� instead of
sensitivity and the term �selectivity� instead of speci�city.

85In machine learning literature, this is called the �Matthews correlation coe�cient� in
honour of some Matthews, who reinvented the coe�cient more than half a century later
than Pearson and Yule.
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use the so-called F1-score, which is simply the harmonic mean of sensitivity
and precision.86

For some classi�cation methods, the classi�er is fully determined by a
single discrimination function l de�ned on Rp and a threshold t ∈ R. That
is, the object characterized by x is classi�ed into the �rst category if l(x) ≥ t
and into the second category if l(x) < t.87 Compatible classi�cation regions
are then R1 = {x ∈ Rp : l(x) ≥ t} and R2 = {x ∈ Rp : l(x) < t}. The
decision boundary is then the set {x ∈ Rp : l(x) = t}. If l is linear (and the
sets R1 and R2 are half-spaces and the decision boundary is a hyperplane),
such a classi�er is usually called linear, in the opposite case it is called
non-linear.

Suppose that the function l is known88, but we are allowed to select the
threshold t. By changing t we can obtain a continuum of classi�ers Ct, each
with its own miss-classi�cation rates. Note that if t decreases, the region R1

expands. This means that with decreasing t, the rate of the true positives
increases (ultimately it reaches 1), but the rate of the false positives also
increases (also reaches 1 in the limit).89 Similarly, with increasing t, the rate
of the true positives decreases (ultimately it reaches 0), and the rate of the
false positives also decreases (reaches 0 in the limit).

Let us now make a plot of all points with coordinates �(1 - speci�city, sen-
sitivity)�, formally (C21/q2,C11/q1).90 The set of points will form a curve in
the square [0, 1]× [0, 1] called receiver operating characteristic curve91,
or the ROC curve. Note that the ROC curve will be non-decreasing, it
starts at (0, 0) and ends at (1, 1).92 We can visually inspect the ROC curve
and select the most appropriate t, depending on whether we prefer a high
sensitivity or a high speci�city, or, most likely, a reasonable compromise.
Of course, the theoretically ideal situation is if there is some t for which the
ROC curve hits the point (0, 1), because it signi�es a perfect classi�er. While
this is usually unattainable in practice, this idea inspires a simple method of

86Note that the harmonic mean of two numbers approaches 0 provided that any of the
two numbers approaches 0.

87That is, we can formally de�ne the �rst discriminant function from the previous sec-
tions by l1(x) = l(x)− t and the second one by l2(x) = t− l(x).

88That is, we assume that the classi�cation method at hand provides the function l per
se, not only the partition R1, R2 de�ned by some automatically determined t.

89Since q1 and q2 are �xed, decreasing t implies increasing the sensitivity but decreasing
the speci�city.

90Note again that C21,C11 depend on t, although it is not explicit in our notation.
91The term is so strange because this curve was �rst used by electrical engineers.
92Except for some pathological cases.
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measuring the quality of the set of classi�ers parametrized by the threshold
t (it can be viewed as the quality of the function l itself) by a single num-
ber: compute the area under the ROC curve, abbreviated by AUC. The
closer is AUC to 1, the better overall quality of the classi�er.93

7 Bayes classi�er

7.1 The general Bayes classi�er

The practical performance of our classi�er can be in�uenced by the �cost�
L(i|j) of miss-classi�cation of an object from the class j into the class i. For
example, if L(i|j) is huge94 for some pair of classes i, j, then we should be
very careful about the miss-classi�cation rate Cji.

For the theoretical development, suppose that we know the underly-
ing probabilistic distributions p1, . . . , pm of the feature vectors of objects
from categories 1, . . . ,m, and also suppose that we know the probabilities
q1, . . . , qm of individual classes, that is, qi is the frequency with which we
observe the objects from the class i. In this hypothetical case, it is possible
to construct a theoretically optimal classi�cation rule that takes the costs
L(i|j) into account, which we will call the general Bayes classi�er.

To this end, we use the entire matrix m × m matrix L of losses from
miss-classi�cation, that is Lii =: L(i|i) = 0 for all i and Lij =: L(i|j) > 0 for
i 6= j, which is the loss that we su�er if we classify an object into the category
i, provided that the correct classi�cation of the object is the category j.95

For a �xed discrimination rule R1, . . . , Rm, the probability that an object
from category j will be classi�ed into category i is

P (i|j) =

∫
Ri

pj(x)dx,

therefore the probability of the even �the classi�ed object is from the class j
and, at the same time, it will be classi�ed to the class i� is

Cji = qj

∫
Ri

pj(x)dx.

93The AUC has also a nice probabilistic interpretation, but we will skip it for now.
94Suppose that we have a classi�er that reads the signal from the tra�c lights to inform

an autonomous car. The possible classes are now �green�, �yellow� and �red�. Clearly,
the miss-classi�cation �red → green� incurs potentially catastrophic costs, therefore the
number L(green|red) is very large.

95Note that the matrix L does not need to be symmetric; it is often the case that the
loss L(i|j) is very di�erent from the loss L(j|i) as in the example with the tra�c lights.
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Hence, the mean loss from the classi�er R1, . . . , Rm is

ER1,...,Rm =
m∑
i=1

m∑
j=1

L(i|j) qj
∫
Ri

pj(x)dx.

Surprisingly, it turns out that it is simple to minimize the mean loss ER1,...,Rm

with respect to the choice of the decomposition R1, . . . , Rm, obtaining thus
the theoretical Bayes rule. Indeed, note that

ER1,...,Rm =
m∑
i=1

∫
Ri

hi(x)dx, (24)

where

hi(x) =
m∑
j=1

L(i|j) qjpj(x) for all i = 1, . . . ,m

are �xed functions. Clearly, in order to minimize (24) it is enough to choose
any measurable decomposition R∗1, . . . , R

∗
m satisfying

R∗i ⊆ {x ∈ Rp : hi(x) = min
k
hk(x)} for all i = 1, . . . ,m. (25)

The selection of optimal rule in (25) can be written more explicitly for
two (not mutually exclusive) special cases. First, if m = 2, we can choose96

R∗1 = {x ∈ Rp : h1(x) ≤ h2(x)}
= {x ∈ Rp : q2L(1|2)p2(x) ≤ q1L(2|1)p1(x)}

=

{
x ∈ Rp :

p1(x)

p2(x)
≥ q2L(1|2)

q1L(2|1)

}
, (26)

and R∗2 = Rp \ R∗1. Thus, the binary Bayes classi�cation rule classi�es an
object with features x into category 1 if the likelihood ratio p1(x)/p2(x)
exceeds some �xed threshold determined by the prior probabilities q1, q2 and
losses L(1|2), L(2|1). The likelihood ratio can thus be viewed as the discrimi-

nation function l from Section 6.5 and the term q2L(1|2)
q1L(2|1)

as a threshold chosen

optimally, provided that the aim is to minimize the expected loss.97

96We can choose the class for those x such that h1(x) = h2(x); any such choice leadts
to the optimal, Bayes, classi�er. For simplicity we will also assume that p2(x) > 0 for all
x.

