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THE JACKKNIFE, THE BOOTSTRAP, AND OTHER RESAMPLING PLANS

Bradley Efron

I. INTRODUCTION

Our goal is to understand a collection of ideas concerning the non-
parametric estimation of bias, variance, and more generai measures of
error. Historicélly the subject begins with the Quenouille-Tukey jack-
knife, which is where we will begin also. In fact it would be more
logical to begin with the bootstrap, which most clearly exposes the
simple idea underlying all of these methods. (And in fact underlies
many common parametric methods as well, such as Fisher's information
theory for assigning a standard error to a maximum likelihood estimate.)
Good simple ideas, of which the jackknife is a prime example, are our
most precious intellectual commodity, so there is no need to apologize
for the easy mathematical level. The statistical ideas run deep,
sometimes over our head at the current level of understanding. Chapter
10, on nonparametric confidence intervals, is particularly speculative
in nature.

Some material has been deliberately omitted for these notes. This
includes most of the detailed work on the jackknife, especially the
asymptotic theory. Miller (1974) gives an excellent review of the
subject.

From a traditional point of view, all of the methods discussed here.
are prodigious computational spendthrifts. We blithely ask the reader

to consider techniques which require the usual statistical calculations



to be multiplied a thousand times over. None of this would have been
feasible tweﬁty five years ago, before the era of cheap and fast compu-
tation. An important theme of what fdllows is the substitution of com-
putational power for theoretical analysis. The payoff, of course, is
freedom from the constraints of traditional parametric theory, with its
overreliance on a small set of standard models for which theoretical
solutions are available. In the long run, understanding the limitations
of the nonparametric approach should make clearer the virtues of para-
metric theory, and perhaps suggest useful compromises Some hints of
this appear in Chapter 10, but so far as these are only hints and not a

well developed point of view.



II. THE JACKKNIFE ESTIMATE OF BIAS

Quenouille (1949) invented a nonparametric estimate of bias, subse-
quently named the jackknife, which is the subject of this chapter. Suppose
that we sample independent and identically distributed random quantities
Xl’ X2, X3, cees Xn %Ed F, where F is an unknown probability distribution
on some space L. Often Y will be the real line, but all of the methods

discussed here allow ) to be completely arbitrary. Having observed

X = x , we compute some statistic of interest, say

D>

= 6(x1, Koy eens xn) .

A
We are interested in the bias of 6 for estimating a true quantity 0.
For now we concentrate on functional statistics: 0(F) is some real-
valued parameter of interest, such as an expectation, a quantile, a corre-

lation, etc., which we estimate by the statistic
6 =0(H , | (2.1)
where F is the empirical probability distribution,
F: mass L at X,, X, eeey X . (2.2)
n 1° 72 > n

A
Form (2.1) guarantees that e(xl, Xps eees xn) is invariant under permu-
tations of the arguments, which we use below, and more importantly that

the concept of bias is well-defined,

Bias = EFe(ﬁ) - 8(F) . (2.3)



Here "E_ " indicates expectation under X , X, ..., X %id F. Three
F 1 2 n

familiar examples of functional statistics are
Example 1. The expectation; X = &1, the real line; 6(F) = fI xdF

= EFX; 6 = fI xdF =

B

in = x, the average, or sample expecﬁation.

Example 2. The correlation; 1 = Rz, the plane; 6(F) % Pearson's
product-moment correlation coefficient, Cramer (1946), p. 265; 6 = e(ﬁ)
= samplé correlation coefficient.

Example 3. Ratio estimation; ) = R2+, the positive quadrant of the
plane; dehoting X = (Y,2), then 6O(F) = EF(Z)/EFY, the rafio of expecta-
tions for the two coordinates; 8 = 6(?) = z/y, the ratio of éorresponding
averages,

1. Quenouille's Bias Estimate. Quenouille's method is based on

sequentially deleting points X, and recomputing 8. Removing point

X from the data set gives a different empirical probability distribution,

A 1
F(i)' mass ——— at xl, x2, eeey X

—) 41 Fig1e v X s (2.4)

and a corresponding recomputed value of the statistic,

6(1) = G(F(i)) = 9(xl, Koy eoes Xi g5 Xigs een, xn) . (2.5)

Let

n A
) 8esy - (2.6)
Quenouille's estimate of bias is

N " A
BIAS = (n-1) (e(,)-e) ’ (2.7)

leading to the bias-corrected "jackknifed estimate" of 6,

~ ~ N A ~
6208 - B1aS = nd - (a-1) B, . (2.8)



N ~
The usual rationale for BIAS and © goes as follows., If En
denotes the expectation for sample size n, En = EF§(X1, X2, cees Xn),
then for many common statistics, including most maximum likelihood esti-

mates,

a, (8 a,(®)

E =60 + + + ...
n n 2
n

s (2.9)

where the functions al(e), a2(6), ««. do not depend upon n, see Schucany,
Gray, and Owen (1971). Notice that

al(e) az(e)

ES, . =E . =04+ + + ...
F(*) n-1 n-1 (n_l)z
and so
ES = nE_ - (a-1)E__ (2.10)
a, ()
2 1 1
=e—__——'+a(e)(_-.—_—)+-oo-
n(n-1) 3 n2 (n—1)2

We see that 6 is biased Oéia compared to O(ﬁ) for the original esti-

mator .

Example 1 continued. For 8 = X we calculate §(‘) =% =0, and

s A
BIAS = 0. Of course 6 is unbiased for ©

N
BIAS = 0 is the correct bias estimate.

EFX in this case, so

. . _ 1 _ 2 .
Example 4. The variance; X =R, 6(F) fx (x EFX) dF;

@ = zi:l (xi—i)zln. A simple calculation shows that

z (x.—;c)2
N\ i=1 L
BIAS = T ThGeD
yielding
n
N (x.—;{)2
. i
§ - =L
n-1 ?



the usual unbiased estimate of 6. 1In this case the expansion (2.9) is

S0 ai(e) =-0, aj(e) =0 for j > 1. The motivating formula (2.10)

shows why 6 is exactly unbiased in this situation.

2. The Grouped Jackknife. Suppose n = gh for integers g and h.

We can remove observations in blocks of size h, e.g. first remove x

1> 2o
cees X second remove Xy Kpgpgr +oes Xopo etc. Now define G(i) as
the statistic recomputed with the i-th block removed, and §(.) = é-Zg(i).

Then

0 = gb - (g-l)‘ G(.)

also removes the first order of the bias term, as at (2.10). Quenouille's
1949 paper considered the "half—sample"fcasé g=2,
If computationally feasible, it is preferable to define §(.) =
'g é(i)/(ﬁ), where i ‘indicates a subset of size h removed from
?l, ;, covs n}, and 2 is the sum over all such subsets. Then
= g@ - (g-1) §(.) %as the same expectation and smaller variance than

D

in the blocked case above, by a sufficiency argument. We consider only "

the ungrouped jackknife, h=1, in what follows, except for a few occasional

remarks.

3. A Picture. Figure 2.1 shows En graphed versus 1/n.. The nota-

tion 6 = E_  is based on (2.9), with n=w, Assuming perfect linearity of

the bias in 1/n dimplies

En - Eg “1/n

E 1 -E 1/ - 1/n




n-1
E
n
Bias nearly linear
in 1/n
6 = E
[ee]
0 1/n 1/(n-1)
(n=)

Figure 2.1. The expectation En as a function of 1/n.

which gives

Bias = En - E_ = (n-1) (En_l - En)

and
0 = EOo = nEn - (n—l)En_l . ) (2.11)

The jackknife formulas (2.7), (2.8) simply replace En and En—l on the
right side of (2.11) by their unbiased estimates, 8 and 6(.), respectively.

Removing two data points at a time and averaging the resulting recom-

puted values of ) gives an unbiased estimate of En—Z’ say 6 Looking

CADN
at Figure 2.1, it seems reasonable to use quadratic extrapolation to predict
g = E°° from @, 6(.), §(..). A neat way of deriving all such higher-order

bias correction formulas is given in Schucany, Gray, and Owen (1971).



In practice there has been little use made of higher-order bias cor-

rection. Even the first order bias correction (2.8) may add more to the
. . . . .2 .
mean square error in variance than it removes in bias™. Hinkley (1978)
discusses this effect for the case of the correlation coefficient. How-
ever it can still be interesting to compute BIAS, even if the bias cor-
- 3 3 ) s A L
rection isn't made, especially in conjunction with VAR, an estimate of
variance such as that discussed in Section 3. Very often it turns out
/\ » . 3 .

that BIAS// VAR is small, say - < 1/4, in which case bias is probably

not a serious issue,

4, Aitken Acceleration. The extrapolation method underlying the

jackknife has a long history in numerical analysis, two examples being
Aitken acceleration and Richardson extrapolation. (Here we discuss only
the former.) The connection is as follows. Letting En—Eoo = Biasn, the

bias for sample size n, simple algebra yields

En - (ratio) En

E = L
o 1 - (ratio)
where
Bias
. n
ratio = ——m— ,
Bias
n—-1

The approximation Biasn/Biasn_l = (n-1)/n gives (2.11), and hence the
jackknife results (2.7), (2.8).
Now suppose we wish to approximate an infinite sum Sy = Zkfo bk

Y . . —_ n —
on the basis of finite sums Sn = 2k=0 bk' Letting Bn = the

[s0]
zn,+-l bk’
"bias" in Sn for approximating S , the same simple algebra yields

Sn - (ratio) Sn—

S = 1
0 1 -~ (ratio)
where
Bn
ratio = B .
n-1



Aitken acceleration replaces Bn/Bn-l with bn/bn—l = (Sn—Sn_l)/

(Sn—l-sn—z)’ which is exactly right for a geometric series I:k = crk.
The series transformation
s - Sn - Sn—l S
- n Sn—l Sn—2 n-1
Sn = p— (2.12)
1 - n n-1
Sn—l - Sn—2

can be applied repeatedly to speed up convergence. As an example, borrowed
from Gfay, Watkins, and Adams (1972), consider the series =n = 4 — 4/3 +
4/5 - 4/7 ... . Taking only seven terms of the original series, and apply-
ing (2.12) three times, gives 3.14160, with deviation less than .00001

from S = 3.141593 ...

n 5 5 52 5
0 4.,00000

1 2.66667

2 3.46667 3.16667

3 2.89524 3.13334

4 3.33968 3.14524 3.14211

5 2.97605 3.13968 3.14145

6 3.28374 3.14271 3.14164 3.14160

Iterating (2.12) three times amounts to using a cubic extrapolation formula
in Figure 2.1. This is more reasonable in a numerical analysis setting than
in the noisy world of statistical estimation.

5. The Law School Data. Table 2.1 gives the average LSAT and GPA for the

1973 entering classes of 15 American law schools. (LSAT is a national test

for prospective lawyers, GPA the undergraduate grade point average; see



Efron (1979b) for details.) The data is plotted in Figure 2.2. Consider
Pearson's correlation coefficient, as in example 2. Denoting the statistic
by 8, rather than @, the value of the sample correlation coefficient for
the 15 schools is S = ,776. The quantities BCi) - 8, also given in
Table 2.1, yield EEZE = 14(8(.) - 8) = -.007. As a point of comparison,
the normal theory estimate of Bias is = -,011, obtained by substituting 8
in formula 10.2, page 225, Johnson and Kotz. We will return to this

example several times in succeeding chapters,

School #i 1 2 3 4 5 6 7 8

LSAT 576 635 558 578 666 580 555 661

GPA . 3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43

8(1)"5 116 -,013  -,021  -.000  -.045 .004 .008  -.040
9 10 11 12 13 14 15

LSAT 651 605 653 575 545 572 594

GPA 3.36 3.13 3.12 2.74 2.76 2.88 2.96

5(1)—6 -.025 -.000 .042 .009 -.036 ~.009 .003

Table 2.1. Average LSAT and GPA for the 1975 entering classes of 15 American

A A N\
law schools. Values of p(i) - P are used to compute BIAS for the corre-

lation coefficient,

10



COMPUTERS AND STATISTICS

GPA
3.504

. ) . o8
3.40 ol ) .9

3.30¢ ' 2

3.20¢

3.104 10 _ .l
3.00¢ .7 °4
2.904

2.80¢ *3
*13 .
2.70¢ 12

540 550 560 570 580 590 600 610 620 630 640 650 660 670

LSAT

Figure 2.2. A plot of the law school data given in Table 2.2.

S
6. What Does BIAS Really Estimate? The motivation for Quenouille's

P ~ ~
estimate BIAS = (n—l)(G(.) - 0) ©based on (2.9) collapses under closer

scrutiny. Notice that (2.9) can always be rewritten as

Al(e) A2(6)
E =0 + o} + e
n o (n+1)

vhere A (6) = a (8), A,(0) = a,(8) + a,(8), A5(6) = 'al(e) + 2a,(8) +

a3(9), cen o The same reasoning that gave (2.10) now gives

11



A, (0) 1

E {(a+l) § - 0B, \} =0 - —F—~ + A,(0) (———————-1—) .
F . (*) n(n+l) 3 (n+1)3 23

This would suggest that ﬁEZE = n(g(.) - @) is the correct formula for
removing the 1/n bias term, not Quenouille's formula (2.7).

The real justification for Quenouille'é formula is contained in
Example 4. The statistic 6 = Z(xi—i)zln is an example of a quadratic
functional: ) is of the functional form (2.1), g = G(f), and 6 can

be expressed as

t (n) 1
i=1 n 15-i1<12§-n 1 2

i.e. in a form which involves the xi one and two at a time, but in no
higher-order interactions. Quadratic functionals, which are closely
related to Hoeffding's (1948) U-statistics, are discussea in Chapter 1IV.
The proof of the following theorem is given there.

S ~ ~
Theorem 2.1. For a quadratic functional, BIAS = (n-1)(H B) is

() ~
unbiased for estimating the true bias EFG(ﬁ) - 0(F).

It is easy to think of functional statistics B = e(ﬁ) for which
N 1
BIAS 1is useless or worse than useless. For example, let Y =R, and
8(F) = 0 if F has no discrete probability atoms, 8(F) = 1 if it does.
If F has no atoms, so & = 0, then 6= O(F) = 1 has true bias 1,

Py '
while BIAS = 0, for any sample size n. This points out that the con-
cept (2.1) of a functional statistic is itself useless without some
notion of continuity in the argument ¥, see Chapter II of Huber (1974).
Its only purpose in this chapter was to give an unambiguous meaning to
N

the concept of bias. We will see what BIAS actually estimates, whether

or not the statistic is funtional, at the end of Chapter VI. Roughly

12



S A
speaking, BIAS 1is the true bias of 6 if F were actually equal to the
A N .
observed F. That is, BIAS itself is (approximately) a functional stat-
istic, the function being the bias of 6. All of this will be made clear

in Chapter V when we discuss the bootstrap.

13



III. THE JACKKNIFE ESTIMATE OF VARIANCE

Tukey (1958) suggested how the recomputed statistics é(i) could

also provide a nonparametric estimate of variance. Let

_ A r 2
Var = EF[G(Xl, X2, cees Xn) - EFB] s 3.0

iid
1° X2, ceay Xn ~ F,

where as before EF indicates expectation with X

F -~ an unknown probability distribution on some space Y. (In general,

"EF" means that all random variables involved in the expectation are

independently distributed according to F.) Tukey's formula for esti-

mating Var is+

A A 2 .

E)

i=l

1

§( ) = 5 Zé(i)' We will often be more interested in standard deviations
than variances, since the standard deviation relates directly to accuracy
statements about 0, in which case we will use the notation

sd = [vVar , sD = /¥aR . (3.3)

Considerable effort has gone into verifying, and in some cases dis~
N
verifying, the usefulness of VAR as an estimate of Var, see Miller (1974).
: AN
This chapter presents several examples typifying VAR's successes and

failures. The theoretical basis of (3.2) is discussed in Chapters 1V, V,

and VI.

