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1 Introduction

I did not use any particular book or paper to prepare this classroom material;
everything here is simple to derive from the basic theorems of combinatorics,
calculus and probability. However, it is possible to find much published infor-
mation on the Pascal distribution;1 see, for instance, the book by Balakrishnan
and Nevzorov (ISBN: 978-0-471-42798-8) for an introduction and the book by
Johnson, Kemp and Kotz (ISBN: 978-0-471-27246-5) for details.

2 Definition

We perform a sequence of independent trials. Each trial results in an outcome
P (called success) or an outcome Q (called failure). The probability that an
individual trial ends up as P is denoted by p.2 The probability that an individual
trial ends up as Q is denoted by q := 1− p. We know that if we fix the number
of trials to be n,3 the number of outcomes P is a Bin(n, p) random variable.
However, here we will focus on an experiment organized in a different manner:

We will repeat the independent trials until we get the n-th outcome
Q, that is, we will repeat the trials until the n-th failure. Let X
be the number of outcomes P, i.e., the number of successes. The
distribution of X is then called the Pascal distribution.4 This will be
denoted X ∼ Pas(n, p).

The interpretation above and some basic combinatorics yield:

1Or the negative binomial distribution, which is usually defined as a generalization of the
Pascal distribution.

2We will only assume that p ∈ (0, 1), and avoid the pathological cases of p = 0 and p = 1.
3We will assume that n ∈ N, i.e., n 6= 0.
4The definition of the Pascal distribution is annoyingly inconsistent throughout the lit-

erature. We will not discuss the plethora of definitions, but let us mention that the Pascal
distribution, as defined here, is sometimes called the negative binomial distribution. Usu-
ally, however, the negative binomial distribution is a generalization of the Pascal distribution,
where n is allowed to be non-integer. Note that here we adopt the logic always used for the
binomial distribution; that is, the Pascal random variable counts the number of “successes”
(not “failures” nor all trials), and the probability of each individual success is denoted by p.
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Theorem 1. X ∼ Pas(n, p) if and only if

P [X = k] =

(
n+ k − 1

n− 1

)
pkqn for k = 0, 1, 2, . . . . (1)

The most important special case of the Pascal distribution is the geometric
distribution:5

Theorem 2. Pas(1, p) is the geometric distribution.6

The support of X ∼ Pas(n, p) is the entire N0, similarly to the distribution
Poi(λ) for λ > 0. In fact, as we will see, the class of Pascal distributions contains
the Poisson distribution as a limit case. However, the two-parametric class of
Pascal distributions is more flexible.

3 Generating functions

The form of the probability generating function PX = E(sX) (and the moment
generating function MX(t) = PX(et)) of X ∼ Pas(n, p) is easy to derive from
the following Taylor series, which is valid for all x ∈ (−1, 1):7

1

(1− x)n
=

∞∑
k=0

(
k + n− 1

n− 1

)
xk.

Theorem 3. Let X ∼ Pas(n, p). Then

PX(s) =

(
q

1− ps

)n
for s ∈ (−1/p, 1/p), (2)

MX(t) =

(
q

1− pet

)n
for t ∈ (ln(p),− ln(p)). (3)

In particular, the probability generating function of the geometric distribu-
tion Pas(1, p) is q/(1 − ps) for s ∈ (−1, 1). Consequently, the sum X of iid
random variables X1, . . . , Xn ∼ Pas(1, p) has the generating function

PX(s) =

n∏
i=1

PXi
(s) =

(
q

1− ps

)n
implying8

5Therefore, this text also covers the geometric distribution. For instance, we will obtain
the generating functions and the higher-order moments of the geometric distribution as a
special case of the Pascal distribution. However, some interesting properties of the geometric
distribution, such as its “memorylessness”, do not generalize to the Pascal distribution.

6With parameter p or with parameter q, depending on the particular definition of the
geometric distribution.

7The special case for n = 1 is the famous 1/(1− x) = 1 + x + x2 + x3 + . . . (if |x| < 1).
8Of course, we can also prove the following theorem from the interpretation of Pas(n, p)

or using elementary combinatorics; we do not need the probability generating function for the
proof.
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Theorem 4. Let X1, . . . , Xn be iid random variables, each distributed ac-
cording to the geometric distribution Pas(1, p). Then X = X1 + · · · + Xn ∼
Pas(n, p).

The previous theorem can be further generalized to

Theorem 5. Let X1, . . . , Xn be iid random variables, Xi ∼ Pas(ni, p), i =
1, . . . , n. Then X = X1 + · · ·+Xn ∼ Pas(

∑n
i=1 ni, p).