97However, we can also vary the threshold and obtain the ROC as explained in Section

6.5. The threshold t = q2L(1|2)
q1L(2|1) will provide a speci�c point on the ROC.
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Second, assume a general number m of categories with the simplest loses
given by L(i|j) = 1 for i 6= j.98 We obtain from (25) that for any i = 1, . . . ,m:

R∗i ⊆ {x ∈ Rp :
m∑

j=1,j 6=i

qjpj(x) ≤
m∑

j=1,j 6=k

qjpj(x) for all k}

= {x ∈ Rp : qkpk(x) ≤ qipi(x) for all k}
= {x ∈ Rp : qipi(x) = max

k
qkpk(x)}. (27)

That is, for a vector x of features, the Bayes classi�er selects the category
i such that qipi(x) is maximal. Here, the functions qipi can be viewed as
discrimination functions li from Section 6.1.

For this second special case (i.e., L(i|j) = 1 for i 6= j), we can also derive
the same classi�er by the following reasoning. Let Y be the categorical
random variable that represents the class of a generic object to be classi�ed
in the future. Assume that we observe, for a given object, that the random
vector X representing its features attained the vector x ∈ Rp. Then, the
posterior probability of the event [Y = i] is given by the Bayes theorem as

P (Y = i|X = x) =
qipi(x)∑m
k=1 qkpk(x)

. (28)

This means that the (hard) classi�er (27) is exactly the one that selects the
class with the maximum posterior probability; that is why it is also called
the maximum a posteriori classi�er. The functions at the right-hand
side of (28) can be used for the more nuanced information about the class,
i.e., what we called the �soft� classi�er.

In practice we do not know the densities p1, . . . , pm nor the prior proba-
bilities q1, . . . , qm, but we can use several reasonable methods of estimating
the densities99, as well as the prior probabilities.

7.2 Naive Bayes classi�er

The so-called naive Bayes classi�er makes an assumption that all the
variables forming vectors of features are independent.100 In our notation,

98Note that for these simplest losses the minimization of the expected loss ER1,...,Rm
is

the same as the maximization of the classi�er's reliability measure called accuracy. That
is, in this case the Bayes classi�er maximizes the accuracy.

99Often, it is enough to estimate the likelihood ratios pi(x)/pj(x), or the position of the
boundaries of the sets R∗i .
100The independence is understood �conditionally for a given class�, that is, provided

that we know the class of an object, all its p features, i.e., explanatory random variables,
are stochastically independent.
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this means that, for each i the density pi is a product of one-dimensional
marginal densities p

(1)
i , . . . , p

(p)
i :

pi(x1, . . . , xp) =

p∏
`=1

p
(`)
i (x`), for all i = 1, . . . ,m. (29)

Admittedly, the assumption that all the features behave as independent ran-
dom variables is unrealistic in all but the simplest cases. However, as a
practical tool, the resulting classi�er often performs acceptably well and can
be our method of choice, if we prefer simplicity over performance.

The simplicity of the naive Bayes classi�er is based on the fact that we
only need to estimate the marginal densities to obtain an estimate of the
joint density. The marginal densities can be estimated for instance by the
univariate normal distribution

p̂
(`)
i (x`) = f(x` | µ̂i,`, σ̂i,`2), (30)

where f(x | µ, σ2) denotes the density of the univariate normal distribution
with mean µ and variance σ2, and the parameter estimates µ̂i,`, σ̂i,`

2 are
computed in a standard way from the training data.101 This is sometimes
called the Gaussian naive Bayes classi�er. Less coarse estimates of
the marginal densities can be obtained via the so-called kernel density

estimation.

In the literature and in practice, the naive Bayes classi�er is typically
applied with an implicit assumption that L(i|j) = 1 for i 6= j; in that case
(27) implies that the object characterized by x = (x1, . . . , xp) is classi�ed to
the category

i∗ = argmaxi

{
qi

p∏
`=1

p̂
(`)
i (x`)

}
. (31)

Note that it is simple to modify the naive Bayes classi�er as explained above
to the case of discrete (even categorical) features.

7.3 Linear and quadratic discriminant analyses

Another classical simpli�cation is to assume that the densities p1, . . . , pm of
feature vectors are full-blooded multivariate normal, but all with the same,

101That is: take the set of the values of the `-th explanatory variable (the `-th feature)
of all objects from the i-th class. Compute the standard mean and the standard sample
variance of this set of real numbers.
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non-singular variance-covariance matrix Σ. That is,

pi(x) =
exp

(
−1

2
(x− µi)TΣ−1(x− µi)

)
(2π)p/2

√
det(Σ)

for all x ∈ Rp,

where µ1, . . . , µm ∈ Rp are the mean value vectors of distributions p1, . . . , pm.
Under this assumption, the sets R1, . . . , Rm turn out to be (possibly un-
bounded) polyhedrons102. We will describe the case of two categories in
more detail.

Let m = 2. The log-likelihood ratio from (26) is for any x ∈ Rp

ln

(
p1(x)

p2(x)

)
=

1

2
(x− µ2)TΣ−1(x− µ2)− 1

2
(x− µ1)TΣ−1(x− µ1)

= (µ1 − µ2)TΣ−1x +
1

2
µT2 Σ−1µ2 −

1

2
µT1 Σ−1µ1.

Thus, if we denote103 a := Σ−1(µ1 − µ2), b := 1
2
µT2 Σ−1µ2 − 1

2
µT1 Σ−1µ1, and

k := q2L(1|2)
q1L(2|1)

, we obtain that

R∗1 =
{
x ∈ Rp : aTx + b− ln(k) ≥ 0

}
, R∗2 = Rp \R∗1. (32)

We obtain a linear classi�cation rule, i.e., R∗1 and R
∗
2 are half-spaces and the

decision boundary is a hyperplane.