N ~ ’ A
Some writers consider VAR as an estimate of Var(8), rather than of Var(0),

but in fact it seems to be a better estimator of the latter, see Hinkley
(1978) . This will be our point of view.

14



1. The Expectation. As in example 1 of Chapter I, §=x= in/n.

Then
R ne—xi ~ R n “ §—xi
Sy = o T %y =8> Yy ~ %y w3
and so
-2
o~ Iy |
VAR n(n-1) °

the usual nonparametric estimate for the variance of an average X. This
is the motivating example behind Tukey's formula (3.2).

"Pseudo-values": Tukey called

8. =8+ (n-1) (6 -0

i (i))

the "i-th pseudo-value". For a general statistic 8, the jackknife esti-

~

mate O equals Zéi/n, and ‘62? = Z(éi—g)zl[n * (n-1)]. This makes the
51 look like they're playing the same role as do the X in the case
§ = X. (Indeed 51 =X when 6 = X.)

Unfortunately the analogy doesn't seem to go deep enough. Attempts
to extract additional information from the éi values, beyond the esti-

2N
mate VAR, have been disappointing. For example Tukey's original suggestion

was to use

§+e0 (3.4)

as a 1-20 confidence interval for 8, where tg—l is the o wupper
percentile point of a t distribution with n-1 degrees of freedom.
Verification of (3.4) as a legitimate confidence interval, as in Miller
(1964), has been successful only in the asymptotic case n*», for which the

"t" effect disappears, and where instead of (3.4) we are dealing with the

15



comparatively crude limiting normal theory. (Small sample nonparametric
confidence intervals are discussed in Chapter X.) The pseudo-value term-
inology is slightly confusing, and will not be used in our discussion.

2. The Unbiased Estimate of Variance. Let Y = Rl and

é = i:l (xi—i)zl(n—l). Define the k-th central moments of F and ﬁ

to be, respectively,

n
_ k ~ 1 =k
W = EF[X—EFX] , M =5 .z [xi x]" . (3.5)
i=1 :
For this 0, (3.2) has the simple expression
N n2 YA
AR = —2—— (i, -0 (3.6)
(n-1) (n-2)
agreeing nicely with the true variance of @,
nZ 2 .
Var = — (u4—u2) . 3.7)
n(n-1)

Hint: 4t helps to work with yi = (xi—i)2 in deriving (3.6).

Notice that this 8 is not a functional statistic since, for example,
the doubled data set X5 Xy, Xps Xps eeny X s X has the same value of
ﬁ but a different value of 8. Variance is simpler than bias in that it
refers only to the actual sample size n. Bias refers to sample size n
and also to sample size ®, i.,e. the true 6. The concept of a functional
statistic plays no role in (3.2). We only assume that @(xl, Xps +ens xn)
is symmetrically defined in its n arguments. Chapter Vi shows that
iﬁﬁi is based on a simpler idea than is éEZE, the difference being the use
of a linear rather than quadratic extrapolation formula. In the author's

TN\ ) N
experience, VAR tends to yield more dependable estimates than does BIAS.

16



3. Trimmed Means. Let X1) f_x(z) < ... E_x(n) be the order stat-
istics of a sémple on the real line Y = ﬁl, and let o be the proportion
of points we "trim" from each end of the sample. The o trimmed mean
is the average of the remaining n(l1-20) central order statistics. For
instance if n = 10, o = .1, then g = Xg x(i)/8. (The two end points of
the trimming region are counted partially, in the obvious way, if no is

not an integer.) If (n-1)a = g, an integer, then

N E; -
VAR = L] %y y - z1% (3.8)
n(n-1) (1-20)” i=1 i
where
g+l i<gtl
Wi = i g+l < i< n-g
n-g i> n-g

and EW = ZX(W )/n, see Huber (1974), p. 27. The letter "W" stands for

i
"Winsorized" since (3.8) is proportional to the variance of what is called
the Winsorized sample, i.e., the sample where the end order statistics are

not trimmed off, but rather changed in value to x or x

(g+1) (n-g)* The

2N
expression for VAR is only slightly more complicated if (n-1)a is not

an integer.

Formula (3.8) has proved reasonably dependable for o < .25, see
Carroll (1979). Table 3.1 shows the results of a small Monte Carlo experi-

ment: 200 trials, each consisting of a sample of size n = 15, Xl’ X2,
cees X15 lid F. Two cases were investigated, the normal case F ~ n(0,1),

e for x > 0,

and the negative exponential case F ~ G, (i.e. f(x)

1

f(x) = 0 for x < 0). The trimming proportion was o

.25.

17



——F ~ h(0,1)———n ———F ~ 6 ——

Coeff Coeff

Ave Std Dev Var  Ave Std Dev Var
Jackknife .280 . 084 .30 224 .085 .38
Bootstrap, 200 .287 .071 .25 .242 .078 .32
bootstrap reps
per trial
True Sd [minimum| .286 [.19] .232 [.27]
possible cv

Table 3.1. Estimates of standard deviation for the 25% trimmed mean using

iid

the jackknife and the bootstrap: 200 trials of Xl’ XZ’ ceas Xl5 ~ F,

The averages and standard deviations of éb for the 200 trials show a

moderate advantage for the bootstrap.

For F ~ h(0,1), the 200 jackknife estimates of standard deviation,
each essentially the square root of (3.8) with n =15 and o = .25,
averaged .280 with sample standard deviation .084. Typically SD was
between .200 and .400. The true standard deviation of 0 is .286 in
this case, so the jackknife estimate is nearly unbiased, though quite
variable, having coefficient of variation .084/.280 = .30.

As a point of comparison, Table 3.1 also gives summary statistics
for the bootstrap estimate of standard deviation introduced in Chapter V.
The bootstrap estimate is also nearly unbiased but with noticeably smaller
variability from trial to trial. The figures in brackets show the
minimum possible coefficient of variation, in each case, for any estimate
of standard deviation which is scale invariant. In the normal case, for

example, .19 is the coefficient of variation of [Z(xi—i)z/lé]l/z.

18



4. The Sample Median. The trimmed mean with o .5 is the sample

”~

median: 6 = x(m) if n=2m-1l, O = (X(m) + X(m+1))/2 if n = 2m. Formula

(3.2) fails in this case. In the even case n = 2m, (3.2) gives

Py -
AR = 2L

2
7 (mtl) ~ x(m)] . (3.9

Standard asymptotic theory, Pyke (1965), shows that if F has a density
function £, then
2
< 1 Xz 2
VAR > |
4£7(0)
as n>», where f£(8) is the density at the true median 0, £(0) assumed
> 0, and [)(;/2]2 is a random variable with expectation 2, variance 20.
The true variance of 8 goes to the limit

n Var - s
4£7(0)

see Kendall and Stuart (1958). In this case GZE is not even a consistent
estimator of Var. An explanation of what goes wrong is given in Chapter
VI. The bootstrap estimate of variance performs reasonably well for the
sample median, see Chapter X.

-+

5. Ratio Estimation. As in example 3 of Chapter 2, Y = Rz , X = (Y,2),

but here we consider the statistic @ = log z/y. Table 3.2 reports the
results of a Monte Carlo experiment: 100 trials of (Yl,Zl), (YZ’ZZ)’ cous
(Ylo,Zlo) iid F. The two cases considered for F both had Y ~ U(0,1),
the uniform distribution on [0,1]; Z was taken independent of Y, in

case 1 Z ~ Gl’ in case 2 Z ~ Gi/Z. The summary statistics for the 100

trials show that SD, the jackknife estimate of standard deviation, is
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nearly unbiased for the true Sd. Once again the estimates SD are quite
variable for trial to trial, perhaps not surprising given a sample size of

only n = 10.

2
r——Y ~ U(O,l)g Z~ Gl———j ‘—"Y ~ U(O,l), Z ~ Gl/2—1

Coeff Coeff
Ave Std Dev Var Ave Std Dev Var
Jackknife .37 11 .30 .70 .33 47
Bootstrap, 1000 .37 .10 .27 .64 .23 .36
reps per trial
~ delta method .35 .09 .26 .53 .14 .26
True Sd .37 .67

A

Table 3.2. Estimates of standard deviation for 6 = log z/y; 100 trials,
sample size n = 10 for each trial. Summary statistics of SD  for the
100 trials show that the jackknife is more variable than the bootstrap or
the delta method. However the delta method is badly biased in the second

case.

Table 3.2 also presents results for the bootstrap, Chapter V, and
the delta method, Chapter VI. The delta method is best known of all the
techniques we will discuss. 1In the present case it consists of approxi-

mating the 8Sd of 6 = log 2/§ by the Sd of its first order Taylor

lte

series expansion, ) log(uz/uy) + (E-uZYuz-—(§—uy)/uy, where H, = EFZ,

_ . o A . 2 2
uy = EY. The resulting approximation, Sd(8) = [uyy/uy + uzz/uz - 2uyz/

uyuz]/n, where uyy = EF[Y - EFY]Z, etc., is then estimated by substitut-

N N

ing sample moments uy, uz,

uyy’ Mo uyz’ for the unknown true population
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moments. In the present situation the delta method has the lowest coeffi-
cient of variation, but is badly biased downwards in the second case. The
delta method is discussed further in Chapter VI.

6. TFunctions of the Expectation. Suppose Y = &l, 6 = g(x), where

g 1is some nicely behaved function such as sin(x) or 1/(14x). (For
what follows we need that the derivative g' exists continuously.) Then

a first order Taylor series expansion gives

. m_c—xi _ = §—xi
“wy T g( n-l) T80 et o

SO
2N . n-l - z“X-'X)2
VAR 2 == [g' ()] —=—5r (3.9)
(n-1)

[}
=
Pan
o
s
5|2

where 82 = Z(xi—i)z/(n—l) is the usual unbiased estimate of variance.

The variance of 8§ = g(x) is usually obtained by the delta method:
g(®) 2 g(W) + g' () (X, vhere U= EX, so Var{f} = [g' W1 Var{X}.
Estimating p by x and Var{X} by 82/n gives (3.9). - We have shown
that the delta method gives :the same estimate of variance as the jackknife,
if a linear approximation is used to simplify the latter. Chapter VI dis-
cusses the "infinitesimal jackknife'", a variant of the jackknife which
gives exactly the same estimates as the delta method, for both bias and
variance, whenever the delta method applies.

7. The Law School Data. TFor the correlation coefficient 6 based

on the law school data, Table 2.1 and Figure 2.2, we calculate $b = .142.
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This might be compared with the normal theory estimate (1—62)/Vn43
= (1 - ,7762)/v12 = .115, see Johnson and Kotz (1970), p. 229. A dis-
. ~ ~ 2
turbing feature of VAR can be seen in Table 2.1: 55% of LI0esy = Pyl
N -

comes from data point 1. VAR is not robust in the case of §, a point

discussed in Hinkley (1978).

f 0- I f
Coeff Coeff

Ave StdDev Var | Ave Std Dev Var_
Jackknife .223 .085 .38 314 .090 .29
Bootstrap, 512 .206 .063 .31 .301 . 062 .21
reps per trial
Delta Method .175 .058 .33 . 244 .052 .21
True Sd .221 .299

Table 3.3. Estimates of standard deviation for 8, the correlation coeffi-

. =1 A . ; iid
cient, and tanh p: 200 trials, Xl’ X2, ooy X14

normal with true p = .5. The jackknife is more variable than the boot-

F, F bivariate
strap or the delta method, but the latter is badly biased downward.

Table 3.3 reports the results of a Monte Carlo experiment: 200 trials
of Xl’ Xz, cees X14 ~ F bivariate normal, true p = .50. Two Statistics
were considered, 6 and Fisher's transformation tanh—l 6 = %-log(1+6)/(l—ﬁ),
In this case the jackknife §b is considerably more variable than the

bootstrap éb,

8. Linear Regression. Consider the linear regression model

y.=ciB+€i, i=1, 2, ..., n

i H
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where € iid F, ¥ an unknown distribution on Rl having EFE = 0. Here
c:.L is a known 1Xp vector of covariates while B 1is a pX1l vector of
unknown parameters. The statistic of interest is the least squares esti-

mate of B,

B=clcy, (3.10)

~

Y= (y1s g5 oens y)'s C' = (eg» cé, ++s €1), G =C'C. We assume that
the pXn matrix C is nonsingular, so that the pXp matrix G has an

inverse.

The usual estimate of Cov(B), the covariance matrix of @, is

&2/ (p) (3.11)

@i being the estimated residual vy - ciﬁ. We don't need the jackknife
in this situation, but it is interesting to compare 'QZE with (3.11).

The statistic B is not a symmetric function of Yis Vo5 vevs Yoo
but it is symmetrically defined in terms of the vectors (cl,yl), (cz,yz),
sees (cn,yn). What we have called X, before is now the p+l vector
(ci,yi). Let é(i) be the statistic (3.10) computed with (ci,yi) removed,
which turns out to be

-1 ~
g ciEi

0>

1 s (3.12)
c!
i

w=°"

1-c¢c.G
i2

see Miller (1974b), Hinkley (1977). The multivariate version of Tukey's

formula (3.2) is
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AN el B A ~ A . ‘

i=1

. n-1 -1 v 225 -1

= n G [egegeylc .

. ""1| l .
This last formula ignores the factor 1 - ciG ¢y = 1 - O(E) in the

denominator of (3.12), which turns out to be equivalent to using the
infinitesimal jackknife - delta method.

If all the gi are identical in value then'(3.l3) is about the same
as the standard answer (3.11), but otherwise the two formulas are quite

different. We will see why when we apply the bootstrap to regression

problems in Chapter VII.
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IV. BIAS OF THE JACKKNIFE VARIANCE ESTIMATE

This section shows that the jackknife variance estimate tends to be
conservative in the sense that its expectation is greater than the true
variance. The actual statement of the main theorem given below is neces-
sarily somewhat different, but all of our Monte Carlo reéults, for example
Tables 3.1 - 3.3, confirm that @R is, if anything, biased moderately
upwardT. This contrasts with the delta method, which we have seen to be
capable of severe downward biases.

The material of this chapter is somewhat technical, and can be skipped
by readers anxious to get on with the main story. On the other hand it is
nice to have a precise result in the midst of so much approximation and
heuristic reasoning. A fuller account of these results is given in Efron
and Stein (1981). Section 4.3, concerning influence functions,is referred
to in Chapter VI.

Once again let 6(X1’ Xz, cees Xn) be a statistic symmetrically
defined in its n arguments, these being an i.i.d. sample from an unknown

1£d F. In order

distribution F on an arbitrary space Y, Xl’ X2, ooy Xn
to use the jackknife formula (3.2), it is necessary that § also be
defined for sample size n-1. Let Varn be the variance of @(Xl, X2,

. Xn), Varn_1 the variance of G(Xl, X2’ ey Xn—l)’ and define

r~ n A A~ 2
VAR = 121 [85y = 81" - (4.1)

N
+Notice that in Table 3.1, F normal, the 200 jackknife estimates VAR

averaged .0854 (= .2802 + (.199/200) .0842) compared to the true vari-
ance .0816 (= .2862).
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It is useful to think of VAR, formula (3.2), as estimating the true
variance Varn in two distinct steps:
(i) A direct estimate of Varn_l, namely GAR, and

(ii) a sample size modification to go from n-1 to n,

n-1

N
VAR = VAR . (4.2)

n

The main result of this chapter concerns (i). We show that

Y aand S 4
EF VAR __Varn_1 . (4.3)

S

VAR always overestimates Varn 1 in expectation. We also discuss,
briefly, the sample size modification (ii), which is based on the fact
that for many familiar statistics

n-1 ‘ 1
var, = 2Lyar 4 o(?) , (4.4)

the O(l/n3) term being negligible compared to the modification -% Varn_l =

2 A = _ n-1
0(1/n"). For 08 = x, Varn = Varn_l exactly,

1. ANOVA Decomposition of 6. This will be the main tool in proving

(4.3). Tt is a decomposition of é(Xl, X2’ cens Xn) based on the ANOVA

decomposition of a complete n-way table. Assume that Eng < », and define

W= Ep (4.5)
ui = o(X,) = n[EF{§lXi} - ul
_ _ 2 A A A
Bigr = B(XX,y) =n [EF{elxi,xi,} - EF{elXi} - EF{e[xi,} +ul ,
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etc., the last definition being

N123...n = NEps Xps Xgs eney X))

n.- o A
nl6 - B {6]X,, X, .ouy X4} - E{8]x], Xys wees X oy X}

vee + (DM

In the usual ANOVA terminology 1 1is the grand mean, na., is the i-th
main effect, n2 Bii' is the ii'-th interaction, etc. The reason for
multiplying by powers of n is discussed below.

