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1 Introduction

I did not use any particular book or paper to prepare this classroom material;
everything here is simple to derive from the basic theorems of calculus and
probability. However, it is possible to find much published information on the
gamma distribution; see, for instance, the book by Balakrishnan and Nevzorov
(ISBN: 978-0-471-42798-8) for an introduction and the book by Johnson, Kotz
and Balakrishnan (ISBN: 978-0-471-58495-7) for details.

For the definition of the gamma distribution we will need the gamma function
Γ : (0,∞)→ R:

Γ(z) =

∫ ∞
0

xz−1e−xdx.

It is simple to show that Γ(z) = (z − 1)! for all z ∈ N. That is, the gamma
function can be viewed as an extension of the function z → (z − 1)!, z ∈ N,
to (0,∞)1. Some properties of the gamma function used in probability and
statistics:

� Γ(z) =
∏k
j=1(z − j)Γ(z − k) for z > k ∈ N, in particular

� Γ(z) = (z − 1)Γ(z − 1) for z > 1;

� Γ(z + (1/2)) = (2z − 1)!!
√
π/2z for z ∈ N, in particular

� Γ(1/2) =
√
π, Γ(3/2) =

√
π/2;

� Γ(z + 1) ≈
√

2πz(z/e)z for large z, called Stirling’s approximation;

�

Γ(z1)Γ(z2)
Γ(z1+z2) =

∫ 1

0
xz1−1(1− x)z2−1dx for any z1, z2 > 0.2

Also, since probability and statistics is closely related to geometry, we often use
the formula for the volume of the unit d-dimensional ball:

� Vd = πd/2/Γ(1 + (d/2)).

1The definition can be further extended to all complex arguments z (except 0,−1,−2, . . .),
but in this text we only need the gamma function defined on (0,∞).

2This provides the relation of the gamma function to the so-called beta function.
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2 Definition

The random variable X is said to follow the gamma distribution with shape
k > 0 and scale θ > 0,3 denoted X ∼ Gam(k, θ), if X is a continuous random
variable with density

f(x) =
1

θkΓ(k)
xk−1e−x/θ, for x > 0,

and f(x) = 0 for x ≤ 0.

The most important special cases of Gam(k, θ) are

� the exponential distribution4 Gam(1, θ),

� the Erlang distribution Gam(n, θ), n ∈ N, and

� the χ2
n distribution Gam(n/2, 2), n ∈ N.

The gamma distribution is used to model phenomena that produce random
positive real numbers. This can be, for instance, a random time (such as the
lifetime of a component of a larger system), monetary costs (such as insurance
claims), size (such as the size of a randomly selected tissue cell), particle speed,
magnitude of rainfalls and so on.

3 The shape and the scale

The parameter k strongly influences the “shape” of the density:

� for k < 1 the density is unbounded with limx→0+ f(x) = +∞,

� for k = 1 it is an exponential curve with limx→0+ f(x) = 1/θ, and

� for k > 1 the density is a “skewed hump” with limx→0+
f(x) = 0.

Increasing the parameter θ makes the density “stretched” and “squat”, but does
not influence the overall shape. Also, it is possible to show that the maximum
of f , i.e., the mode, is5 θ(k − 1).

Suppose that we measure someGam(k, θ)-distributed random quantity. What
is the distribution of the same quantity measured in different units? For in-
stance, let X ∼ Gam(k, θ) be an inter-arrival time between two consecutive

3In this text we will always assume that both the shape parameter and the scale parameter
are positive, without stating it explicitly.

4Therefore, this text also covers the exponential distribution. For instance, we will obtain
the higher-order moments of the exponential distribution as a special case of the gamma
distribution. However, some interesting properties of the exponential distribution, such as its
“memorylessness”, do not generalize to the geometric distribution.

5If the mode exists, that is, if k > 1. Incidentally, the median of Gam(k, θ) cannot be
expressed as a simple function of k and θ. For the special case of the exponential distribution
Gam(1, θ), the median is

√
2θ.
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customers, measured in minutes. What is the distribution of the random vari-
able 60X, which is the same measurement expressed in seconds? It turns out
that it is again gamma-distributed, but with a change in the scale parameter:

Theorem 1. Let X ∼ Gam(k, θ) and let c > 0. Then cX ∼ Gam(k, cθ).

Technically, the previous theorem is a direct consequence of the well-known
formula for the density fcX of a linearly transformed continuous random vari-
able: fcX(x) = 1

cfX(x/c), where c > 0 and fX is the density of X.

4 Moments

Theorem 2. The moment generating function6 of X ∼ Gam(k, θ) is

MX(t) =
1

(1− θt)k
for t < 1/θ.

The proof is straightforward: MX(t) = E(etX) =
∫∞

0
etx 1

θkΓ(k)
xk−1e−x/θdx =

1
θkΓ(k)

∫∞
0
xk−1e−(1/θ−t)x/θdx =∗ 1

θkΓ(k)

∫∞
0

yk−1

(1/θ−t)k−1 e
−y 1

1/θ−tdy =∗∗ 1
(1−θt)k ,

where in the equality ∗ we used the substitution y = (1/θ − t)x and in the
inequality ∗∗ we used some basic algebra and the definition of Γ(k).