Some special cases of the classi�er (32) are worth a special attention.
First, if the prior probabilities of the two classes are the same, i.e., q1 = q2 =
0.5 and the losses are symmetric, that is, L(1|2) = L(2|1), then k = 1 and
ln(k) = 0 in (32). If, moreover, Σ = σ2Ip for some σ2 > 0, the hyperplane
that sets R∗1 and R∗2 apart passes through the center of mass (µ1 + µ2)/2 of
the mean value vectors µ1, µ2, and is orthogonal to µ1− µ2, i.e., an object is
classi�ed into category 1 (or 2) if its feature vector x is closer to µ1 than to
µ2 (or closer to µ2 than to µ1).

The expression (32) allows us to �nd simple explicit formulas for the
misclassi�cation probabilities P (2|1) and P (1|2). Let X1 ∼ Np(µ1,Σ). Ob-

102In some cases, the optimal choice of R1, . . . , Rm is not unique, but the sets can always
be chosen as polytopes. The situation is, however, markedly di�erent if the variance-
covariance matrices of the normal distributions can be di�erent. In that case, we obtain a
�quadratic� classi�cation rule.
103We assume that µ1 6= µ2.
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serving that aTX1 ∼ N(aTµ1,a
TΣa) we obtain

P (2|1) =

∫
R2

p1(x)dx = P [aTX1 < ln k − b] =

= P

[
aTX1 − aTµ1√

aTΣa
<

ln k − b− aTµ1√
aTΣa

]
= Φ

(
ln k − b− aTµ1√

aTΣa

)
,

where Φ is the distribution function of the standardized normal. Denoting
α =

√
(µ1 − µ2)TΣ−1(µ1 − µ2), which is sometimes called theMahalanobis

distance of µ1 and µ2, we can express the misclassi�cation probability as

P (2|1) = Φ

(
ln k − α2/2

α

)
. (33)

An analogous derivation yields

P (1|2) = 1− Φ

(
ln k + α2/2

α

)
. (34)

Naturally, P (1|1) = 1−P (2|1) and P (2|2) = 1−P (1|2) therefore we can
obtain all 4 elements of C from Cij = qiP (j|i) .

As an interesting exercise related to m ≥ 3, one can show that for the
special case of L(i|j) = 1 for i 6= j and Σ = σ2Ip, the classi�cation sets
Ri are the Voronoi cells of the expected value vectors µ1, . . . , µk. That is,
the corresponding classi�er selects the category for x based on the nearest
expected value vector.

In practice, the parameters µ1, . . . , µm and Σ are estimated from the
training set as follows: µ̂i is the mean of the feature vectors assigned to the
class ci in the training set and S, the estimate of Σ is pooled from the
matrices S1, . . . ,Sm via

S =
(n1 − 1)S1 + . . .+ (nm − 1)Sm

n1 + . . .+ nm −m
,

where ni is the number, and Si is the sample covariance matrix of the objects
assigned to the class ci in the training set.104

104Note once again that here we assume that the covariance matrices of all feature dis-
tributions pi are the same. We also assume that each class has at least 2 representatives
in the training set.
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Even if the assumptions of normality are not satis�ed105, this approach
provides some classi�er which may perform reasonably well; we can estimate
its miss-classi�cation rates using the methods from Section 6.3.106

The methods described above lead to the so-called Linear discriminant
analysis (LDA). More complex classi�cation methods can be obtained by
relaxing the rather stringent assumptions of multivariate normality with the
same covariance matrix. For instance, we can assume that the classes have
non-unique covariance matrices, i.e., the data are generated form a general
mixture of normals. Then we obtain the method called the Quadratic dis-
criminant analysis (QDA). Here, we separately estimate the means as well
as covariance matrices of the explanatory vectors of each class. In the QDA
the classi�cation regions R1, . . . , Rm are in general no longer polytopic, not
even in the binary case (m = 2).107

7.4 K nearest neighbours

K nearest neighbours (KNN) is a simple but powerful approach to construct-
ing a classi�er: the object with features x is classi�ed according to the classes
of the k objects of the training set that have features closest to x. More pre-
cisely, for each feature vector x to be classi�ed, the KNN classi�er �nds the
k closest vectors xi1 , . . . ,xik from the training set, and classi�es x to the
class which occurs most frequently in the set ci1 , . . . , cik ;

108 we call this the
majority vote. The idea is very simple, but (for a large training set) it may
be exceedingly time consuming to �nd the k nearest neighbours for a given
x.109

It is useful to view the KNN as a method inspired by the Bayes classi-
�cation rule. In its simplest multi-class form (L(i|j) = 1 for all i 6= j and
qi = 1/m for all i), the Bayes rule (27) says: for x choose the category j with
maximal pj(x). If the training set is approximately balanced with respect

105Which is usually the case in real applications.
106If we have a binary classi�cation problem and we are sure about the theoretical as-

sumptions, we can use µ̂i and S to estimate the Mahalanobis distance of µ1 and µ2, and
then use the formulas (34) and (33) to estimate the probabilities of false classi�cation.
107Convince yourself that if Σ1 6= Σ2 then ln(p1(x)/p2(x)) is a quadratic form in x.
108If there are several classes that are most frequent in the set ci1 , . . . , cik , we select one

at random. In the binary classi�cation, we can choose k to be an odd number, to avoid
such �ties�.
109There are methods of how to signi�cantly seed up the search for the k-nearest neigh-

bours, especially if we allow occasional errors in their identi�cation. This is a fascinating
topic from the point of view of computer science, but we will skip it.
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to the classes,110 the KNN is a straightforward method of estimating exactly
this - which class has the largest density of features in the point x.111

8 Classi�cation trees

The underlying structure of a standard classi�cation tree112 is that of a di-
rected rooted binary113 tree. There are two main categories of nodes of the
classi�cation tree: non-terminal nodes and terminal nodes. Each non-
terminal node is a parent of exactly two descendants, and each node has
exactly one parent, except for the root node, which has no parents114. To
each non-terminal node we assign a condition (sometimes called a split) in-
volving values of a single variable. Moreover, we assign the label �True� to
one of the two edges emanating from the non-terminal node, and the label
�False� to the other one. To each terminal node we assign a class label from
{1, . . . ,m}, where m is the number of classes.115

The process of classi�cation of an object using a classi�cation tree starts
in the root node. The object is then passed down the tree via a path di-
rected by the validity (or non-validity) of the conditions in the non-terminal
nodes, until the terminal node is hit. The object is assigned to the class
corresponding to the label of the terminal node.