There are 2" random variables U, ai, Bii" defined

> M2,
above, corresponding to the 2t possible subsets of {1, 2, ..., n}.
They have three salient properties:

Property 1. Each random variable is a function only of the Xi indi-

cated by its subscripts (e.g. 837 is a function of X3 and X7).

Property 2. Each random variable has conditional expectation O,
when conditioned upon all but one of its defining Xi (e.g. EFal = 0,
EF{BlZIXZ} = 0).

Property 3. 6 decomposes into a sum of 1, o, Bii" eees Myog o

as follows,

1

+;H”123...n , (4.6)

A 1 1
0(X, Xyy vony X)) =0+ Z ot ) Biyr t
i n i<i

(i< i'" 4is short for 1 < i< 1i' <n, ete.)
The proofs of properties 2 and 3 are essentially the same as those
for the standard ANOVA decomposition of an n-way table, see Scheffe (1959),

Section 4.5, and are given in Efron and Stein (1981l). Notice that property

2 implies
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, ! .
Property 2'. The 2 random variables 1, o, Bii" cees Nyog o

are mutually uncorrelated (e.g. EFulaz = 0, EFalBlz = 0).

2. Proof of the Main Result. First of all notice that the main

result (4.3) concerns only samples of size n-l. It is really a statement
about @(Xl, XZ’ ooy Xn-l)’ and there is no need to define the original

X

statistic e(Xl’ X2’ oo Xn). We will need both 6(Xl, XZ’ cees X _ )

and 6(Xl, XZ’ aoes Xn) when we discuss (4.4),

Consider decomposition (4.6) for G(Xl, X2, cons Xn—l)’ and define

2 2 T
Ga = VarFoci . OB = VarF Bii' , ete, 4.7)
Using Property 2', we can immediately calculate Var{é(Xl, Xz, ‘oo Xn} =
Varn__l simply by counting the terms in (4.6),
0'2 0'2 02
oy - () g () @.5)
2(n-1) > 3(n-1)

(Remember we are applying (4.6) to @(Xl, cees Xn—l)’ so, for example, the
o term is 2?;; ui/(n—l).) There are (n-2) terms on the right side of
(4.8).

The statistic é(xl, X,

sooy Xn—l) is what we have previously called
e(n). We can also apply (4.6) to )

y = 6(X1, Xz, ceos Xn—2’_xn)’ take

(n-1

the difference, and calculate
2 2
o o i
A A 2 a n- B
E_{0, -0 = 2|—x + B N 4,
70y (a-1) ! oy’ (1) ) (4.9)
. P '_ n A A 2_ 3__ ~ A 2 )
Since VAR = Zi=l [G(i) - 6(.)] == lei<i'fﬁ [e(i) - G(i,)] , and all the

terms in this last experssion have expected value (4.9), we get
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2 2 .2
, o A\ O A O
Eg VAR = —é% + ( li> ———§—§ + (nz -——;Lfg + oo (4.10)
" (n-1) (n-1)

Comparing (4.8) with (4.10) gives

~/
Theorem 4.1. EF VAR exceeds Varn__1 by an amount

2 2
g (¢
EF‘{?A"R-var _1=(“12>———@—-3—+2(n;)—JL5+ cee (4.11)
n / 2(n-1) 3(n-1)

there being n-2 terms on the right side of (4.11).
Several comments are pretinent: (1) All the terms on the right side
of (4.11) are positive, so this proves the main result (4.3). (2) A

linear functional is by definition a statistic of the form

A

1 .
0=n+= g a(X,) . (4.12)

If @(Xl, Xz, cees Xn—l) is linear, the right side of (4.11) is zero, and

~ —~
- 1 > . . . .
EF VAR Varn_l, otherwise EF VAR Varn_1 (3) Comparing (4.10) with
~
(4.8) shows that EF VAR doubles the quadratic (Gé) term in Varn_l,

triples the cubic term, ete. If GKﬁ is not to be badly biased upwards,
then most of the variance of g(Xl, oo Xn—l) must be contained in the
linear term Z ui/(n-l). This seems usually to be the case. The theory
of influence ;unctions discussed below shows that it is asymptotically

true under suitable regularity conditions on é. (4) Tables 3.1 - 3.3

allow us to estimate the proportion of the variance of @(Xl, X vees X 2)

2? n-1

contained in the linear term. The estimated proportions are

Table 3.1: 96%, 93%
Table 3.2: 917, 67%

Table 3.3: 83%, 81%
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(For example, .96 = 1 - (.0854 - ,0816)/.0816, see the footnote at the
beginning of this chapter.) (5) A version of (4.3) applicable for

S(Xl, XZ’ caoy Xn—l) any function, symmetric or not, of any n-1 inde-
pendent arguments, identically distributed or not, is given in Efron and
Stein (1981). (6) The terms Oi, Oé, etc. depend on the sample size,

see the discussion of quadratic functionals below. (7) Steele (1980) has
used (4.3) in the proof of certain conjectures concerning subadditive

functionals in the plane.

3. Influence Functions, The influence function IF(x) of a func-

A A
tional statistic 6 = 8(F) evaluated at the true probability distribution

F, is defined as

8((1-e)F + ESX) - 8(F)

IF(x) = 1lim = s

e>0

where 6x is a unit probability mass on the point x. Under reasonable

conditions, see Huber (1974) or Hampel (1974),

o(F) = 6(F) + = IZI IF(X,) + 0_(5) (4.13)
n L i pn )

This formula looks like the beginning of (4.6).

As a matter of fact, the function 0(x) converges to IF(x) as
n>®, again under suitable regularity conditions. That is the reason
for multiplying by =n in (4.5). Likewise R(x,x') converges to the
second order influence function, etc. In a sense o(x) deserves to be

called the finite sample influence funct on, a point discussed by Mallows

(1974),
4. Quadratic Functionals. Consider the statistic é(Xl, X2, ceesy Xn)
= 2121 [Xi-i]z/n, where the Xi are i.i.d. with expectation £ and vari-

ance 02, Xi iid &, 02). Expansion (4.6) can be evaluated explicitly in

this case:
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8z, Xy woes x) = 0™ 42Ty + LT e, 1y G
i n i<i'
where
I R =R (R (4.15)

B(x,x") = -2(x-8) (x'-E) .

This is an example of a quadratic functional: the ANOVA decomposition
(4.14) terminates at the quadratic term, and 6 is a functional statistic,
6 = 6(F).

Notice in (4.15) that PB(*,*) does not depend upon n, while u(n>

and a(n)(') both involve 1/n terms. (Lim a(n)(x) = a(m)(x) = (x-E)2 + 02,
the influence function of ©, as mentioned above; lim u(n) = u(mo = 0(F.)

n>eo
A
This turns out to be true in general: 0 1is a quadratic functional if and

only if it can be written in form (4.14) with

E_B(X,X)
(n) _ (= F
H =¥ + 2n
and : (4.16)
B(X’X) - EFB(X,X)

ey = o) + -

See Efron and Stein (1981).

Quadfatic functionals are the simplest nonlinear functional statistics,
and as such they can be used to understand the problems caused by nonlinear-
ity, as demonstrated at the end of this chapter. Theorem 2.1 shows that
they justify the jackknife'estimate of bias. We can now prove theorem 2.1:
from (4.14) we get

’é - u(n-—l) + 1 z O‘gn—l)

(*) o pLnle=n) oy g (4.17)

1<i<n n (n—l)2 1<i<i’<n ii
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Def ine

BOX, X))
Ai = A(Xi) =T 0h > EFA = EFA(X) . (4718)

Then (4.16) can be rewritten as

po-) ) TF Dy m o™y - — —F

Subtracting (4.14) from (4.17) gives

AN ~ n _ _ - ‘ i
BIAS = (n—l) (e(.)_e) (n_l) [u(n l)_u(n)] + nnl z [ain'l)_uin)]
’ i

1 n(n-2) B _
+ = [ (n-1)] .z.. Bigr
n i<d :
EA 1 o 247Bp 1 ~
“wtal T L B
i n (n-1)" i<i'

Taking the expectation of this last expression gives

E_ BIAS = —
F n

since Ai—EFlﬁ and Bii' all have expectation zero. However, the first

equation in (4.16) shows that

E_A - oA
1r=u@>_ﬁ>=Eﬁw>-um,

which is the statement of Theorem (2.1).

5. Sample Size Modification. It is not always true that E

VAR > Var ,
F - n

Arbitrarily bad counterexamples can be constructed, which is not surprising
since VAR is defined entirely in terms of samples of size n-1, while Var

is the variance for sample size n. However for many reasonable classes of
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statistics we do have EF‘gzali_Varn, either asymptotically or for all n.

Three examples are discussed in Efron and Stein (1981):

(1) U Statistiecs. A U statistic is a statistic of the form

Pl _ n
0(X), Xyp envy X)) = o ) CeX, Xy s oeees X010
]_l<12<...<lk 1 2 k

k some fixed integer and g some fixed symmetric function of k argu-
ments. Hoeffding (1948) showed that for n-12> k, the smallest possible

. . -1 - .
sample size, U statistics satisfy E;—~Var z_Varn. Combining this

n-1
with Theorem (4.1) and definition (4.2) gives

n-1 - ~ n-1

N
E_ VAR = VAR > Var > Var ,
F n F — —_ n

n n-1

the desired result. Note: Hoeffding's important paper uses what we have
called the ANOVA decomposition, though in rearranged form.

(2) Von Mises Series. This is a term coined by C. Mallows for stat-

istics of the form

a - 1 1
6<Xl’ XZ’ ceey Xn) = U +n . OL(Xi) + 7 . z.' B(Xis Xiv) + ...
i n i<i
1
+ = ) O(X, , X, 5 ooy X, )
nF i <i << L5 ik

Here k 1is a fixed integer, u, o, B, ..., ¢ fixed functions not depending
on n, and n z_k. A Von Mises series is not quite a U statistic. (It

becomes one if we divide by n, n(n-1l), ... .instead of n, n2, ese in

the definition.) Efron and Stein (1981) show that in this case it is not

- N
always true that EEL Varn_l z_Varn, but it is still true that EF VAR z_Varn,

the desired result.
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(3) Quadratic Functionals. TFor a quadratic functional,

3 2 02 20 02
P -
B, VAR = Var_ + n(nl__l) n r; 32n+1 —28— + nO‘A +— A , (4.20)
n -n n (n—l)

2 2 .
where Oup = EFa(X)A(X), Oy = EF[A(X) - EFA] . By constructing examples
N
with OuA sufficiently negative, we can force EF VAR < Varn for small
n. For n large, a sufficient condition being n > _40aA/0§’ we again

PO
have E_ VAR > Var .
F — n
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V. THE BOOTSTRAP

The bootstrap, Efron (19?9), is conceptually the simplest of all the
techniques considered here. We begin our discussion with the bootstrap
estimate of standard deviation, which performed well in Tables 3.1 - 3.3,
and then go on to more general problems. The connection with the jack-
knife is made in Chapter VI.

Given a statistic é(Xl, XZ’ cees Xn) defined symmetrically in

iid

X., X,, ..., X_ °~ F, write the standard deviation of 8 as
1’ 72 > “n i

sd = 6(F, n, 8) = o(F) . (5.1)

This last notation emphasizes that given the sample size n and the form
of the statistic @(-, *, *, *), the standard deviation is a function of
the unknown probability distribution F. The bootstrap estimate of stan-

dard deviation is simply o(*) evaluated at F=F,
$D = o(F) . (5.2)

Since F 1is the nonparametric maximum likelihood estimate of ﬁ, another
way to say (5.2) is that SD is the nonparametric MLE of 8d.

Example 1. The Average. The sample space 7Y = Rl and @(Xl, Xz,

cees Xn) = X. 1In this case we know that the standard deviation of X is

o(®) = /1%

where Uy = EF[X - EFX]Z, the second central moment of TF, as in (3.5).

Therefore
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ey

= o = tf,/m1"?,

(5.3)

A

n -2 L A
Uy = Zi=l [xi—x] /n being the second central moment of F, i.e. the sample
value of Uy This is not quite the usual estimate of 8d sinee it uses
the maximum likelihood father than the unbiased estimate of uz. The boot-

R .
strap variance estimate VAR = uZ/n is biased downward,

N N n-1 "2 n-1 -
Ep VAR = E_ Hy/n = —=—== = Var{X} .

A

We could rescale (5.2) to make VAR unbiased in the case 652, i.e. define

/2

éb = [n/(n—~l)]l 0(?), but this doesn't seem to give better 8d estimates.
The Jjackknife estimate of standard deviation 7s rescaled in this way, as

will be made clear in Section 6.

1. Monte Carlo Evaluation of SD. Usually the fumction O(F) cannot
be written down explicitly. In order to carry out the calculation of SDh,
(5.2), it is then necessary to use a Monte Carlo algorithm.

1. Fit the nonparametric MLE of F,

>

1 .
F: mass o oat X, i=1, 2, ..., 1 . (5.4)

2., Draw a "bootstrap sample' from %,

* * % 11 ~
X, X, ..., x g (5.5)

A~ *
and calculate 06 = G(Xl, XZ’ coos Xn).
3. Independently repeat step (2) a large number "B" of times,

¥ *9 *
obtaining "bootstrap replications”™ 6 l, 67, ..., B B, and caleulate
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SD = . (5.6)

The dot notation indicates averaging as before, §*. = szl §*b/B.

If we could let B»~ then (5.6) would exactly equal (5.2). 1In prac-
tice we have to stop the bootstrap process sooner or later, sooner being
preferable in terms of computational cost. Tables 3.1, 3.2, 3.3 used
B = 200, 1000, 512 respectively. These values were deliberately taken
large, for investigating quantities other than éb, and B = 100 per-
formed almost as well in all three situations. In most cases there is no
point in taking B so large that (5.6) agrees very closely with (5.2),
since (5.2) itself will be highly variable for estimating the true Sd.
This point will be discussed further as we go through the examples.

Example 2. Switzer's Adaptive Trimmed Mean. The charm of the jack-

knife and the bootstrap is that they can be applied to complicated situa-
tions where parametric modelling and/or theoretical analysis is hopeless.
As a relatively simple "complicated situation", consider Switzer's adap-
tive trimmed mean é(xl, Xy eoes xn), defined in Carroll (1979):

(1) given the data X35 X5, «.e, X, compute the jackknife estimate
of variance for the 5%, 10%, and 25% trimmed means, and

(ii) 1let 6 be the value of that trimmed mean corresponding to the
minimum of the three variance estimates.