Based on Theorem 2 we could calculate the absolute moments of X ∼
Gam(k, θ). However, the moments are simple to obtain in the classical way:
First, let X̃ ∼ Gam(k, 1) and n ∈ N. Then E(X̃n) =

∫∞
0
xn 1

Γ(k)x
k−1e−xdx =

Γ(n + k)/Γ(k), where we used the definition of Γ(n + k). If X ∼ Gam(k, θ)
for some θ > 0, then X = θX̃ for X̃ ∼ Gam(k, 1) (see Theorem 1), therefore
E(Xn) = E((θX̃)n) = θnE(X̃n) = θnΓ(n+ k)/Γ(k). We obtained

Theorem 3. If X ∼ Gam(k, θ) and n ∈ N then

αn = E(Xn) = θn
Γ(n+ k)

Γ(k)
.

It is worth mentioning that we can use the basic properties of Γ to simplify
the ratio

Γ(n+ k)

Γ(k)
= (n+ k − 1)(n+ k − 2) · · · k.

In particular, if k = 1, i.e. for an exponential random variable, we have
E(Xn) = θnn!. From the equations above we directly have

Theorem 4. If X ∼ Gam(k, θ) then α1 = EX = kθ and β2 = DX = kθ2.

6Note that for a continuous random variable, the moment generating function of X is in
fact the so-called Laplace transform of the density of X.
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We can obtain higher order central moments βn, n > 2 from the general
relations between the central and the absolute moments:

βk = E((X − EX)k) =

k∑
j=0

(−1)j
(
k

j

)
(EX)jαk−j .

After tiresome but straightforward calculations we could obtain

Theorem 5. The skewness of X ∼ Gam(k, θ) is γ1 = 2/
√
k and the kurtosis is

γ2 = 3 + 6/k.

We see that the gamma distribution is positively skewed and leptokurtic (i.e.,
γ2 > 3, where 3 is the kurtosis of any Y ∼ N(µ, σ2)). For k →∞ the skewness
diminishes, and the kurtosis converges to the one of the normal distribution. In
fact, for increasing k the standardized gamma distribution converges to N(0, 1).

5 The summation

Theorem 6. LetX1, . . . , Xn be independent random variables, Xi ∼ Gam(ki, θ),
i = 1, . . . , n. Then X = X1 + · · ·+Xn ∼ Gam(

∑n
i=1 ki, θ).

This theorem will be obvious once we prove that for two independent random
variables X1 ∼ Gam(k1, θ) and X2 ∼ Gam(k2, θ) we have Y := X1 + X2 ∼
Gam(k1 + k2, θ). But this is simple: for y > 0 we have

fY (y) =

∫ ∞
−∞

fX1(x)fX2(y − x)dx

=
e−y/θ

θk1+k2Γ(k1)Γ(k2)

∫ y

0

xk1−1(y − x)k2−1dx

=
e−y/θ

θk1+k2Γ(k1)Γ(k2)
yk1+k2−1

∫ 1

0

zk1−1(1− z)k2−1dx

=
1

θk1+k2Γ(k1 + k2)
yk1+k2−1e−y/θ ∼ Gam(k1 + k2, θ),

where the first equality is the well-known formula for the convolution of two
continuous probability distributions,7 the second one uses the form of the den-
sities of X1 and X2,8 the third one is based on the substitution z = x/y, and
the fourth one follows from the relation of the gamma and the beta functions
mentioned in the first section of this study material.

Note that Theorem 6 implies that the sum of n ∈ N independent random
variables with the exponential distribution Gam(1, θ) is a random variable with

7That is, it is the formula for the density of the sum Y of two independent continuous
random variables X1 and X2.

8Note also the change of limits in the integral, which is the consequence of the fact that
both f1 and f2 are 0 on (−∞, 0).
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the Erlang distributionGam(n, θ). In addition, Theorems 6 and 1 imply that the
artihmetic mean of n independent Gam(ki, θ) variables is distributed according
to Gam(

∑
i ki, θ/n).

6 Limit cases

Since for k ∈ N the distribution of X ∼ Gam(k, θ) is the same as the distribu-
tion of the sum of k independent Gam(1, θ) random variables, the central limit
theorem implies that for k → ∞ the standardized Gam(k, θ), i.e., the Erlang
distribution, converges to N(0, 1):

Theorem 7. Let Xk ∼ Gam(k, θ), k = 1, 2, . . ., and let x ∈ R. Then

lim
k→∞

P

[
Xk − EXk√

DXk

< x

]
= Φ(x), (1)

where Φ is the distribution function of N(0, 1).

We could replace EXk with kθ and DXn with kθ2 in (1). Loosely put, for a
large k the distribution Gam(k, θ) is approximately the N(kθ, kθ2) distribution.
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