Geometrically, the resulting classi�cation R1, . . . , Rm is formed by p-
dimensional polytopic sets (some of them unbounded) with (p−1)-dimensional
facets perpendicular to the basic unit vectors e1, . . . , ep.

110That is, all classes have approximately same number of objects in the training set.
111Try to invent alternative methods for predicting which class has the largest density in

x. Use the optimal Bayes classi�er to modify the basic KNN to take the probabilities qi
or the miss-classi�cation costs Cij into account.
112A classi�cation tree is a special case of the structure called a decision tree.
113There exist non-binary classi�cation trees but we will omit them in this text.
114Most often, the root node is non-terminal, but for some extreme cases the root node

can be terminal, i.e., the classi�cation tree classi�es every object into a single category.
115Each terminal node can be assigned a more nuanced output information, for instance

frequencies of classes, e�ectively resulting in the classi�er which we call �soft�. Here we
will only consider the classi�cation trees that assign just a single class to each terminal
node.
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8.1 Constructing a classi�cation tree using recursive par-

titioning

The construction of a classi�cation tree is based on the objects in the training
set, that is, objects with known true/correct classi�cations. We will say that
a node τ (of a completely or partially constructed tree) �contains� a training
set object, if the classi�cation of the training object passes through τ .

The standard procedure for creating a classi�cation tree is called growing
or recursive partitioning116 and can be outlined as follows:

1. Create a new �empty� node τ which is either the root node or a descen-
dant of an existing non-terminal node.

2. Decide whether τ should be terminal or non-terminal. The node is
declared to be terminal if it contains only objects of a single class, or if
it contains less than some critical number of training objects, or if the
node reached a pre-speci�ed depth (distance from the root node).

3. If τ is terminal, assign a class label to τ . The class label is usually
assigned based on the majority vote, i.e., the class label is the most
frequent label of the objects contained in τ .117

4. If τ is non-terminal, assign a condition to τ . The common strategy of
this step is:

(a) Create a �nite number of possible conditions that could be as-
signed to the node τ .

(b) De�ne a �discrimination quality� of each of the conditions for τ
(sometimes called the goodness of split) and then select the best
condition.

Step 4(a) is an easy one, and can be completed before the algorithm is
started. For each variable Xi, i = 1, . . . , p, do the following:

� If Xi is quantitative or ordinal, select a �nite number of thresholds θ
(j)
i ,

j = 1, . . . , ni, and add ni conditions Xi < θ
(1)
i , . . . , Xi < θ

(ni)
i to the

pool of all permissible conditions.

116Naturally, we could formulate an optimization problem implicitly de�ning an �optimal�
classi�cation tree; recursive partitioning can then be viewed as a �greedy� method to obtain
a possibly sub-optimal but practically often useful classi�cation tree.
117Of course, the method for assigning the class to the terminal node can also take the

expected frequencies of the classes and the miss-classi�cation costs into account.
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� If Xi is nominal with possible values from a �nite set Mi, add a system
of conditions of the form Xi ∈M (j)

i , j = 1, . . . , ni, where ni = 2|Mi|−1−
1, such that ∅,M (1)

i , . . . ,M
(ni)
i ,M \M (1)

i , . . . ,M \M (ni)
i ,M are all 2|M |

subsets of M .

Thus, we obtained
∑p

i=1 ni permissible conditions to be assigned to τ . The
more di�cult question is how to construct a natural measure of the discrim-
ination quality of each condition in the node τ .

Let CND be a �xed condition from the pool of all conditions permissible
for a non-terminal node τ . Temporarily, assume that CND is assigned to τ .
As the node τ is non-terminal, it will have two descendants, let us denote
them as τL and τR. Suppose that all objects that satisfy CND at τ will be
directed to τL and all objects that do not satisfy CND at τ will be directed
to τR. For the sake of simplicity, we will assume that we only have two classes
of objects - CLS1 and CLS2 (i.e., m = 2). De�ne the following numbers
based on the training set118:

� n∗∗ is the total number of objects that pass through τ .

� n∗1 is the number of objects of CLS1 that pass through τ .

� n∗2 is the number of objects of CLS2 that pass through τ .

� n1∗ is the number of objects contained in τ that satisfy CND (i.e., they
will be directed to τL).

� n2∗ is the number of objects contained in τ that do not satisfy CND
(i.e., they will be directed to τR).

� n11 is the number of objects of CLS1 that satisfy CND.

� n12 is the number of objects of CLS2 that satisfy CND.

� n21 is the number of objects of CLS1 that do not satisfy CND.

� n22 is the number of objects of CLS2 that do not satisfy CND.

A useful measure of the goodness of the split CND at τ can be de�ned
as

ι(τ)− pLι(τL)− pRι(τR), (35)

where pL = n1∗
n∗∗

, pR = n2∗
n∗∗

, and ι(τ), called an impurity index is, loosely
speaking, a measure of how unclear the classi�cation would be provided that

118Draw a contingency table for a clari�cation.
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τ is a terminal node (similarly ι(τL) and ι(τR)). Two common measures of
impurity are the entropy index and the so-calledGini index. The entropy
index is de�ned as:

ι(τ) = −n∗1
n∗∗

log2

n∗1
n∗∗
− n∗2
n∗∗

log2

n∗2
n∗∗

.

Observe that ι(τ) is in fact the entropy of the discrete random variable that
attains two values with probabilities n∗1

n∗∗
and n∗2

n∗∗
. If one of the numbers n∗1

n∗∗

is equal to 1 (and the other number is equal to 0119), then the impurity ι(τ)
is 0. That is, if all objects in τ are from the same class, it has the minimal
possible impurity. On the other hand, if n∗1

n∗∗
= n∗2

n∗∗
= 1/2 then the impurity

ι(τ) attains its maximal possible value.

Analogously, we set

ι(τL) = −n11

n1∗
log2

n11

n1∗
− n12

n1∗
log2

n12

n1∗
,

ι(τR) = −n21

n2∗
log2

n21

n2∗
− n22

n2∗
log2

n22

n2∗
.