The results of a large Monte Carlo study are shown in Table 5.1. Two
sample sizes, n = 10, 20, and three distributions, F ~ n(o,1), Gl’ eh(o’l)
were investigated. B = 200 bootstrap replications were taken for each

trial.+ The bootstrap clearly outperforms the jackknife, except for the

+ .
"Trial" always refers to a new selection of the original data Xl, X2, .e
%
Xn ~ F, while "replication"refers to a selection of the bootstrap data X
* * A
Xps eeey X~ F,
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case n = 10, F . eh(o’l)

, for which both are ineffective. The bootstrap
results are surprisingly close to the theoretical optimum for a scale

invariant Sd estimator, assuming full knowledge of the parametric family,

when F ~ n(0,1) and F ~ Gl'

r—n—-Sample Size n = 10———m_——1 r—Sample Size n = 20—

F ~n(0,1) G, no,1) n(o,1) G, €0, 1)
Jackknife Ave .327 .296 2421 .236 .234 .324!
SD | std Dev 27 | .173 | .335 || .o70 | .143 | .228 |

[Coeff Var] [.39] | (.581 |I[.80] ||[.301 |[.61] |I[.70]

Bootstrap Ave .328 | .310 | .541 | .236 | .222 | .339!
sD, Std Dev .081 .123 .310 || .047 072 .142 |

B = 200 [Coeff Var] [.25]1 | [.401 | 1[.571 {|[.201 ([.321 |[.42]

True Sd .336 | .306 | .483 .224 222 | .317

[Min possible CV] [.241 1.33] [.16] [.23]

No. of Trials 1000 | 3000 |1000 |{1000 {3000 1000

Table 5.1. Estimates of standard deviation for Switzer's adaptive trimmed
mean using the jackknife and the bootstrap. The minimum possible Coeff of
Variation for a scale invariant estimate of standard deviation, assuming

full knowledge of the parametric family, is shown for F ~ n(0,1) and Gl'

Example 3. The Law School Data. Again referring to Table 2.1 and

Figure 2.2, B = 1000 bootstrap replications of the correlation coefficient
were generated. Each of the 1000 bootstrap camples consisted of drawing

15 points with replacement from the 15 original data points shown in Figure
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2.2, the corresponding bootstrap replication being the correlation coeffi-
cient of the resampled points. A typical bootstrap sample might consist

of law school 1 twice, law school 2 zero times, law school 3 once, etc.
(Notice that the expected proportion of points in the original sample absent

from the bootstrap sample is (1 - 1/15)15 = .36 = e_l.)

normal theory density, histogram

histrogram
—— percentiles

| N
50% 84%

, 4 ¥

-4 -3 -2 -1 0 1 2

Ak A

Figure 5.1. Histogram of 1000 bootstrap replications of p - p for the
X
law school data. The smooth curve is the normal theory density of o,

A
centered at p, when the true correlation is p = .776.

The bootstrap estimate of SD, (5.6), equaled .127, intermediate
between the normal theory estimate .115 and the jackknife estimate .142.
Ak ~
Figure 5.1 displays the histogram of the 1000 differences p b - p. Also

% ‘ ~
shown is the normal theory density of 8 , centered at p, if the true
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correlation coefficient is p = 6 = .776, Johnson and Kotz (1970), p. 222,
The similarity between the histogram and the demnsity curve suggest that
the bootstrap replications may contain information beyond that used in
calculating (5.6). We consider this point im Chapter X where we try to
construct nonparametric confidence intervals.

2. Parametric Bootstrap. TFisher's familiar theory for assigning a

standard error to a maximum likelihood estimate is itself a "bootstrap
theory", carried out in a parametric framework. Consider the law school
example again, and suppose we are willing to accept a bivariate normal
model for the data. The parametric maximum likelihood estimate of the

unknown F is

i i i
. ~ ¥ yy yz
Hy uyz Moz

where, if X = (Y,Z) denotes a typical bivariate data point, ﬁy =y,

Mo, = 2(y;-y) (z;-2)/n, etc.

We could now execute the bootstrap algorithm exactly as before,

except starting with ?NO in place of F at (5.4). 1In fact, we don't

RM
carry out the Monte Carlo sampling (5.5) - (5.6). Theoretical calcula-
tions show that if we did, and if we let B2, éb as calculated at (5.6)
would approximately+ equal [(1—62)/(n—3)]l/2. Theoretical calculation

is impossible outside a narrow family of parametric models, but the boot-

strap algorithm (5.4) - (5.6) can always be carried out, given enough

The approximation involved is very much like the approximation of the

bootstrap by the jackknife or infinitesimal jackknife, as discussed in
Chapter VI.
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raw computing power. The bootstrap is a theory well-suited to an age of
plentiful computation, see Efron (1979b).

3. Smoothed Bootstrap. We might wish to attribute some smoothness

‘to F, without going all the way to the normal model (5.7). One way to
do this is to use a smoothed estimate of F in place of F at step (5.4).

In the law school problem, for example, we might use

F.=Fx (.5 FNORM) R (5.8)

N

the convolution of F with a version of FNORM

This amounts to smearing out the atoms of F into half sized versions

scaled down by factor .5.

N

of F » each centered at an x,.. Notice that ﬁ has the same corre-
NORM i .5

lation coefficient as does ¥ and ﬁNORM’ namely' the observed value

0 = .776. If we were bootstrapping a location parameter, say ﬁy’ instead

of 6, we would have to rescale F 5 to have the same covariance matrix

as f. Otherwise our Sd estimate would be biased upward.

Example 4. The Correlation Coefficient. Table 5.2, taken from Efron

(1980b), is a comparative Monte Carlo study of 15 estimators of standard
deviation for the correlation coefficient 6, and also for $ = 1:anh_1 8 =
(1/2) log (1+p)/(1-p). The study comprised 200 trials of Xl, X2’ ceey
Xi4 ~ Bivariate normal with true correlation coefficient P = .5. Four
summary statistics of how the Sd estimates performed in the 200 trials,
the average, standard deviation, coefficient of variation, and root mean
square error (of estimated minus true standard deviation), are presented
for each of the 15 estimators, for both 6 and $. We will refer back

to this table in later chapters as we introduce the estimators of lines

7-14,
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Lines 1 and 2 of Table 5.2 refer to the bootstrap estimate of standard
deviation (5.6), with B = 128 and 512 respectively. A components of
varianée analysis revealed that taking B=® would not furthef decrease
the root mean square error below .064 for éb(a)' or .061 for éb(@).

Line 3 of the table used the smoothed bootstrap (5.8). Lines 4 and 5

. * A A
used uniforim smoothing: the Xi were selected from F * (.5 F ), where

UNIF

§UNIF is the uniform distribution over a rhombus selected such that it

has the same covariance matrix as F The jackknife results, line 6,

NORM®
are substantially worse, as we have already seen in Table 3.3.

Line 15 gives summary statistics for the parametric bootstrap, i.e.
the standard normal theory estimates éb(a) = [(1—82)/(n-3)]1/2, éb(&) =
[1/(n—3)]l/2. The ordinary bootstrap performs surprisingly close to ‘the
normal theory estimate for éb(a), so it is not surprising that smoothing
doesn't help much here. The motivation behind the t:;xnh;l transform is
to stabilize the variance, that is to make $D a constant. In this case
smoothing is quite effective. Notice that if the constant .5 in (5.8)
were increased toward «, the normal smoothed bootstrap would appfoach
the normal theory estimate of Sd, so that the root mean square error

would approach zero.

4. Bootstrap Methods for More General Problems. The standard devia-

tion plays no special role in (5.2), or in anything else having to do with
the bootstrap. We can consider a-perfectly general one-sample problem.

Let

R(X,F)

be a random variable of interest, where X = (Xl, X2, ooy Xn) indicates

the entire i.i.d. sample X., X,, ..., X . On the basis of having observed
1> 72 n

X=§, we wish to estimate some aspect of R's distribution, for example

EFR or ProbF{R < 2},

43



The bootstrap algorithm (5.4) = (5.6) is carried out exactly as before

except that at step 2 we calculate
X x5 A
R =RX , F)
A*
instead of § , and at step 3 we calculate whichever aspect of R's dis-

A
tribution we are interested in, rather than SD. For instance, if we wish

to estimate EFR wé calculate

*

1
E*R =—1;;

&%
RP (5.9)

il ;~11d

b=1

while if we are interested in ProbF{R < 2} we calculate

*b
Prob*{R* <2} = fjj&—giiiél .

In all cases, we are calculating a Monte Carlo approximation to the non-
parametric MLE for the quantity of interest, the approximation being that
B is finite rather than infinite.
. * 3 . o * * Fay
Notation. "E,R " indicates the expectation of R = R(X , F) under
. * * * iid 2 A .
the bootstrap sampling procedure Xl’ X2, caos Xn ~" F, F fixed as at

(5.4); likewise the notations "Prob ", "Var,", "SD,", etc. Expression

(5.9), like (5.6), ignores the fact that B is finite.

5. The BootstrapkEstimate of Bias. Suppose we wish to estimate the
bias of a functional statistic, Bias = EFG(ﬁ) - 8(¥) as at (2.3). Ve
can take R(X,F) = 8(F) - 8(F), and use the bootstrap algorithm to esti-

mate EFR = Bias. In this case

* * A A%k ~ A% ~
R =RX,F)=06F)-06(F =06 -9,

b



Ak ~t%e A%k
where 8 = 0(F ), F being the empirical probability distribution of
A% * *
the bootstrap sample: F  puts mass Mi/n on X where Mi is the

number of times x

; @appears in the bootstrap sample.

s %
The bootstrap estimate of bias is BIAS = E,R , approximated by

-86=9%"-8. (5.10)

The 1000 bootstrap replications for the law school data yielded 6*. = ,779,
so BIAS = .779 - .776 = .003, compared to =-.007 for the jackknife and
-.011 for normal theory. In the Monte Carlo experiment of Table 5.2, the
200 bootstrap estimates of bias, B = 512, averaged -.013 with standard
deviation .022. The jackknife bias estimates averaged -.018 with stan-
dard deviation' .037. The true bias is -.014.

We don't need 8 to be a functional statistic to apply (5.10), and
as a matter of fact we don't need 8 to be "the same statistic as 0"
in any sense. We could just as well take B6(F) = EFX énd g = sample

median. To state things as in (5.1), (5.2), write the bias EFé ~ 0(F)

as
Bias = B(F, n, 6, 8) = B(F) ,

a function of the unknown ¥F, once the sample size n and the forms

8(*,*.v.,*) and 6(+) are fixed. Then the bootstrap estimate is simply

AN\ A
BIAS = B(F) .
. S N
Chapter VI indicates the connection between BIASBOOT and BIASJACK’

the bootstrap and jackknife estimates of Bias. The following theorem is

proved in Chapter VI, Section 6:
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Theorem 5.1. 1f B = 0(F) 1is a quadratic functional, then

6. Finite Sample Spaces. The rationale for the bootstrap method is

particularly evident when the sample space Y is finite, say Y= {1, 2,
eeos L}. Then we can express F as f = (f1, £,, «.., £;), where
fz = ProbF{X=2}, and F as £ = (fl, fz, cens fL), where fg = #{xi = 2}/n.

The random variable R(X,F) can be written as
R(X,F) = Q(£,£) , (5.11)
some function of g and f, assuming that R(X,F) is invariant under

permutations of the Xi'

The distribution of f given f is a rescaled multinomial, L cate-

gories, n draws, true probability vector f

~

>

£lf ~ Malt (n,f)/n . (5.12)
: * % % 14id A
The bootstrap distribution of Xl’ X2, ce o Xn ~7 F can be described
i £ £ = (8, 2 2%y, wh B = KT = g t is th
n terms of f = ( 1> fps eees £1), where £, = 1= /n. It is the

same as (5.12), except with f pléying the role of £,
AR A A ‘ ;
£ ]f ~ Mule, (n,£)/n . (5.13)

The bootstrap method estimates the unobservable distribution of

N * A" A
Q(f,f) wunder (5.12) by the observable distribution of Q = Q(f%, f)

~

under (5.13).

Example 5. Binomial Probability. Y = {1,2}, 8(f) = £, = Probf{X=2},

2
6 = G(f) = %2’ and R(X,F) = Q(f,f) = %z—fz, the difference between the
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observed and theoretical frequency for the second category. From (5.13)

*
we see that Q 1is a standardized binomial,

e ak N Bi(n, fz) .
Q =5 - H ¥ - 5
with first two moments
£ f
Q*(O,n).

(The notation "%" indicates the bootstrap distribution.) The implication
from the bootstrap theory is that EfQ = 0, i.e. that %2 is ﬁnbiased

Ak A “A A
for f,, and Var{Q} = Var{fz—fz} = (£;£,)/n, which of course is the

standard binomial estimate.

Asymptotiecs. As the sample size n»®, both

L HhY

—E under (5.12) and
E*—f under (5.13) approach the same L dimensional normal distribution,
hL(O, if/n), where if has diagonal elements fz(l‘fz)’ off-diagonal
element; —fzfm. If ~Q(',°) is a well-behaved function, as described
in Remark G of Efron (1979a), then the bootstrap distribution of Q* is
asymptotically the same as the true distribution of Q. This justifies
bootstrap inferences, such as estimating EFR by E*R*, at least in an
asymptotic sense,

What is easy to prove for Y finite is quite difficult for ) more
general. Recently Freedman and Bickel (1980) and Singh (1980) have
separately demonstrated the asymptotic validity of the bootstrap for I
infinite. They consider statistics like the average U-statistics, t-
statistics, and quantiles, and show that the bootstrap distribution of
R* converges to the true distribution of R. The convergence is gener-

ally quite good, faster than the standard convergence results for the

central limit theorem.
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7. Regression Models. So far we have only discussed one-sample

situations, where all the random quantities Xi come from the same dis-
tribution F. Bootstrap methods apply just as well to many-sample situa-
tions, and to a variety of other more complicated data structures. For
example, Efron (1980a) presents bootstrap estimates and confidence inter-
vals for censored data. We conclude this chapter with a brief discussion
of bootstrap methods for regression models.

A reasonably general regression situation is the following: inde-

pendent real-valued observations Yi =y; are obsefved, where
Yi = gi(B) + Ei 5 i=1, 2, ceey I o (5'14)

The functions gi(') are of known form, usually depending on some observed
vector of covariates Ci while B 1is a pXl vector of unknown parameters.

. . . 1
The ei are i.i.d. for some distribution F on R,

iid .
e, ~ F, i=1l, 2, ..., n

i s (5.15)

where F is assumed to be centered at zero in some sense, perhaps EFe = (
or ProbF{e < 0} = .5,
Having observed the nXl data vector Y =y = (yl, Vo5 cees yn)',

we estimate B by minimizing some measure of distance D(y,n) between

y and the vector of predictors n(B) = (g,(B), g,(B), ..., gn(B))',

~

B: min D(y, n(B)) . (5.16)
PR A

| . . _tvn 2
The most common choice of D is D(Z,Q) = zi=l (yi-ni) .
| Suppose model (5.14) - (5.16) is too complicated for standard analysis,

but we need an assessment of B's sampling properties. For example, we
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ciB

might have gi(B) = e, F of unknown distributional form, and D(Z’D) =

Zlyi—ni[. The bootstrap algorithm (5.4) - (5.6) can be modified as follows:

A

. 1
1) Construct F putting mass o at each observed residual,

A 1 A _ A
F: mass o at € =y, gi(B) . (5.17)

2) Draw a bootstrap data set

* A *
v, =g, @B +e , i=1, 2, ..., n , (5.18)

* A
where the ei are i.i.d. from F, and calculate
Ak . %
B : min D(Y , n(B)) . (5.19)
B ~ 0~

3) Independently repeat step (2) B times, obtaining bootstrap rep-

: %1 A% A%
lications B , B 2, cees B.

a3
As an estimate of B's covariance matrix, for example, we can take

B
IR YU Y

b=1
o = =) . (5.20)

Example 6. Linear Regression. The ordinary linear regression situa-

tion is gi(B) = ciB, c; a 1Xp vector of known covariates, and D(y,n) =
Z(yi—n.)z. Let C be the nxp matrix with c, as the i-th row, and

i
= C'C. For convenience assume that the first element of each ci is

(X ]

1, and that G is of full rank p.