Theorem 5 can be easily proved using the probability generating function.

4 Moments

Theorem 4 is an essential characterization of the Pascal distribution. It can be
used, for instance, to derive the mean and the variance of Pas(n, p) from the
moments of the geometric distribution.9

Theorem 6. Let X ∼ Pas(n, p). Then α1 = EX = np/q and β2 = DX =
np/q2.

In particular EX < DX for any n and p; recall that for the Poisson distri-
bution the mean and the variance coincide.

The higher-order moments αk (absolute) and βk (central), k ∈ N, are com-
plex rational functions in p. However, as usual with the fundamental discrete
distributions, the general formula for the factorial moments is simple:

Theorem 7. Let X ∼ Pas(n, p). Then

µk = E(X(X − 1) · · · (X − k + 1)) =
(n− 1 + k)!

(n− 1)!

(
p

q

)k
.

This theorem is straightforward to prove by means of differentiating PX and
setting s = 1. It immediately provides Theorem 6, but it can also be used to
obtain higher-order moments via the general formulas

αk = E(Xk) =

k∑
j=0

{
k

j

}
µj , where

{
k

j

}
=

1

j!

j∑
i=0

(−1)i
(
j

i

)
(j − i)k

are the Stirling numbers of the second kind, and

βk = E((X − EX)k) =

k∑
j=0

(−1)j
(
k

j

)
(EX)jαk−j .

After some tedious but straightforward calculations based on the formulas
above, we can derive

9Which should be well known at this point of your studies. Note that you also need the
fact that the mean value of the sum of random variables is the sum of the mean values of
the random variables. For variance we can use an analogous theorem valid for independent
random variables.
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Theorem 8. The skewness and kurtosis of X ∼ Pas(n, p) are

γ1 =
1 + p
√
np

, and γ2 = 3 +
1 + 4p+ p2

np
.

We see that the Pascal distribution is always positively skewed; however, the
skewness tends to 0 with n → ∞. The kurtosis is always larger than 3 (that
is, the distribution is “leptokurtic”) but converges to 3 with n → ∞. These
convergence properties are clear from the relation of the Pascal distribution
with the normal distribution, detailed in the next section.

5 Limit cases

Since the distribution of X ∼ Pas(n, p) is equal to the one of the sum of n
independent geometric random variables, the central limit theorem implies that
for n→∞ the standardized Pas(n, p) converges to N(0, 1):

Theorem 9. Let Xn ∼ Pas(n, p) and let x ∈ R. Then

lim
n→∞

P

[
Xn − EXn√

DXn

< x

]
= Φ(x), (4)

where Φ is the distribution function of N(0, 1).

Of course, in (4) we could replace EXn with np/q and DXn with np/q2. A
less formal statement of Theorem 9 is that for a large n the distribution Pas(n, p)
is approximately N(np/q, np/q2). Note also the similarity of Theorem 9 with
the De Moivre-Laplace theorem on the binomial distribution.

A different limit theorem can be obtained by letting n → ∞ but simulta-
neously decreasing the value of p, such that the mean value np/q converges to
some real λ > 0. One possible version of the theorem is

Theorem 10. Let Xn ∼ Pas(n, λ/n), λ > 0, n = n0, n0 + 1, . . ., where n0 is
chosen such that λ/n0 < 1. Then for any k ∈ N0

lim
n→∞

P [Xn = k] = e−λ
λk

k!
.

This can be proved directly or by using the probability generating function
(or the characteristic function), because

lim
n→∞

PXn(s) = lim
n→∞

(
1− λ/n
1− λs/n

)n
=

e−λ

e−λs
, (5)

which is the probability generating function of Poi(λ).

Note that Theorem 10 is analogous to the Poisson theorem for the binomial
distribution, and it could be easily “guessed” from the Poisson theorem. Indeed,
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consider the interpretation of X ∼ Pas(n, p) from the introduction. Assume
that p is very small and n is very large. Then, the total number of trials will be
about n (almost all of the trials will be of the type Q, plus a few of the type P).
Therefore, the experiment is similar to the one in which we fix n in advance,
and we count the number of P’s. That is, the distribution of X is similar to
Bin(n, p) with our large n and small p, i.e., X is approximately Poi(np).

It is also worth mentioning that Theorem 10 is closely related to the central
theorem of the Poisson process: If we sequentially add independent exponential
random variables with mean value µ until we exceed some t > 0, the number of
these variables is Poi(t/µ)-distributed. The geometric distribution is a discrete
analogue of the exponential distribution, therefore the Pascal distribution is
the discrete analogue of the Erlang distribution (a special case of the Gamma
distribution).
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