For the Gini index, the impurities are de�ned by numerically somewhat sim-
pler formulas that approximate the entropy:

ι(τ) = 1−
(
n∗1
n∗∗

)2

−
(
n∗2
n∗∗

)2

,

ι(τL) = 1−
(
n11

n1∗

)2

−
(
n12

n1∗

)2

,

ι(τR) = 1−
(
n21

n2∗

)2

−
(
n22

n2∗

)2

.

Hence, the condition CND∗ that maximizes (35) is the one that splits
the relevant training set objects into two subsets, such that the classi�cation
in these two subsets would be �as clear-cut as possible�.

8.2 Pruning of a classi�cation tree

An e�cient strategy of building a classi�cation tree is to grow a �large� tree
Tmax and then reduce the size of Tmax using the process called pruning.
The basic idea is to de�ne a pruning measure of any subtree T of Tmax as
follows:

Rα(T ) = Rerr(T ) + α×#T,

119By continuity, we de�ne 0 ln(0) = 0.
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where Rerr(T ) is the re-substitution estimate of the misclassi�cation rate of
T , the symbol #T denotes the number of terminal nodes of T , which serves
as a measure of the size of the tree, and α ≥ 0 is the so-called complexity
parameter.

For each α, there is one or more �optimal� subtrees of Tmax that minimize
Rα(T ). For α = 0, the optimal tree is T0 := Tmax itself and for a very large
α, the optimal tree is TM containing only the root node. By continuously
increasing the values of α from 0120, we can construct a sequence of optimizing
trees T0, T1, . . . , TM such that Ti is a subtree of Ti−1 for all i = 1, . . . ,M (such
a sequence of trees is called nested). From the set T0, T1, . . . , TM we choose
the �nal tree using, for instance, some form of cross-validation.

8.3 Bagging and classi�cation forests

Ensemble methods121 combine several individual classi�ers into an aggre-
gate classi�er. The most important classes of such methods are bagging122

and boosting. In this subsection we will brie�y discuss the general method
of bagging and a closely related technique of random forests, specialized
to combine and improve the performance of tree classi�ers.

The idea of bagging is as follows. We will construct B123 classi�ers
C1, . . . ,CB, based on randomly selected subsets124 (X1, c1), . . . , (XB, cB) of
the full training dataset (X, c). If x is the feature vector of a new object to
be classi�ed, we classify x by each of the B classi�ers, and base the resulting
�ensemble� classi�cation of x on the majority vote. That is, the classi�ca-
tion of the object x is the class that occurs most frequently in the set of
classes predicted by individual classi�ers C1, . . . ,CB. Bagging improves the
performance in particular if the method of construction of the underlying
classi�ers is �unstable�, i.e., if small perturbations of the training set result
in highly variable classi�ers. Bagging is typically, but not necessarily, applied
to classi�cation trees.

It turns out that the performance of bagging � if applied to classi�cation
trees � can be improved by a surprising additional trick: Each split of each
bootstrap classi�cation trees (X1, c1), . . . , (XB, cB) is based only on a random
subset of all explanatory variables (predictors, features, etc). Usually about

120In a process that requires many technical details that we skip in this text.
121Sometimes a fancy term of �committee machines� is used.
122The word is an abbreviation of the expression �bootstrap aggregating�.
123B is typically chosen to be a few thousands.
124We use sampling with replacement.
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√
p of explanatory variables are randomly selected as candidates for each

split. It turns out that this trick makes the individual trees �less correlated�,
or more �diverse�, and generally improves the overall performance of the
classi�cation. The resulting classi�er is called a random forest.

By using bagging or random forests, we loose the simplicity and inter-
pretability of classi�cation trees, but often achieve a classi�er with much
better performance.

8.4 Boosting

Boosting refers to the methods which combine �weak� classi�ers C1, . . . ,CB
into one �strong� classi�er. These weak classi�ers are often, albeit not always,
classi�cation trees. In contrast to bagging, the construction is sequential,
adding one weak classi�er at a time in an optimal way.125

Here we will explain the classical version of the method Adaboost.126

Suppose that our underlying weak classi�ers C1, . . . ,CB are binary, and, for
any j = 1, . . . , B, the classi�er Cj is determined by the discrimination func-
tion kj : Rp → {−1,+1}.127 We will also assume that every weak classi�er
classi�es at least one object incorrectly and at least one object correctly.128

We will sequentially construct a sequence S1, S2, . . . of binary classi�ers with
increasing strength,129 which will be represented by discrimination functions
l1, l2, . . ..

130

The initial classi�er S1 is given by ls = ks for some s ∈ {1, . . . , B}, i.e.,
S1 is just one of the weak classi�ers. Now, suppose that, for a �xed t ≥ 2,
we have already constructed St−1 determined by its discrimination function

125Other di�erences between boosting and bagging include: 1) the same classi�er can be
added more than once; 2) the resulting classi�er is not based on the majority vote of the
weak classi�ers, but rather on a special linear combination of the discrimination functions
of the weak classi�ers. This will be clari�ed next.
126From �adaptive boosting�.
127That is, we will denote the classes by the labels −1,+1. This provides a more con-

venient notation in mathematical formulas, similarly to the support vector machines de-
scribed in the next section. Note also that the classi�ers C1, . . . ,CB are �hard�; they do
not provide nuanced degrees of belief about the class of a classi�ed object.
128Otherwise, the weak classi�er would not be weak, or it would be completely useless.

Also, these two assumptions lead to a smoother mathematical derivation of Adaboost.
129We will repeat this process a given number of iterations or until some other stopping

criterion is satis�ed.
130In the sense that the sign of lt(x) determines the class of the object characterized by

x ∈ Rp, assigned to the object by St.
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lt−1. The main idea of Adaboost is to construct the next classi�er St such
that its discrimination function is

lt(x) = lt−1(x) + αk(x), x ∈ Rp,

and both α ∈ R and k ∈ {k1, . . . , kB} are selected to minimize some �error
measure� of St. A simple and practically e�cient error measure of St is

Et :=
n∑
i=1

exp(−yilt(xi)). (36)

In (36), yi is the correct classi�cation of the training object i. Note that
if St correctly classi�es i, then the contribution of exp(−yilt(xi)) to Et is
negligible with |lt(xi)| → ∞, and if St incorrectly classi�es i, the contribution
of exp(−yilt(xi)) to Et is enormous if |lt(xi)| → ∞.