In this case we can evaluate (5.20) without recourse to Monte Carlo

sampling. Notice that F has expected value 0 and variance
A2 n a2 * 3 * . . .
g = zi=l ei/n, and that Yi = ciB + g, is a standard linear model written

N - *
in unusual notation. Standard linear model theory shows that B = G 1C'Y s

and that
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/\ A -
Cov = 6% ¢t . (5.21)

In other words, the bootstrap gives the standard estimate of covariance in
the linear regression case, except for the use of T @i/n rather than
z éi/(n—p) to estimate 62. This contrasts with the jackknife result
(3.13).

The algorithm (5.17) - (5.19) depends on 7 being a reasonable
estimate of F, and can give falsely optimistic results if we are
fitting highly overparameterized models in hopes of finding a good one.
As an example, consider ordinary polynomial regression on the real line.
The observed data is of the form (tl,yl), (tz,yz), cous (tn,yn), where
t, is the value of the predictor variable for Vi If n=20 and we
fit a 19th degree polynomial (gi(B)==ciB where c;= (1, ti’ ti, ey tig)),
then 82 = X gi/20 is likely to be very small and (5.21) will probably
give a foolishly optimistic assessment of Cov(B). 1In this case the

trouble can be mitigated by using the unbiased estimate of 02, % gi

. 2 : . . .
instead of §°, but the general situation is unclear.

’

As a more cautious alternative to (5.17) - (5.19) we can use the
one—sample bootstrap (5.4) - (5.6), with the individual data points being
X, = (ti,yi). This method appears to give reasonable answers in model
selection situations, as discussed in Chapter VII. On the other hand,

it gets us back to results more like (3.13) in the standard linear model.
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VI. INFINITESIMAL JACKKNIFE, DELTA METHOD, AND THE INFLUENCE FUNCTION

In this section we show the connection between the jackknife and the
bootstrap, using a simple picture. The picture suggests another version
of the jackknife, Jaeckel's (1972) "infinitesimal jackknife". The infinite-
simal jackknife turns out to be exactly the same as the ordinary delta
method, when the latter applies, and also the same as methods based on the
influence function, Hampel (1974). We begin with a brief discussion of
resampling procedures, a generic name for all methods which evaluate 8
at reweighted versions of the empirical probability distribution F.

l. Resampling Procedures. For simplicity, consider a functional

statistic § = 6(%), (2.1). The data X5 Koy eeey X is thought of as

observed and fixed in what follows. A resamp ling vector+

* * %
E = (Pl, P

*
gs rees Pn)

is any vector on the n dimensional simplex

*
s,=1: 2 >0, P, =1}, (6.1)

0~

i=1

*
in other words, any probability vector. Corresponding to each P is a

A%

reweighted empirical probability distribution F ,

A *
F : mass Pi on X, i=1l, 2, ..., n, (6.2)

~k

" value of 8, say 9

and a "resample

3

Ak A * A % :
6 =08(F(®)) = 6 . (6.3)

*
+It is notationally convenient to consider P , as well as some of the
other vectors introduced later, as rows rather than columns.
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Some of the resampling vectors play special roles in the bootstrap

and jackknife theories. In particular

* 1
Y

=
'_l

3 sosy E) (6'4)

corresponds to F itself, and to the observed wvalue of the statistic

A~ A %
O = 8(P ). The jackknife considers vectors

11 1 1 . % -
E(i) = (;1'_—1'9 ;{:jj’ seey O’ n-1° *°°» n—l) 9 (O in i-th Place) ’ (6o5)

with corresponding values 6(1) of the statistie, i=1, 2, ..., n. The
bootstrap considers all g* vectors of the form yé/n, g* having noen~-
negative integer coordinates adding to n.

Another way to describe the bootstrap algorithm is to say that the
resampling vectors are selected according to a rescaled mul;ingmiai‘disw

tribution,
*
P ¥ Mult (n, P°)/n , (6.6)
n independent draws on n categories each having probability 1/n,

rescaled by factor 1/n. The symbol "%" is a reminder that the statis-

%
tician, not nature, induces the randomness in P . Here

P, =
i

x HE = x)
T

2

the proportion of the bootstrap sample equal to x.. The bootstrap stan-

dard deviation and bias estimates are simply

A ‘ A, *
D = sp, 6(p)
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and

A

A~ %
BIAS = E,6(P) - 6 ,

SD, and E, indicating standard deviation and expectation under (6.6).
For future reference note that distribution (6.6) has mean vector and

covariance matrix

*
P % (°, I/n® - P°'P°/m) , (6.7)
I the nxn identitiy matrix.
PR

Figure 6.1 shows a schematic representation of the function 6(P )

as a curved surface over the simplex gn. The vertical direction can be
* *

taken along the n-th coordinate axis since Pn is redundant, Pn =1 -

n-1 _*
Licy B3

Bxample: Quadratic Functionals. A quadratic functional as defined

bl

*
at (4.14), (4.16) is also quadratic as a function of P

*

A A o o * _o o
B2 = 82" + @ MU + 272V (*p°)' . (6.8)

The column vector U and symmetric matrix V are expressed, after some alge-

(=) - -
braic manipulation, in terms of o, =0 (xi) and Bii,—-Bi,i—-B(xi,xi,) s

’ V..|=B..'_B. —B.|+B

L) i1 11 1 oq e

U, =a;, -a, + Bi- -8B s (6.9)

1

the dot indicating averages, a, = zi ai/n, Bi‘ = Ei' Bii,/n, B.. = Ei Bi./n.

Expressions (6.9) satisfy the side conditions

g U, =0, g; Vi = E V=0, (6.10)
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which defines the quadratic form (6.8) uniquely. (The possibility of non-
A,k

uniqueness arises because O(P ) is defined only on gn, lying in an n-1

dimensional subspace of R".) 1In the special case B(+,*) = 0, 6 is a

linear functional statistie,

n
é(xl, Xys eeey X)) = %- Z a(x,) , (6.11)

I x A % Ao £ o

and 6(P ) 1is a linear function of P , B(P ) = 8(P°) + (P -P )u, Ui =

0, =0 .
i

1.3

2. Relation Between the Jackknife and Bootstrap Estimates of Standard

Deviation. There is a unique linear function (P ) agreeing with

LIN
A %
8(P ) at P( y? i=1, ..., n,

£ o
LIN(P ) = e( o+ (E-P)U
(6.12)

= (n_l)(e(.) - e(i))!

i=1, 2, ..., n .

Theorem 6.1. The jackknife standard deviation estimate for 9,

Sb

sacg(P)> is
I 8y = /-2 5 _ " 6.13
SDack® = /o1 SPxCOppy® ) . (6.13)
In other words, ébJACK(g) is itself almost a bootstrap Sd estimate,
n . 1/2 » A n .1/2 S N
equaling [ l] SDBOOT(GLIN)' The factor [n—l] makes [SDJACK(G)]

unbiased for [Sd(@)]2 if 8§ is a linear functional. As remarked in
Chapter III, we could but don't use the same factor to make [ébBOOT(§)]
unbiased in the linear case.

Proof'. From (6.12), (6.7), and the fact that P°U = ZUi/n=0,
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A *
Figure 6.1. A schematic representation of 6(P ) as a function on gn.

A

The curved surface §(°) is approximated by the linear function 6

Ln¢)-
A &
The bootstrap standard deviation estimate is SD,06(P ), the jackknife Sd
estimate is [—2—11/2 sp, 8 (P*) where 8D, indicates standard devia-
n-1 * "LIN~ 7? *

tion under the multinomial distribution (6.6).
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A

. a2 1/2
5Dy eLIN(P*) - 7= - [@333 Z[e(i)—e(°)]2] (6.14)

~

n-1.1/2 =« A
= 5 SDppcx [
A ~ *
Notice that for linear functionals 0, we can evaluate SD,0(P ) directly
from (6.7), without resorting to Monte Carlo calculations. The jackknife
requires less computation than the bootstrap because it approximates any
6 with a linear functional.
Figure 6.1 is misleading in one important sense. Under (6.6),

* o 1 . [ 1
[P -p ” = 0 _(—), while [P, . -P ” = 0(3). The bootstrap resampling vectors
~ ~ P ‘/-r-{ ~(l) ~ n
tend to be much further away from the central value P° than are the jack-
knife resampling vectors P(i)° This is what cuases trouble for markedly
nonlinear statistics like the median. The grouped jackknife, Chapter II,

Section 2, resamples at distance %{h g%iil/z

from P°. Taking the group
1/2 '

size h = n gives distance 0(1/vn), as with the bootstrap, and gives
an asymptotically correct Sd estimate for the sample median.

3. Jaeckel's Infinitesimal Jackknife. Figure 6.1 suggests another

A %
estimate of standard deviation: instead of approximating 6(P ) by

~ * ~ *
eLIN(E ), why not use eTAN(E ), the hyperplane tangent to the surface

A % *
6(P ) at the point P = P ? The corresponding estimate of standard

deviation is then
SD = sp, 6., (P) , (6.15)

SD,, indicating standard deviation under distribut on (6.6) as before.

Formula (6.15) is Jaeckel's (1972) <nfinitesimal Jackknife estimate of

standard deviation. In other words, ébIJ(é) = SD ¢ ).

BOOT * TAN
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The function eTAN(.) equals

N * A * [
eTAN(P Yy =6(®°) + (P -P)U ,
" T T (6.16)
8(P° + €(8,-P°)) - 8(P°)
U, = lim — >t = i=1, 2, ..., n

i £
>0

61 being the i-th coordinate vector. The Ui are directional derivatives.
ALk %
Suppose we extend the definition of 6(P ) to values of P outside 8,
ALK
in any reasonable way, for example by the homogeneous extension 8(P ) =
AL, % * * n * * . . .
8(Q), Qq =7P /2i=1 Pi' (If P has nonnegative coordinates summing to
* P
any positive value then Q ¢ Sn; the homogeneous extension assigns 6(P )

the same values along any ray from the origin.) Let D, a column vector, be

~ * * o .
the gradient vector of 0O(P ) evaluated at E ==g , D, = This

i * _of

P =P

A%
definition makes sense because 6(P ) is now defined in an open neighbor-

hood of P°. Then Ui = (Gi—P°)D, and we see that

n
] U, =PU=0. (6.17)
. 1 ~ o~
i=1

Therefore, applying (6.7) to (6.15), (6.16) shows that the infinitesimal

jackknife estimate of standard deviation is

1/2

$p__(®) =1 E v2/n%] (6.18)
1J s i : :

i=1
The infinitesimal jackknife resamples § at E* values infinite-~
simally close to B°, rather than 0(1/n) away as with the ordinary jack-
knife - hence the name "infinitesimal". Looking at the last equation in
(6.16), take ¢ = -1/(n-1) instead of letting e>0. Then
U, = [6(g°)+-e(§i-g°)) - 8 1/e = (n-l)(§-6(i)), similar to definition

(6.12). (Compare (6.14) with (6.18).)
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We can use other values of € to define other jackknifes. For example,

taking € = 1/(n+l) in (6.16) makes Ui = (n+l)(6[i]—§), where é[i] =

N N
cooe .y X., X ceey X i.e. the lue ) hen A
6(xl, X, > Xgs Xyp X4 . n), value of when x, is

repeated rather than removed from the data set. The corresponding standard

2,1/2

deviation estimate [Z(Ui—U_)z/n ] » which might be called the "positive

jackknife'", is the bootstrap Sd of the linear function having value §[i]
at P[i] = (/n, 1/n, ..., 2/n, ..., 1/n), 2/n in the i-th place, i=1, 2,
..+ N, The positive jackknife was applied to é the correlation coeffi-
cient in Hinkley (1978), and produced estimates of standard deviation with
extreme downward biases.

Getting back to the infinitesimal jackknife, consider a linear func-

tional statistic 0 = U+ %-Za(Xi); having representation (6.3), é(PA) =

%
U+ ZPiai. Then Ui as defined in (6.16) equals ai—a., o, = Zai/n, S0

R T n 9 1/2
D = [ ) (a;-0,)%/n ] .

n=1

Definition (6.15) does not include the bias correction factor vn/(n-1),

2
] by

so for linear functionals EF[ébI = Egl-[Sd]z, Multiplying éb

J IJ

V14713 = 1.038 helps correct the severe downward bias of the infinitesimal
jackknife evident in line 7 of Table 5.2, but not by much.

The directional derivatives Ui in (6.16) can be calculated explicitly
for many common statistics. For example, if the statistic is the sample

correlation coefficient 6, then

v, \2 z -1 \2 y, -l z, -
u, = - 38| A= +(—i——z— +<——Z,;__. =] (6.19)
Hyy > uZZ 4 uYY / Uzz‘
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~ _ ~ _ _'\ 2 .
where x, = (yi’zi)’ uy = Zyi/n, uyy Z(yi uy) /n, etc. In fact, it is

usually more convenient to evaluate the Ui numerically: simply substi-
tute a small value of € into definition (6.16). The value € = .00l

was used in Table 5.2.

4. Influence Function Estimates of Standard Deviation. The influence

function expansion (4.13), 6(F) = 0(F) + I IF(Xi)/n + Op(l/n), approximates
an arbitrary functional statistic 6(?) by an average of i.i.d. random
variables ZIIF(Xi)/n. This immediately suggests the standard deviation

approximation

sd(8) = [var_ IF(Xx)/n]*/? , (6.20)

F

where, since EF IF(X) = 0 (basically the same result as (6.17), see

Section 3.5 of Hampel (1974)),

Var. IF(X) = J TF2 (%) dF(x) .
F X

In order to use (6.20) as an Sd estimator, we have to estimate
Var, IF(X). The definition IF(x) = lim [6((1-€)F + ed ) - 8(M /e is
e>0
obviously related to the definition of Ui in (6.16). As a matter of

fact, Ui is the influence function of 6(F) for F=§, evaluated at

x=x,. Mallows (1974) aptly calls U, the empirical influence function,

denoted f}(xi). The obvious estimate of VarF IF(X) is IIVIFZ(X) dﬁ(x)
5 Ui 1/2
z Ui/n. Plugging this into (6.20) gives the Sd estimate 5 s

n

which is exactly the infinitesimal jackknife estimate (6.18).

The ordinary jackknife and positive jackknife can also be thought

of as estimates of (6.20). They use the influence function estimates
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(n-1) (B é(i)) (ordinary jackknife)

N (*)
IF(xi) =

(n+1) (é 6[.]) (positive jackknife) .

[41 =

All these methods give asymptotically correct results if 6(+) is suffi-
ciently smooth, but perform quite differently in small samples, as illustrated
by Table 5.2. 1In the author's experience, the ordinary jackknife is the

only jackknife which can be trusted not to give badly underbiased estimates

of standard deviation. (This is the import of Theorem 4.1.) If one isn't
going to use the bootstrap, because of computational costs, the ordinary
jackknife seems to be the method of choice.

5. The Delta Method. Many statistics are of the form

AN -—

8(X;, Xys enes xn) = t(él, 62, cees QA) R (6.21)

where t(s, ¢, *°, *) 1is a known funition and each aa is an observed

average,

Pol]
I
=R

ii

21 Qa(Xi) -

For example the correlation coefficient equals

(_ —_ - - - ) 64 - 6162
tQs Qs Qs Qs Q) = ——5 75— 5777 »
[Q3_Ql] [QS—QZJ
2 2

with Ql(X) = Ql((Ysz)) =Y, QZ = Z, Q3 =Y, Q4 =Yz, Q5 =27 .
Suppose that the vector Q(X) = (Ql(X), QZ(X)’ cees QA(X)) corres-

ponding to one observation of X ~ F has mean vector aF and covariance

~

matrix BF’ and let VF be the gradient vector with a-th component

60



A

Bt/BQa . Expanding 0 = t(§) in a first order Taylor series about
Q=0q.

aF gives the approximation

sad(®) = (7.8 vt/n1t/? (6.22)

In the case of the correlation coefficient, somewhat tedious calculations

show that (6.22) becomes

1/2
Moo Mos . Py Ay AMg, Ay 5

2 Tt - - ,
H20 Moz MaoMoz M1 MiaMao  Mi1Mo

Sd(p) = < —

= (6.23)

h
where, denoting X = (Y,Z), Moy = E,[Y - EFY]g [z - E2]".
Substituting ¥ for F in (6.22) gives the nonparametric delta method

estimate of standard deviation,

A

SD = [ngFyF/n] . (6.24)

For example (6.23) would be estimated by the same expression with 6
replacing p and the sample moments ﬁgh' replacing the ﬁgh'

Theorem 6.2. For any statistic of form (6.21), the nonparametric delta
method and the infinitesimal jackknife give identical estimates of standard
deviation.