We will express Et in a form which makes the dependence of the error on
α and k more explicit. First, de�ne the weights

w
(t)
i = exp(−yilt−1(xi))

for all objects i. The weights are strictly positive numbers, known at the
stage of construction of St.

131 Next, for any k ∈ {k1, . . . , kB} let Q(k)
yes be the

set o� all objects i for which k(xi) = yi and let Q
(k)
no be the set o� all objects

i for which k(xi) 6= yi.
132 Using this notation we have

Et =
n∑
i=1

exp(−yilt−1(xi)) exp(−yiαk(xi))

=
n∑
i=1

w
(t)
i exp(−yiαk(xi))

=
∑
i∈Q(k)

yes

w
(t)
i exp(−yiαk(xi)) +

∑
i∈Q(k)

no

w
(t)
i exp(−yiαk(xi)).

At this point, we notice that yik(xi) = 1 for all i ∈ Q(k)
yes, and yik(xi) = −1

for all i ∈ Q(k)
no , hence

Et =


∑
i∈Q(k)

yes

w
(t)
i

 e−α +

∑
i∈Q(k)

no

w
(t)
i

 eα. (37)

131They are known because at this stage the discriminant function lt−1 is already known.
132Note that for any k both Q

(k)
yes and Q

(k)
no are non-empty, which is a consequence of

the technical assumption from the introduction of this subsection: each weak classi�er
classi�es at least one object correctly and at least one object incorrectly.
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Now, we need to minimize (37) with respect to the choice of α ∈ R and
k ∈ {k1, . . . , kB}. For simplicity, denote the sums of the weights in (37) as

w(k)
yes :=

∑
i∈Q(k)

yes

w
(t)
i and w(k)

no :=
∑
i∈Q(k)

no

w
(t)
i .

An important observation is that for any �xed k the function α→ w
(k)
yese−α+

w
(k)
no eα on the right-hand side of (37) is smooth and strictly convex on R,

converging to ∞ for α → ∞ as well as for α → −∞;133 such a function has
a unique minimum on R given by134

α(k) =
1

2

(
ln
(
w(k)
yes

)
− ln

(
w(k)
no

) )
.

We can therefore compute all values Et = Et(k, α
(k)), k = k1, . . . , kB,

135

and select the smallest one. The arguments of the smallest Et(k, α
(k)) provide

the optimal weak classi�er k∗ and the corresponding optimal coe�cient α∗.

We remark that typically we have α(k∗) > 0, which is equivalent to w
(k∗)
yes >

w
(k∗)
no ; that is because the classi�ers k, albeit weak, still usually classify the

majority of objects correctly. In the case α(k∗) > 0 we can characterize k∗

more explicitly. To this end, note that (37) with k = k∗ and α = α(k∗) can
be rewritten to the form

Et =
n∑
i=1

w
(t)
i e
−α(k∗)

+ w(k∗)
no

(
eα

(k∗) − e−α(k∗)
)
. (38)

Now, α(k∗) > 0 implies that eα
(k∗) − e−α

(k∗)
> 0, therefore k∗ must be a

weak classi�er which provides the minimum value of w
(k)
no .136 In words, the

optimal weak classi�er k∗ to be incorporated into St−1 is typically the one

which minimizes the sum of the weights w
(t)
i of all points i which it classi�es

incorrectly. Note that the weights w
(t)
1 , . . . , w

(t)
n represent a measure of how

�di�cult� the objects i = 1, . . . , n are for the classi�er St−1. Hence, the
weak classi�er k∗ to be added is, roughly put, the one which classi�es the

133Strict convexity follows from the positivity of the coe�cients w
(k)
yes, w

(k)
no and from the

strict convexity of the functions α → e−α, α → eα. The limit properties also follow from

the positivity of both w
(k)
yes and w

(k)
no .

134It is a simple exercise in calculus.
135Let us emphasize that this is only B simple to compute values.
136We can see this by contradiction. Let there be some kx, such that w

(kx)
no < w

(k∗)
no .

Then the pair k = kx, α = α(k∗) would provide a smaller value of Et than the pair k = k∗,
α = α(k∗), i.e., the pair k = k∗, α = α(k∗) is not the minimizer of Et.
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most problematic objects correctly, and the better k∗ is with respect to this
measure of di�culty, the larger is the coe�cient α(k∗).

The classi�er based on AdaBoost usually performs better than any of
the individual weak classi�ers, especially when the weak classi�ers are only
slightly better than the toss of a coin, or when the weak classi�ers �comple-
ment� each other.

9 Support vector machines

Support vector machines (SVMs) are binary137 classi�ers based on a series
of ingenious mathematical ideas as explained in the following subsections.

We will consider a training sample with feature vectors x1, . . . ,xn ∈ Rp

and corresponding classi�cations c1, . . . , cn ∈ {−1,+1},138 such that none of
the feature sets C− := {xi : ci = −1} and C+ := {xi : ci = +1} is empty.

9.1 Linear support vector machines

Assume �rst that the objects included in the training set are linearly sep-

arable,139 which means that the convex hulls of the feature sets C− and C+

are disjoint. An equivalent de�nition of linear separability is

ci = −1 ⇒ βT1 xi + β0 < 0, and

ci = +1 ⇒ βT1 xi + β0 > 0

for all i = 1, . . . , n and some β = (β0, β
T
1 )T ∈ Rp+1, where 0p 6= β1 ∈ Rp,

there exists a hyperplane

H0
β := {x ∈ Rp : βT1 x + β0 = 0}

137Multi-class SVMs do exist, but the fundamental principle of the SVMs pertains to
binary classi�cation. One general approach to applying a binary classi�cation method to
a problem with K > 2 classes is called one-vs-one: we construct a collection of

(
K
2

)
binary classi�ers between all pairs of classes. A new observation x is classi�ed by all of
the binary classi�ers from the collection. The classi�cation of x is then chosen to be the
one that occurs most frequently in the results of these binary classi�cations.
138In the theory of SVMs, the two classes are usually labelled −1 and +1 because it

permits a more compact statement of the mathematical formulas and results compared to
the standard class notations {0, 1} or {1, 2}.
139In applications, the objects of the training set are usually not linearly separable, but

the linearly separable case serves as a springboard to more practical (linearly non-separable
and non-linear) versions of the SVMs.
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that �separates� C− and C+. Such a separating hyperplane is a natu-
ral boundary between the classi�cation regions R−1 and R+1 of the linear
classi�er that we wish to construct.

Note, however, that in the linearly separable case there is an entire con-
tinuum of separating hyperplanes. The fundamental principle of the SVMs
is to base the classi�cation on the so-called maximum-margin separating
hyperplane H0

β∗ . More precisely, de�ne the margin of a hyperplane H0
β as

dβ := min
i=1,...,n

ρ(H0
β,xi),

where ρ(H0
β,xi) is the Euclidean distance between H0

β and xi.
140 The op-

timal β∗ = (β∗0 , (β
∗
1)T )T ∈ Rp+1 is then chosen to maximize dβ subject to

the condition that H0
β is a separating hyperplane.141 This fully de�nes the

optimization problem that we need to solve, but the key question is whether
we can solve it e�ciently enough to be applied to practical problems. We
will show that it is indeed the case.

The points xi that are closest to H0
β∗ are called support vectors and

they play a key role in our optimization problem. Formally, xi∗ is a support
vector if and only if

ρ(H0
β∗ ,xi∗) = min

i=1,...,n
ρ(H0

β∗ ,xi) (= dβ∗).

For a �xed β∗, the distance between x andH0
β∗ depends only on |(β∗1)Tx+β∗0 |,

since142

ρ(H0
β∗ ,x) =

|(β∗1)Tx + β∗0 |
‖β∗1‖

.

Because H0
β∗ is a maximum-margin separating hyperplane, it resides exactly

in the middle between the support vectors from the two opposite classes.
Thus, there exists some common ε > 0 such that

ci = −1 ⇒ (β∗1)Txi + β∗0 ≤ −ε (39)

ci = +1 ⇒ (β∗1)Txi + β∗0 ≥ ε, (40)

140Margin can be de�ned in many ways to serve the purpose of introducing the SVMs.
Here we de�ne it simply as the distance of H0

β to the nearest feature vector.
141This �geometric� de�nition already provides some useful insights into the properties of

the SVMs. For instance, we see that the SVM classi�er can be robust with respect to even
extreme outliers. Moreover, the separating hyperplane is unique and well de�ned, even if
n < p. These favourable properties are also inherited by the more complex versions of the
SVMs that we will study next.
142You may recall this formula from the class on analytic geometry in the high school.

61



Multivariate Statistical Analysis: Selected Lecture Notes, Radoslav Harman

for all i = 1, . . . , n, and the equalities are attained for the support vectors.
Consequently,

dβ∗ = min
i=1,...,n

|(β∗)T1 xi + β∗0 |
‖β∗1‖

=
ε

‖β∗1‖
. (41)

Thus, to �nd the maximum-margin hyperplane, it is enough to �nd β∗ =
(β∗0 , (β

∗
1)T )T ∈ Rp+1 and ε > 0 that solve the problem: maximize (41) subject

to both (39) and (40).143 However, if (β∗, ε) is a solution to this problem,
then (β∗/ε, 1) is also a solution to the same problem,144 therefore it su�ces
to consider the problem for the �xed value of ε, e.g., ε = 1. Finally, note that
maximizing 1/‖β∗1‖ is the same as minimizing ‖β∗1‖2 and the pair (39) and
(40) of inequalities for ε = 1 can be compactly written as ci((β

∗
1)Txi+β

∗
0) ≥ 1.

Therefore, to �nd a maximum-margin separating hyperplane, it is enough
to compute a solution β∗ to the following problem of linearly constrained
quadratic programming:

min
β0∈R,β1∈Rp

‖β1‖2

s.t. ci(β
T
1 xi + β0) ≥ 1, i = 1, . . . , n. (42)

This problem is still not computationally trivial, but it is a convex opti-
mization problem145 which can be solved by robust and e�cient solvers of
mathematical programming. The linear classi�er which we obtain by this
method in the case of linearly separable classes is called the maximum-
margin classi�er.

If the class sets C− and C+ are not linearly separable, the constraints
(42) do not admit any feasible solution.146 In such a case, the idea of how to
proceed is to accept violations of the constraints, which is sometimes called
the soft margin solution. One speci�cation of the soft margin solution is to
quantify the violation of the constraints via new non-negative variables, the
so-called slack variables ξ1, . . . , ξn; that is, we replace (42) with ci(β

T
1 xi +

β0) ≥ 1 − ξi, i = 1, . . . , n. However, the violation should be as small as
possible, which can be forced by adding a penalty term to the objective

143Note that the feasible set for β∗ determined by (39) and (40) does not include the
zero vector.
144This is the same as the observation that H0

β∗ , as a set of points, does not change if we
divide β∗ by the positive ε.
145That is, we minimize a convex function over a non-empty convex set. We remark that

the optimization of the parameters of a classi�er is a highly non-convex problem for some
alternative methods (such as the arti�cial neural networks).
146Note that the feasible set (42) is non-empty if and only if the objects of the training

set are linearly separable.
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function. The standard choice of the penalty term is C
∑n

i=1 ξi,
147 where

C > 0 is a tuning parameter chosen by the user of the method. The
resulting optimization problem is

min
β0∈R,β1∈Rp,ξ1≥0,...,ξn≥0

‖β1‖2 + C

n∑
i=1

ξi

s.t. ci(β
T
1 xi + β0) ≥ 1− ξi, i = 1, . . . , n. (43)

This optimization problem has always a feasible solution and it is still a
problem of linearly constrained quadratic programming, i.e., not that di�cult
to numerically solve even for relatively large p and n.148 Now, the optimal
β∗ will not de�ne a separating hyperplane (there is no such hyperplane in
the linearly non-separable case), yet the hyperplane H0

β∗ forms a reasonable
boundary of the classi�cation sets R−1 and R+1.