Proof. For statistics 8§ of form (6.21), the directional derivatives

Ui in (6.16) are

e
]
<]
>
L]

£ =%+ 19y - Q@

since

82° + (8,2 = @ + e(Q) - )

t(@ + eV * [Qx) - Q] .
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Therefore (6.18) gives

SDIJ = Y§ n ~

. ZQGx) - Q1" [Qx,) - Q1 | /172
= vay-/n

' 1/2

agreeing with the delta method estimate (6.24), Here we have used the

fact that

zlatxy) - QI [a(x,) - Q] B

n - COVF=§ 9 ’

~

the covariance of Q under ﬁ, and so must equal Bﬁ' Likewise

Cevny 8t/8Qa, ves) 3 = (.e., 3t/3Qa, R - = Yﬁ .0

~ ~ ~F

By comparing (6.18), (6.19) with (6.23), (6.24) the reader can see
how Theorem 6.2 works for the correlation coefficient p. Both (6.19) and

(6.23) are difficult calculations, fraught with the possibility of error,
and it is nice to know that they can be circumvented by numerical methods,
as commented at the end of Chapter VI, Section 3.

The jinfinitesimal jackknife works by perturbing the weights 1/n
which define f, keeping the X fixed, and seeing how 8 wvaries. The
delta method perturbs the X (which only affect ) through the Ga
in form (6.21)), keeping the weights constant. It is reassuring to see
that the results are identical. 1In this semse there is only one nonpara-
metric delta method.

So far we have discussed the delta method in a nonparametric frame-
work. Suppose though that F is known to belong to a parametric family,

say &,
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3 = {Fe: & ¢ 0} , (6.25)

O a subset of RY. Write g5 Be, and Ve in place of aF v

~Fe’ ~Fg’
The parametric delta method estimate of standard deviation for a statistic

t(Q) is
Sb = [V,8,V4/n1Y/ 2, (6.26)
~0~0~0
and is closely related to the parametric bootstrap of Chapter V, Section

2. Here ©§ 1is the MLE of 6. Without pursuing the details, we mention

that (6.26) can be applied to the case where t(§) is the MLE of some
parameter, and results in the familiar Fisher information bound for the
standard deviation of a maximum likelihood estimator. Jaeckel (1972) dis-
cusses this point.

6. Estimates of Bias. Figure 6.1 also helps relate the jackknife

and bootstrap estimates of bias.
Theorem 6.3. Let eQUAD(P ) be any quadratic function a-F(P -P )b-k

% % .
%{P —Po)c(P —Po)', a a constant, P a column vector, ¢ a symmetric

matrix, satisfying

QUAD(P°> 9(E°) and eQUAD(P(19 G(P(i) , 1=1, 2, ..., n . (6.27)
Then
N A _ n ~ * ~ °
BIASJACK(B) = ;:I.[E*OQUAD(E ) - eQUAD(E )} (6.28)

In other words, the jackknife estimate of bias equals E%i- times the

bootstrap estimate of bias for any quadratic function agreeing with 8
-]
at E and E(l)’ 2(2), ceas g(n)'

Proof. We can always rewrite a quadratic function 6

QUAD(P ) =

%
a+ (? —Po)b +-§(P —Po)c(P —Po)' so that

63



B°E =0, EOS =0 . (6.29)

(If (6.29) is not satisfied, replace b with b-b_ 1, where b.==P°b and

~

¢

= (1, 1, ..., 1)'; replace ¢ with c - S‘%' - ES: + }c.'%', where

c = cP°', c,, = P°cP°'.) From (6.7) we compute

]
~a

Edquan® ) - Bquap@®™) = 7 tr c(@n’ - BB/m) = L er e/ (6.30)
_1 5 2
= E .Zl cii/n .
By (6.27)
b c
) A(p°) = B A oy - _ i .1 Tii
G(E(i)) - G(E ) = eQUAD(E(i)) - eQUAD(E ) = ) + > (n—l)z , (6.31)

the last result following from P(i)—P° = (P°—6i)/(n—l) and (6.29). Aver-

aging (6.31) over i, and using b_ = P°b = 0 again, gives

Y oe,,
ii

n(n-1) °

TN ~

BIAS (9) =-%

JACK (6.32)

Comparing (6.32) with (6.30) verifies (6.28). [
We have seen, at (6.8), (6.9), that a quadratic functional statistic

N N *
8(F) is also a quadratic function 6(P ). 1In this case we can take

N

eQUAD = é, so (6.28) becomes

“B_p1as_ (®)

$185 . (8) =
5 ) = n-1 BOOT

JACK

A - 3 . n ‘A
for © quadratic, which is Theorem 5.1. The factor —) makes BIASJACK
unbiased for the true bias of a quadratic functional, Theorem 2.1. Notice

the similarity of this result to Theorem 6.1,
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The infinitesimal jackknife and nonparametric delta method give iden-

tical estimates of bias, just as in Theorem 6.2. These estimates are

2 1 A2 3 2, .
ZVii/Zn and o tr QFYF respectively, where YF is the AXA matrix

with ab-th element

th
aQaaQb =uF

and

a®g(p° + e(8,-2°))
V. . = - = L]
L e’ £=0

A proof is given in Gray, Schucany, and Watkins (1975). If we can expand

A%
8(P ) 1in a Taylor series about P°,
n % A * *
8™ = 82> + @)U + 2@ 2IVETE) + ...,

then stopping the series after the quadratic term gives a quadratic approxi-
A % A X

mation GQ(P ) to O8(P ). The infinitesimal jackknife estimate of bias

equals the bootstrap estimate of bias for §Q’

S

BIASIJ(G) = BIASBOOT(GQ) s

just as at (6.15).

7. More General Randoﬁ Variables. So far we have considered functional

statistics e(ﬁ). More generally we might be interested in a random quantity

R(F,F) , . (6.33)
. . 1
for example the Kolmogorov-Smirnov test statistic, on X =R,
#{Xifg}
[RS.... A, < .
sup o ProbF{X;g}

X
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*
The resampled quantity R  corresponding to R is
* A% A *
R =R(F ,F) =R(P) . (6.34)

Here ﬁ* is the reweighted empirical distribution (6.2). The shorthandv
notation R(g*) tacitly assumes that Xys Xys eees x ~are fixed at their
observed values,

The curved surface in Figure 6.1 is now R(g*) rather than @(E*).
The bootstrap estimate of any quantity of intereét, such as EFR(ﬁ,F) or
ProbF{R(ﬁ,F) > i%}, is the corresponding quant ty computed under (6.6),

% % '
e.g. E*R(E ) or Prob*{R(E ) > 2/vn}. Jackknife approximations can be

used as before, to reduce the bootstrap computations,

®y 2 [p-1 § 2]1/2
and
ERGEY - R £ (-1 (R(,y - R , (6.36)

= , R = IR,../n.
By T REw) Ry T o/ _
The justification of (6.35), (6.36) is the same as in Theorems 6.1 and

* % . . *
6.3: If RLIN(E )} is the linear function of P agreeing with R(E ) for

* . . n ,1/2
P o= E(i)’ i=1l, 2, ..., n, then the right side of (6.35) equals [E:T]

* . n *
SD*(RLIN(E )). Likewise, the right side of (6.36) equals 1 [E,R (B ) -

QUAD

*
R(P°)], where R is any quadratic function agreeing with R(E ) at

QUAD(E*)

go, 2(1)’ E(Z)’ ovey g(n)' We could use the more direct approximation

* * ' -1.2 ;¢ 1/2
SD, (R(P )) S (R (B D) = [(En—-) Z{R(i)-R(,)]ZJ / )

instead of (6.35), and make the corresponding change in (6.36), but won't

do so in what follows.
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The infinitesimal jackknife also yields approximations to the boot-

strap standard deviation and expectation,

SD*(R(B*)) = [ZUi/nz]llz R E*R(g*) - R(g°) = Zvii/Zn . (6.37)

Here U, and V,; are defined as before, with R(P® + S(Gi—g°)) replacing
e + (5,2,

What happens if we consider variables not of the functional form R(?,F)?
As an example, consider R = an + bnﬁ—e, where 8 = 6(F) 1is a functional
statistic, 0 = O(F), and a and bn are constants, lim a = 0, 1im b_ = 1,

The bootstrap estimate of bias (for a + bnG as an estimate of 0), as

discussed in Chapter V, Section 5, is

E,R = a + bn E.0 -6 = a + (bn—l)G + bn(E*G -B)
1)8 BIAT 6
=a + (bn— Y8 .+ bn BIASBOOT( ),
compared with the true bias
a + (bn—l)e + bn(EFG-G) =a, + (bn—l)e + bn Bias(8) . (6.38)
Define
A =mna_ , B =nb .
n n n n

Then the jackknife estimate of bias reduces to
Ay /\ ~ "N
a + (bn—l)e + bn-l BIASJACK(G) + [(Ah_l—An) + (Bn_l—Bn-Fl)e] . (6.39)

The situation is quite delicate: if a = c¢/n  and bn =1 - d/n, then

—A.n =0, B —Bn = 0, and (6.39) agrees nicely with (6.38). On the

An—l n-1

other hand, if a = (-1 a/n, bn’= 1-d/n, expansion (6.39) can completely
disagree with (6.38). The jackknife estimate of bias is not recommended

for statistics other than functional form.
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VII. CROSS-VALIDATION, THE JACKKNIFE, AND THE BOOTSTRAP

Cross—validation is an old idea whose time seems to have come again
with the advent of modern computers. The original method goes as follows.
We are interested in fitting a regression model to a set of data, but are
not certain of the model's form, e.g. which predictor variables to include,
whether or not to make a logarithmic transform on the response variable,
which interactions to include if any, etc. The data set is randomly
divided into two halves, and the first half used for model fitting. Any-
thing goes during this phase of the procedure, including hunches, pre-
liminary testing, looking for patterns, trying large numbers of different
models, and eliminating "outliers™.

The second phase is the cross-validation: the regression model fitted
to the first half of the data is used to predict the second half. Typically
the model does less well predicting the second half than it did predicting
the first half, upon which it was based. The first half predictions are
over optimistic, oftem strikingly so, because the model has been selected
to fit the first half data.

There is no need to divide the data set into equal halves. These
days it is more common to leave out one data point at a time, fit the model
to the remaining points, and see how well the fited model predicts the
excluded point. The average of the prediction errors, each point being
left out once, is the cross-validated measure of prediction error. See
Stone (1974) or Geisser (1975) for a full description, and Wahba and Wold

(1975) for a nice application.
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This form of cross~validation looks like the jackknife in the sense
that data points are omitted one at a time. However, there is no obvious
statistic g being jackknifed, and any deeper connection between the two
data ideas has been firmly denied in the literature.

This chapter discusses cross-validation, the jackknife, and the boot-
strap, in the regression context given above. It turns out that all three
ideas are closely connected in theory, though not necessarily in their
practical consequences. The concept of "excess error", vaguely suggested
above, is formally defined in Chapter VII, Section 1. (In a discriminant
analysis, for example, excess error is the difference betwéen the true and
apparent rate of classification errors.) The bootstrap estimate of excess
error is easily obtained. Then the jackknife approximation to the bootstrap
estimate is derived, and seen to be closely related to the cross-validated
estimate.

1. Excess Error. In a regression problem the data consists of pairs

(Tl,Yl), (TZ’YZ)’ ooy (Tn,Yn), where Ti is a 1Xp vector of predictors
and Yi is a real-valued response variable. In this discussion we take
the simpler point of view mentioned at the end of Chapter V, Section 7:

that the Xi = (Ti’Yi) can be thought of as independent random quantities

p+1

from an unknown distribution F on } =g R

iid
Xis Xys weey X TN F L (7.1)

We observe %l=xl, X2=x2, ooy Xn=xn’ and denote § = (Xl’ X2, cees Xn),

X = G;l, Xyy ey xn).

Having observed X=x, we have in mind some method of fitting a regres-

sion surface, which will then be used to predict future values of the
response variable, say
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predicted value of Yo = nx(to) . (7.2)

~

(The subscript "o" indicates a new point x = (to,yo) distinct from

Kis Xy oo, xn.) For example, ordinary linear regression fits the

surface nx(to) = toé where @ = (E'E)—l E'Z’ E' = (tt, té, ceos té),
y = (yl’ Yps eevs yn)'. Logistic regression, in which the y. all equal
-t B
0 or 1, fits the surface nx(to) = [1 + e ° 1" , where @ maximizes
o~ —tiB(luyi) -t.B
the likelihood function ni=l [e /(1 + e 1 1.

Section 6 gives an example of a much more elaborate fitting proce-
dure, involving sequential decisions and a complicated model building
process. Cross-validation and the bootstrap are unfazed by such com-
plications. The only restriction we impose is that nx(-) be a func-
tional statistic, which means that it depends on X tgrough ﬁ, the -

empirical distribution (2.2); in other words, there exists n(to,F),

not depending on n, such that

n (t) = n(e B . (7.3)

All of the common fitting methods, including linear regression and logis-
tic regression, satisfy (7.3). 1In fact we only need (7.3) to establish
the connection between the bootstrap and the other methods. The bootstrap
itself requires the weaker condition that ﬂx(‘) be symmetrically defined
in Xy Xy eees X s and similarly for cross:validation.

Let Q[y,n] be a measure of error between an observed value y and
a prediction mn. In ordinary regression theory the common measure is
Q[y,n] = (y—n)z. For logistic regression, in which we are trying to

assign probabilities n to dichotomous events vy, a familiar choice is
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0 if y=1, n > or

N[ N

Qly,n] = y=0, n <

1 otherwise

If events Yis Vo5 cees Y, have been assigned probabilities nl, nz, ey
n,s then ZQ[yi,ni] is the number of prediction errors. Efron (1978) dis-
cusses other Q functions for this situation.

We will be interested in est mating a quantity called the "expected
excess error'. Define excess error as the random variable

ROLE) = E b QIY, me(T)] - E o QIY_, n (T )] . 7.8

~

The symbol "EOF" indicates expectation over a single new point

X, = (T,Y)~F, (7.5)

independent of Xl’ X2, e, Xn iid F, the data which determines nX(°).
(X 4dis called the "training set" in the discrimination literature.) TLike-

wise "Eoﬁn indicates expectation over

X, ~F (7.6)

independent of X. Neither EOF nor Eoﬁ averages over X, which is
why R(X,F) is written as a function of X. It is a function of F

through the term EoFQ'

The second term on the right of (7.4) equals

=T
Io~13

E % Q[Yo, ni((To)] = Qly., n§(Tj)] R

=1

. 1 . co s R
since F puts mass o at each point (Iﬁ’Yj)' This is a statistic for

which we observe the realization
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= ]
I~

n
% .21 Q[yj’ nX(tj)] = Q{}’J,ﬁj] ’ (7,7)
J= ~

j=1

using the notation

nj = nx(tj) . (7.8)

~

Statistic (7.7) is the "apparent error'. Typically, since nx(') is

fitted to the observed data x, this will be smaller than the '"true error"

EoF Q[YO, nX(TO)], which is the expected error if nx(') is used to pre-

~ ~

dict a new Y0 from its T0 value. We are interested in estimating the
expected excess error EFR(X,F), the expected amount by which the true

error exceeds the apparent error. A subtle point arises here: EFR is

not the expected excess error for the regression surface nx(°) actually

fitted, but rather the expectation over all potential regression surfaces
nX('). EFR is like the bias EF§—6, which is an average property of
@(X), not é(x)—e for the particular x observed. This point is dis-

cussed again in Section 4.