9.2 Nonlinear support vector machines

The practical usability of the linear SVMs is limited to less complex data.
Nevertheless, there exists a simple trick of utilizing a linear classi�cation
method for constructing a non-linear classi�er. The idea is to transform the
features via a non-linear transformation149 φ into a new feature space150, and
construct a linear classi�er in that new feature space.151

For instance, suppose that we replace the original feature vectors xi
with new feature vectors φ(xi) := (xTi , ‖xi‖2)T . Now, if R̃−, R̃+ is the
classi�cation-set representation of a linear classi�er152 in the new feature
space Rp+1 then the corresponding classi�cations sets in the original space,
i.e., R− = {x ∈ Rp : φ(x) ∈ R̃−} and R+ = {x ∈ Rp : φ(x) ∈ R̃+}, are
147The penalty term should be as simple as possible; with an overcomplicated penalty

term, we could render the resulting optimization problem hard to solve.
148However, what is usually really solved is a dual problem which we formulate in the

next subsection.
149This transformation is sometimes called a feature map in the machine learning lit-

erature.
150For the applications to the SVMs, the new feature space must be a Hilbert space, i.e.,

a linear vector space with a scalar product 〈·, ·〉. Usually, the dimension of the new feature
space is larger than p, often in�nite.
151This trick can be applied to many linear classi�ers; however, the SVM classi�er is

constructed such that it admits an e�cient computation, even if the new feature space is
huge.
152That is, R̃− and R̃+ are complementary half-spaces.
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separated by a non-linear manifold. That is, the corresponding classi�er is
non-linear.153

This idea can be used to transform the linear SVMs to non-linear SVMs.
Using the duality theory of convex optimization154 it is possible to charac-
terize the solution of (43) via an alternative problem of quadratic optimiza-
tion as follows.

Theorem 9.1. Let C > 0, let β∗ = (β∗0 , (β
∗
1)T )T be the solution of (43) and

let H be an n× n matrix with elements Hij = cicjx
T
i xj, i, j = 1, . . . , n. Let

α∗ ∈ Rn be the solution to the following optimization problem

max
α∈Rn

n∑
i=1

αi −
1

2
αTHα

s.t.
n∑
i=1

ciαi = 0, 0 ≤ αi ≤ C, i = 1, . . . , n. (44)

Then

β∗1 =
n∑
i=1

ciα
∗
ixi, and

β∗0 = cj − xTj β
∗
1 for any j such that 0 < α∗j < C.

Note that the matrix H from Theorem 9.1 is non-negative de�nite155

therefore the problem (44) is again one of linearly constrained quadratic
programming.156 However, the really key observation is that the problem
(44) is based only on the mutual scalar products xTi xj between the feature
vectors, in the sense that even if we do not know the actual feature vectors,
but we do know the mutual scalar products of these vectors, we can solve
(44). Speci�cally, the problem itself does not depend on the dimension p of
the features.

To compute the parameter β∗ of the hyperplane forming the decision
boundary between R− and R+ requires that we know the feature vectors

153Which geometric object corresponds to the boundary between R− and R+?
154The theory of duality is challenging to the extent that it is better suited for theoretical

lectures on convex optimization. We will thus skip the proof of the following theorem.
155H is a matrix of all scalar products of the set of vectors c1x1, . . . , cnxn, that is, it is

the so-called Gram matrix.
156Note also the strict inequalities in the formula for β∗0 . In fact, the vectors xj such that

0 < α∗j are called �support vectors� for this �soft margin� solution, although the geometric
meaning is less clear than in the linearly separable situation.
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xi themselves. However, for all practical purposes we do not in fact need
to know β∗ itself; we only need to be able to classify new feature vectors
x ∈ Rp into R− or R+. That is, we need to be able to decide whether the
value f(x) = (β∗1)Tx + β∗0 of the discrimination function corresponding to
the separating hyperplane H0

β∗ is negative or positive. But (for any j such
that 0 < αj < C) we have

f(x) = (β∗1)Tx + β∗0 =
n∑
i=1

ciα
∗
ix

T
i x + cj −

n∑
i=1

ciα
∗
ix

T
j xi.

Hence, the value of f(x) is also fully determined by the scalar products xTi x
and xTj xi on the feature space.

Now, let us recall that one method of performing non-linear classi�cation
is to �rst construct an auxiliary linear classi�er based on φ(x1), . . . , φ(xn)
for some non-linear feature map φ, and then base the classi�cation of x on
how φ(x) would be classi�ed via this linear classi�er. Based on Theorem
9.1 and the explanation above we see that in order to use the linear SVM
classi�er in the role of this auxiliary linear classi�er, we only need to be able
to compute the scalar products 〈φ(x), φ(y)〉 for any x,y ∈ Rp. We do not
need to explicitly compute the vectors φ(x) at all. We do not even need to
know explicitly the new feature space (the codomain of φ).

The usual method of non-linear SVM classi�cation is thus to use just a
kernel function157 K(x,y) equal to the scalar product 〈φ(x), φ(y)〉 of a
function φ.158 The feature map φ is typically not explicitly stated (nor is
the Hilbert space codomain of φ).159 The standard choices of such kernel
functions are the so-called Gaussian kernel160

K(x,y) = exp

(
−‖x− y‖2

2σ2

)
and the polynomial kernel

K(x,y) =
(
xTy + c

)d
,

157Some literature uses the term �support vector machine� only if the classi�er uses the
kernels. The less advanced versions are then called just a �support vector classi�er�.
158In fact the features x do not even need to be real-valued vectors (they can be for

instance text strings) provided that we have a method (more speci�cally, a kernel) that
produces scalar products between pairs of objects.
159Of course, φ and the Hilbert space do exist; we just do not need to explicitly know

them for practical purposes.
160Gaussian kernel is sometimes called the radial basis kernel.
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but there are many other types of kernels. The values σ > 0, c ≥ 0, d ∈ N
represent tuning parameters and the software that computes the non-linear
SVMs usually allows the user to choose them, similarly to the parameter
C.161

Note that despite the fact that we implicitly work with possibly in�nite-
dimensional transformed features φ(x), the size of the quadratic problem
from theorem 9.1 is only given by the number n of objects in the training
set. However, to construct the problem we need to pre-compute the elements
Hij = cicjK(xi,xj) which can take much time if the dimension p is large;
therefore, the computational complexity is not completely independent of p.
For the evaluation of the discriminant function f(x), the additional compu-
tation of the kernel values K(xi,x) is required. Nevertheless, the number of
non-zero α∗i 's tends to be much smaller than n in practical problems, and, to
classify x, we need to compute the correspondingly smaller number of values
K(xi,x).

To summarize, SVMs are classi�cation methods that allow for complex,
non-linear separation of classes, yet they can be e�ciently computed via
methods of quadratic convex optimization.

161The choice of these so-called hyper-parameters is usually based on the grid-search
exploration of the empirical performance of the resulting classi�ers. Observe also that if
we choose c = 0 and d = 1 in the polynomial kernel, we have K(x,y) = xTy. In this case
the mapping φ is in fact linear - the identity.
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