Example. Linear Discriminant Analysis. Suppose that in the training

set yj equals 1 or 2 as tj comes from population 1 or population 2.
For example, the tj may be diagnostic variables on patients who do (yj = 1)
or don't (yj = 2) require surgery. Given a new t, we wish to predict

the corresponding Yo Fisher's (estimated) linear discriminant function

is

nx(to) =a+tp, (7.9)
where 4 and B are calculated as follows. Let n, = #{yj =1},
n, = #{yj = 2},
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n
= L £ g ey
s ['Z R I W I
j=1
Then
4 = [E SIfY _ F @5
o [tlS t1 tZS t2]/2
and
B= (£ -t.)st (7.10)
2 l - -

The linear discriminant function (7.9) divides RP into two sets

Gy (%) {to: n (t) < 0}

~

(7.11)

G, (x) {to: nf(to) >0} .

If to € Gz(x) then the prediction is made that Y, = 2, while if to €
Gl(x) the prediction is Vo = 1. Why use this procedure? If the two

populations are a priori equally likely,
1
Prob{y=1} = Prob {Y=2} = 5 (7.12)

and if given Y=y, T is multivariate normal with mean vector uy and

covariance matrix i,
T ~ , s 7.13
ly ~n G B (7.13)

then the linear discriminant estimates the Bayes classification procedure.

See Efron (1975).

73



The apparent error in a discriminant analysis problem is the propor-

tion of misclassified points in the training set,

#1{5: tj € Gl(§)’ yj=2 or tj € G2(§); yj:l}

n

. (7.14)
In other words, we are using the error measure

0 if y=2, n >0 or y=l1, n <0
Qly,nl = (7.15)

1l otherwise .

Suppose p=2, n = 14, and the multivariate normal model (7.12), (7.13)
is correct: 1 = —(%30), U2==C%,0), f=I. A Monte Carlo experiment of 1000
trials showed that the expected apparent error was .262 (about 1/4 of the
14 points misclassified) but that the expected true error was .356. In
other words, the expected excess error EFR = .356 - .262 = ,094, This

experiment is discussed further in Section 4; see Table 7.1.

2. Bootstrap Estimate of Expected Excess Error. For convenience we

S
denote an estimate of expected excess error by EEE. The bootstrap esti-

*

mate is easy to write down. Consider a single bootstrap sample X = (Xl,
% * * x %
X2, caas Xn), selected as at (5.5). The resampling vector g = (Pl, PZ’
% % *
cees Pn), Pi = #{Xj = xi}/n has multinomial distribution (6.6). The
bootstrap realization of random variables (7.4) is
* * A
R = R(X ,F) = E g QIY, n (T )] - E , QlY_, n (1)1,
X oF X
~% *
where F  is the distribution putting mass P, on Xy and n ,(*) is

X
* ~
the regression surface determined by X . Writing
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Ar = n *(tj) , (7.16)

Joox
it is easy to see that
% n o % "
R = )} (p;-P)) Qly,, 0.1, (7.17)
=7 J ] I |
J
P; = %- as before. The bootstrap estimate of expected excess error is
P %* n o _% ~k
EEEpqor = ExR = Eg ] (B.-P)) Qly;» 0.1, (7.18)

j=1

%
E,R  indicating expectation under bootstrap resampling (6.6). (Since the

TNk *
data x is fixed, the r& are functions of P , under the assumption
* % %
that n ,(*) 1is symmetrically defined in X,, X2, cens Xn.)
X .
Example: Ordinary Linear Regression. As before, following (7.2),
-1

nx(to) =t

~

o(t't) t'y. Define D % to be the diagonal matrix with ii-th
* ~

element Pi' Then

* -
n, = t.(t'D ,t) 1 (t'D ,y) , (7.19)
I 1~ P

~

% (p° * *)2 . h TN R* . ]
and R =E, g j—Pj)(yj—nj . Notice that EEE, jor = Ex is minus

%

. *
the correlation, under (6.6), between P, and (yj—nj)z. Since large

N

* %* S
values of Pj tend to decrease (yj—nj) , it is clear that EEEBOOT should

be positive.

3. Jackknife Approximation to the Bootstrap Estimate. The excess risk

random variable is of form R(ﬁ,F), (6.33), under assumption (7.3). We can
*
use (6.36) to get a jackknife approximation of E,LR . Since R(P°) =0 in

this case, (6.36) gives

TN * - n
EEE_, . *ER = (a-1) R, =31 7 g

n L4

1-—

TACK ) ~(i))' (7.20)
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Define

”(1)3' = n’f(i)(tj) , (7.21)

where x(i) is the data set Xys Xps eees X 10 X1 cees X Following

through (7.4) gives

Ay Ayl gl U ey

R0 = T G- ) ly, ALl = L - .
W7 L e T @ Y s n n(a-1)
SO
N n-1 A 1 A
EEE = —= ) Qly,, N,y.1 - =) Qly., M.l
. JACK n2 E. i ()i n2 i J;i 3 (1)3
=LV Ay, A, -0 T aly., Al (7.22)
a ¢ yi’ (i nz i 5 Yj, (l)J (/.22
L A . JZ Q[yi, Tl(J)l]
= 'E ;_ Q[yl, n(l)l] - H g:. n .

4. Cross-Validation Estimate of Excess Error. The cross-validation

estimate of expected excess error is

EE = L7 aly,, Aol -2 7 aly., A.1, (7.23)
CROSS n 3 i1 ()4 n g i’ 4

the difference in observed error when we don't or do let Xy assist in
its own prediction. Notice the similarity between (7.22) and (7.23).
Before presenting any theoretical calculafions, we give further Monte Carlo
results from the experiment described at the end of Section 1,

Table 7.1 shows the first 10 trials of the linear discriminant prob-
lem, true distributions normal as at (7.12), (7.13), and summary statistics

for 100 and 1000 trials. The sample size is n = 14, dimension p=2. We
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N P
see that EEEJACK and EEECROSS are almost the same, except in trial 2,
with correlation .93 over 1000 trials. Neither method yields useful esti-
mates. The values of fEE are capriciously large or small, with coeffi-
cients of variations .073/.091 = .80 and .068/.093 = .73 1in 100
trials. The bootstrap estimates, B = 200 bootstrap replications per
trial, are much less variable, with coefficients of variation only
.028/.080 = .35,

The actual excess error, R(§,F), is given in column A. It is quite
variable from trial to trial. In 5 of the first 10 trials (and 22 of the
first 100 trials) it is negative, the apparent error being greater than
the true error. This is not a good situation for bias correction, i.e.
for adjusting the apparent error rate by adding an estimate of expected
excess error. The last column gives the bootstrap estimates of 8d(R) =

114,

*b

B .
SD*R* =[) (R°- R'H%/e-1)112 |

b=1
These estimates are seen to be quite dependable.
In Table 7.2 the situation is more favorable to bias correction. The
actual excess error R(§,F) was positive in 98 out of 100 trials, averag-

ing .184. TEE T8 hi 1 8
ng . . EEEJACK and EEECROSS are even more highly correlated, .9

s

and again both are too variable from trial to trial to be useful. The
) TN )
bootstrap estimates EEEBOOT are much less variable from trial to trial,

N
but are biased downward. Adding EEE to the apparent error rate

BOOT
(7.14) substantially improves estimation of the true error rate in this
case. The root mean square error of estimation for the true error rate

TN
decreases from .189 (using just (7.14) to .133 (using (7.14) plus EEEBOOT)

for the first 10 trials. The comparable values for cross-validation and

the jackknife are .190 and .183 respectively.
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It would be nice if the estimates EEE correlated well with R(E’F)’
i.e. if the sﬁggested bias corrections were big or small as the situation
called for. In fact somewhat the opposite happens: the correlations are
all negative, the bootstrap being most markedly so. Situations that pro-
duce grossly overoptimistic apparent errors, such as trial 10 of Table
7.2, tend to have the smallest estimated EEE. The author can't explain
this phenomenon. Current research focuses on this problem, and on the

S
downward bias of EEE

BOOT evident in Table 7.2.

5. Relationship Between the Cross-Validation and Jackknife Estimates.

Under reasonable conditions the expected excess error and the estimates

TEE FEE a4 TEE der of itude O_(1/n), whil
EEp00T? EEJACK, an cross 2re order of magnitude P( n), while

20N 2N 2 . ) .

EEEJACK - EEECROSS = Op(l/ﬁ ). We briefly discuss the case of ordinary

linear regression with quadratic error, nx(to) = to(t't)—l t'y,, Qly,nl =
2
(y-m)".

~

Define

= _A = ! -1 '
T, =9, ni and a; ti(E E) ti . (7.24)

Under the usual regression assumptions T, is Op(l), while a; is

1 . = = =
OP(E). (Notice that ; a;, =tr I=p, so by symmetry EF a; = p/n.)
Using the matrix identity [I - v'v]_l =TI +v'v/[lL - vw'], v a row

vector, we can express ﬁ( )i~ t.(t't - t't )_l (t'y = tly.,) in a
s N . Tt Y.
DX S SV A ~ % 7373

simple form,

T
A A _1 . 1
- = ' v —-J— = —
NGy ti(E E) tj 1_aj Op(n) . (7.25)
In particular
N1 T Teag 5 (7.26)
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Letting ﬁ(')i denote z ﬁ(j)i/n’ (7.25) gives
h|

.- =t 'ty T Ly 14—,
i ()i i n i k|

1l ~ ~ 1_.- 2
aJ j
(7.27)
T I A i NN 4
- ti(E E) n g tJ l—aj Ob n2 :

(We have used the orthogonality condition I t'r, = 0.)

From (7.23),

)

EEE

A A 2 2 2 A A 1 ~ ~
CROSS g [y #0370y e)” = 75l = ;-g ryMmi-ficgy) +5 g (AN ey )

a a 2

2 i 2,1 i P |

T n g 1-a, Y1 T o Z (lea. ri) N op(n) *
i i i

Comparing (7.23) with (7.22) gives

S N\ _1 A2 1
BEE jack ~ PEEcross = m g (ry-ny)" -5 g Gy )

There is nothing special about ordinary linear regression in these
calculations, except the tractability of the results. It seems likely
P . 1 ' .
that (EEE&ACK - EEECROSS)/EEEEROSS is Op(n) under quite general con-
ditions, but this remains to be proved. The results in Table 7.1, 7.2

are encouraging.
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6. A Complicated Example. Figure 7.1 shows+ a decision tree for

classifying heart attack patients into low risk of dying (population 1)
or high risk of dying (population 2) categories. A series of binary
decisions brings a patient down the tree to a terminal node, which pre-
dicts either class 1 (e.g. node Tl) or class 2 (e.g. node T9). For
example, a patient with small PKCK value, small MNSBP value, and finally
large PKCK value ends up at T3, and is predicted to be in populatiom 1.
The numerical definition of "small' and "large" changes from node to
node, so there is no contradiction between the first and third criterion
of the previous sentence.

The decision tree, which is a highly nonlinear discriminant function,
was based on a training set of 389 patients, 359 of whom survived their
heart attacks at least 30 days (population l), and 30 of whom didn't (popu-
lation 2). Without going into details the tree's construction followed
these rules:

1) The original 389 patients were divided into low and high groups
using the best decision variable and the best dividing point for that
variable. '"Best" here means maximizing the separation between the two
populations in a certain quantitative seﬁse. (The ultimate best division
would have all the "low" group in population 1 and all the "high" group

in population 2, or vice-versa, in which case we could predict the training

+This data comes from the Special Center of Research on Ischemic Heart
Disease, UC San Diego, investigators John Ross, Jr., Elizabeth Gilpin,
Richard Olshen, and H. E. Henning, University of British Columbia. The
tree was constructed by R. Olshen, who also performed the bootstrap

analysis. It is a small part of a more extensive investigation.
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set perfectly on the basis of this one division, but of course that wasn't

possible.) A computer search of all possible division points on each of

19 division variables selected fKCK, peak creatiame kinease level, to make

the first division. Certain linear combinations of the variables, labelled
"F" in Figure 7.1, were also examined in the search for the best division.

2) Step 1 was repeated, separately, to best subdivide the high and
low PRCK groups. (The low PRCK group was divided into low and high MNSBP
groups; the high PKCK group into low and high RR groups.) The process was
iterated, yielding a sequence of "complete" trees, the k-th of which had
2k terminal nodes. All subtrees of the complete trees were also considered.
For example, Figure 7.1 is a subtree of the 10th complete tree; it has 21
terminal nodes rather than the complete set of 210.

3) A terminal node was said to predict population 1 if nl/n2 > 8,
where n, was the number of members of population i, in the training
sample, at that node. If nlln2 < 8 the prediction was population 2.

4) The tree in Figure 7.1 predicts 41 population 1 patients into
population 2 (nodes T2, T6, T7, T9, Tll, T13, T15, Tl17, T19), and 1 popu-
lation 2 patient into population 1 (node T4). The apparent error rates
are 41/359 = 11.5% for population 1, 1/30 = 3.33% for population 2, and
42/389 = 10.8% overall. This tree was selected as best because it mini-
mized the quantity {overall apparent error rate + k . number of terminal
nodes}, k a certain constant.

These rules are not ad hoc; they are based on considerable theoreti-
cal work, see Gordon and Olshen (1978). On the other hand, they are far

too complicated for standard analysis. Instead, a bootstrap analysis was

run, as in Section 2. Only B=3 bootstrap replications of (7.17) were
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generated, but these agreed closely with each other: the estimate

EEEﬁOOT equaled 6.1%, making the bias corrected estimate of error rate
10.8% + 6.1% = 16.9%. More seriously, the bias corrected estimated
error rate for the population 2 patients was 30%, compared to the
apparent error rate of 3.33%! The tree in Figure 7.1 does not predict
population 2 patients, those with a high risk of dying, nearly as well

as it appears to.
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VIITI. BALANCED REPEATED REPLICATIONS (HALF-SAMPLING)

Half-sampling methods come from the literature of sampling theory.
The‘basic idea is almost identical to the bootstrap estimate of standard
deviation, but with a clever shortcut method, balanced repeated replica-
tions, that we haven't seen before. Kish and Frankel (1974) give a
thorough review of the relevant sample survey theory.

In sampling theory it is natural to consider stratified situations

where the sample space Y is a union of disjoint strata Ih’

(For example, Y = United States, and X, = State h, h=1, 2, ..., 50.)

Lx

The data consists of separate i.i.d. samples from each stratum,

Xy ~ Fo» =1, 2, o,m, bRl 2, ..., H, (8.1)

where Fh is an unknown probability distribution on Yy Having observed

Xy = %Xpg 171, <o, n, bel, ..., H, define

A 1
Fh' mass E;- on x. , _ (8.2)

the empirical probability distribution for stratum h, h=1, 2, eee, H.
The goal‘of half-sampling theory is to assign an estimate of stan-

dard deviation to a functional statistic

=0, F), ..., B) . (8.3)
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For example 8 might be a linear functional statistic

n

8 % { 1 f‘ }
0 = Y, +— a (X )}, (8.4)
h=1 h nh i=1 h hi

uh and ah(f) known, though possibly different for different strata. As

another example, suppose Ih = Rz, h=1, ..., H, and that m, are known

N

* F is a distribution

probabilities, thl m, = 1. The mixture n ™ h

on Rz putting mass ’rrh/nh on each x In particular, if 7 _ = nh/n

hi® h

”~

then Zh “h . Fh = %, (2.2). The sample correlation can be written
n ~ A~ A
o(F) = o Zh'?? . Fh - In this way any functional statistic 0 = 6(F) can

be written in form (8.3). 1In the case of the correlation, we might prefer

the statistic p(Eh nh/n . ﬁh), where gh puts mass l/nh on Xhi—ih’

X, = Xi Xhi/nh' This is of form (8.3), but not of form (2.2).

1. Bootstrap Estimate of Standard Deviation. The obvious bootstrap

estimate of Sd(@) is obtained, as at (5.4) - (5.6), by the following
algorithm:

1. Construct the ﬁh’ (8.2),
2, Draw independent bootstrap samples X:i 1id ﬁh’ i=1, ..., n

h’
* *

h=1, ..., H; let Fh be the distribution putting mass Phi on X .,
= 3 dlet 8" =0, & )
where Phi = th =X, nh, an et = (Fl, F2’ ceey FH .

3. Independently repeat step (2) B times, obtaining bootstrap

~¥k Ak *
1’ 6 2, el 8 B

replications 6 , and estimate Sd(@) by (5.6),

B
A% Ake
T 6% _atty2y 12
~ =1
SDBOOT = 3o1 . (8.5)

A

As before, SD is really defined as the limit of (8.5) as B9, but

BOOT

in most cases we have to settle for some finite value like B = 50 or 100.
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In the case of a linear statistic (8.4), where we can take B=w
without actually using Monte Carlo sampling, standard theory shows that

~241/2

SD = — , (8.6)
BOOT h=1 ™
A2 . .
Uh being the h-th sample variance
n
h
2 _ 2
&, = 121 [oy ;=04 17 /my (8.7)

O = ah(xhi), o, = zi uhi/nh. This compares with the true standard

deviation

q 02 1/2

sa(8) = [ ) 'ﬁh] . on = Var o (X)) . (8.8)
h= h

2. Half-Sample Estimate of Standard Deviation. The expected value

a2

N
of VARBOOT = SDBOOT equals

Q>
= V)
=N

: L B e

Fl,Fz,...,FH A%

s (8.9)

=]
spl Q

compared to the true value Var 8 = % Oi/n Previously we have ignored

b
the downward bias in (8.9), but in sampling theory the n, are often

small, and the bias can be severe. In particular, if all the n, = 2,

h

N
the case most often considered in half-sampling theory, then E VARBOOT =
1 A
E-Var(e).

The half-sample, or repeated replications, estimate of standard
deviation, ébHS’ is the same as the bootstrap estimate, except that at
step (2) of the algorithm we choose ‘samples of size nh-l instead of

* 4id ~ .

o, Xhi ~ Fh’ i=1, 2, ..., nh—l, h=1, ..., H. Reducing the size of
AN A
the bootstrap samples by 1 removes the bias in VAR when 6 is linear

since then
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AN R 2/ 5

and so E VAR, =] o /n = Var 6.

Suppose all the n, = 2. Then the half-sample method really chooses
half-samples. One of the two data points from each stratum is selected

to be the bootstrap observation, independently and with equal probability,

» independently h=1, 2, ...

Xhl = prob, , H . (8.10)

NP N

ak
In other words, each Fh is a one-point distribution putting all of its

mass at either X1 9T X, with equal probability,
Henceforth we will only discuss the situation where n, = 2 for
h=1, 2, ..., H. There are n = 2H observations in this case and 2H

possible half-samples. Let g = (el, Eys eves SH) be a vector of +1's,

indicating a half-sample according to the rule

X if g =41
< - hl b : (8.11)
X9 if € = -1
The set go of all possible vectors & has Jo = 2H members, each of

which is selected with equal probability under half-sampling. Since ¢

~

/\* Pl
determines all the Fh’ by (8.11), we can write G(E) in place of

A n%k N AR
G(Fl, F2, oo FH). In this notation, the half-sample estimate of

standard deviation is

e = { I 1o - 602 )?, (8.12)

8690

€€

~

where 8() = J 8(e)/a_.
. (o]
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Notice that Jo is not what we called "B" before. TIn fact B=oo,

* A%k A%

since we have considered all ZH possible outcomes of ﬁl’ FZ’ ooy FH.

That is why we divide by Jo rather than Jo-l in (8.12).

Line 8 of Table 5.2 shows half-sampling applied to { the correla-
tion coefficient, and to $ = tanh_l 6. The strata were defined artifi-
cially, (xl, x2) representing stratum 1, (x3, x4) stratum 2, ..., (x13,
x14) stratum 7. TFor each of the 200 Monte Carlo trials, all 128 half-

sample values were evaluated, and sb calculated according to (8.12).

HS
The numerical results are discouraging. Both bias and root mean square
error are high, for both ébHS(a) and ébHs($). Of course this is not
a naturally stratified situation, so there is no particular reason to do
half-sampling. On the other hand, it would be nice if the method worked
well since, as we shall see, it can be implemented with considerably less
computation than the bootstrap.

In line 10 of Table 5.2, the Sd estimates for each of the 200 trials
were constructed using 128 randomly selected (out of all 14!/(7!)2
possible) half-samples. This method removes the component of variance
in ébHS due to the artificial creation of strata, but the numerical

results are still poor compared to the bootstrap results of line 1.

3. Balanced Repeated Replications. Suppose that g 1is a subset
2

of g, containing J vectors ¢, say g = {el, €y eues eJ}, and that

these vectors satisfy

[

Ze#f(=o, l1<h<k<H. (8.13)

McCarthy (1969) calls g a balanced set of half-samples. We will also

require that a balanced set satisfy
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J . :
2€i=°, 1<h<H. (8.14)

The complete set go is itself balanced.

We define the balanced half-sample estimate+ of standard deviation

A

SD = {

BHS . _[é(gj) - §(°)]2/J}l/2 , (8.15)
3

o~y

1
() = zjfl 6(e?)/3 . This is McCarthy's method of Balanced Repeated Repli-
cations, and has the advantage of requiring only J instead of JO = 2H

recomputations of @, while still giving the same Sd estimate for linear

statistics.
Theorem 8.1 (McCarthy). For a linear statistic (8.4), ébBHS = ébHS'
Proof. With Oy = ah(xhi), o, = (ah1+ah2)/2 as before,
. H . (o . -a ) . (o -0 )
iy _ 3j hl “h2 _ A i hl "h2
6¢e) = Z My Foog, e 6+ ) & —5—— , (8.16)
=1 h
so0 @(-) = Ej @(ej)/J =8 because of (8.14). Then
J H . (o ,-0,.)42 |1/2
3 = i hl "h2
SDyus _Z [ ) e 5 ] /3 (8.17)
_ H H J 13 (ochl—ahz) (akl—akz) 1/2 ) H ) 211/2
- L L e /30 =91 ’
. h'k 4 2
h=1 k=1 j=1 h=1

TMCCarthy's result is stated with 8 replacing §(°) in (8.12) and (8.15),
in which case condition (8.14) is not required. This replacement makes
almost no difference in Table 5.2, and probably not in most cases, but if
there were a substantial difference,definitions (8.12), (8.15) would be
preferred for estimating standard deviation. McCarthy's definition is

more appropriate for estimating root mean square error.
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using (8.13). This last expression doesn't depend on g, so ébBHS for
linear statistics is the same for all balanced seté, including go, which
proves the theorem. []

Line 10 of Table 5.2 gives summary statistics for ébBHS applied to
the correlation experiment. A balanced set g2 with J=8 members was
used, so each ébBHS required only 8 recompﬁtations of 5 (or $),
instead of 128 as at line 8. The vectors ej were the rows of this

~

matrix:

1 -1 1 -1 1 1
1 -1 -1 1 -1 1
S T R
-1 (8.18)

-1 a1 a1
1 -1 1
11 -1 1
L S T |

The results are quite similar to those of line 8, as Theorem 8.1 would

suggest, though vMSE 1s somewhat increased.

4. Complementary Balanced Half-Sample. The complementary half-
sample to that represented by € is -€, i.e. the other half of the data.
Suppose now that a balanced set ¢ 1is also closed under complementation,
so that if € € g then -£ ¢ 2. Then 'J 1is even, and we can index g
; - j+J3/2

so that each EJ, j=1, 2, ..., J/2, is complementary to an € .

~

(In other words, the second half of g is complementary to the first

half.) The complete balanced set 55 is qlosed under complementation.
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The complementary balanced half-sample estimate of standard devia-

tion is

, 32 [8eh - 8-hH]?| 12

~

Depus = \7 . 2 y . (8.19)
j=1

A

S

The advantage of §SD is that Theorem 8.1 can now be extended to quad-

CBHS

ratic statistics. First we have to define what we mean by a quadratic
statistic in the stratified context (8.1). The easiest definition is by

analogy with (6.8)., Let P° = %3 %) and

.

(1, 0) el
Pi = if . (8.20)

(0, 1) e% = -1

fl
=

A

A statistic 6 is quadratic if its half-sample values can be expressed as

. H . H H . .
Bedy =8+ 7 (p-pu +-% ) (PJ—Po)th(Pi—Po)' , (8.21)
~ h=1 —™ ~ 7 h=1 k=1 ~ 7 T "~
where the Uh are 1x2 vectors and the th are 2x2 matrices. Quad-

ratic functional statistics (4.14), (4.15) can be rewritten in this form.

A linear functional statistic (8.4) is of form (8.21) with th = 0,

Uy = (05050

A

Theorem 8.2. For a quadratic statistic (8.21), 8Dpus

value for all balanced sets g closed under complementation, including

has the same

the complete set go.

Proof. E%—Eo = s%g, where g = (%, - %), 50
8(edy - B(-edy H . H ,U._-U
£ =) 3 _ i hl "h2
2 ‘ hzl epdly Zl A R (8.22)



the quadratic terms in (8.21) cancelling out. The same calculation as in

the proof of Theorem 8.1 shows that

H (U .-U_72) 1/2
[h—llz] . 0 (8.23)

s =
CBHS 2y 2

Line 11 of Table 5.2 refers to ébCBHS for g = o the complete set
of 128 half-samples. Line 12 refers to ébCBHS for g consisting of 16
half-samples, the 8 displayed in (8.18) plus their complements. The
results shown on lines 11 and 12 are remarkably similar, much more so
than lines 8 and 10. Root mean square error is reduced, compared to
ébHS’ though the results are still disappointing compared‘to the boot-

strap, especially for $.

A

The averages for SDCBHS shown in Table 5.2 are smaller than those

for SD This must always be the case:

BHS®

Theorem 8.3. TFor any statistic & and any balanced set g closed

N

under complementation, SDBHS-Z SDCBHS'

Proof. From definition (8.15),

J N < ~
Sygs =5 L 10 - Ben?

32 18() - 8(1% + [8(-&)) - B(+))?

-2 Y
S 2
, 328 - 8-h)?
>3 1 2 = SDepps -
j=1

Here we have used the elementary inequality (a2+b2)/2 z_[(a—b)/Z]Z. Il

5. Some Possible Alternative Methods. The half-sample form of the

bootstrap, in which each stratum's bootstrap sample size is reduced by 1,

is not the only way to correct the bias in the linear case. Still
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considering only the situation where all n, = 2 we could, for example,

simply multiply formula (8.5) by v2, i.e. estimate S8d by /E-SDBOOT'

Even if we wish to use half-sampling, we might prefer to half-sample

from distributions other than Fh’ (8.2). Suppose for instance that

_ 1 _ N 2 _ Y
X, =R, h=1, 2, ..., H, and let W= (xhl+xh2)/2, 8h = (xh1 uh) , the

sample mean and variance of ﬁh' Define
N x, ;M
F: mass 1 at —hi—;ﬁ R i=1, 2, h=1, ..., H ,
n oy,

and let ﬁh be the distribution of ﬁh + 8h§, where X ~ F. Then Fh

a3 .
has the same mean and variance as Fh, but makes use of information

from all strata to estimate the distribution in stratum h. Half-sampling

~

% ~
from the Fh, (i.e. independently selecting Xhl ~ Fh, h=1, 2, ..., H and

computing the standard deviation of G(Fl, F2, cees FH) where Fh puts
* ‘ A
all its mass on Xhl) might be better than half-sampling from the Fh.

Balanced half-sampling and complementary balanced half-sampling are

not the only ways to cut down the amount of computation needed to esti-

s Ah 2

mate a standard deviation. Let 0 = G(Xll, X195 Xg1s Xgos cees Kpgs Xy qo
sees Eyoo tz), the value of the statistic when Xy is replaced by a
duplicate of Xpqo but no other changes are made in the data set; and
let §—h be the value when instead X1 is replaced by a duplicate of
X oe Then it can be shown that

R H éh_@—h 211/2

SD = Z ——i——

h=1

equals ébCBHS’ (8.23), for quadrétic statistics (8.21). Evaluating this

éb requires only n recomputations of 6, which is the minimum possible
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A

number requried for SD The relationship between this SD and

CBHS®
ébCBHS is analogous to the relationship between ébJACK and ébBOOT'
Looking in the other direction, the clever idea underlying balanced
repeated replications might be extended to reduce the number of calcula-
tions necessary for ébBOOT' Artificial stratification into pairs is not

a good general answer, as we saw in Table 5.2, but more ambitious strati-

fication schemes seem promising.
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IX. RANDOM SUBSAMPLING

Hartigan (1969) introduced another resampling plan which we will call
random subsampling. 1t is designed to give exact confidence intervals,
rather than just standard deviations, but in a special class of problems:
that of estimating the center of a symmetric distribution on the real line.
We begin with a description of the problem and Hartigan's '"typical value
theorem'", which very neatly gives the desired confidenge intervals. Then
we go on to show the connection between random subsampling and the bootstrap,
in terms of large sample theory. Chapter.X concerns the important problem of
small sample nonparametric confidence intervals for nonsymmetric problems.

1. M Estimates. We consider the case of i.i.d. observations from a

symmetric distribution on the real line

Xl’ X2, cees Xn 1id F6 , Probe{XeA} = J f(x-0)dx , (9.1)

A
where f(°) 1is a symmetric density function, ff; f(x)dx = 1, £(x) > 0,
f(-x) = £(x). The unknown translation parameter 6 1is the center of
symmetry of FG'
An "M-estimate" @(xl, Xos eoes xn) for © 1is any solution to the

equation
n
T ow(x,-t) =0 . (9.2)
. i

i=1
Here the observed data Xi=xi, i=1, 2, ..., n 1is fixed while t is the

variable. The kernel (+) 1is assumed to be anti-symmetric and strictly

increasing
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1) V(-2z) = -¥(z) , i) V) tz . (9.3)

This last condition is not usually imposed, but is necessary for the develop-
ment which follows. It guarantees that § is defined uniquely for any data
set X, X55 eevs X o Notice that § is a functional statistic, b = e(f),

since (9,2) can be written as ff; P(x-t) dﬁ(x) = 0,

]

z. Then 6=x, the sample mean.

Example 1. Y(z)
Example 2. Y(z)

sgn(z) [1 - e-clz|] for some constant c¢ > 0. As

cHoo, @c(xl, Xys cees xn) - sample median, the middle order statistic if =n
is odd, the average of the middle two order statistics if n dis even.

Example 3. Y(z) = - %%é%l = - é%—log £f(z). Then (9.2) says that 8
is the solution to Xi é%-log f(xi—t) = 0, i.e. the maximum likelihood esti~
mate of ©O. (This is the origin of the name "m-estimator".) If f(z) is
the normal density than Y(z) = z and O=x. If f(z) = %—e_lzl, the
double exponential, then P(z) = sgn(z) and 6 = sample median. If
f(z) = %_(1+22)—1, the Cauchy distribution, then Y(z) = 2z/(l+zz). In
the last two examples, condition (ii) of (9.3) isn't satisfied.

The influence function (4.13) of an m-estimate based on Y(+) is
IF(x) = eP(x~8), ¢ some positive constant., Robustness theory focuses on
choices of Y(*) which have bounded influence function, suplw(z)[ < oo,
but still give reasonably high estimation efficiency for standard families
like the normal, double exponential, and Cauchy. Huber (1974) gives a

thorough review of this theory.

2. The Typical Value Theorem. There are 2™-1 nonempty subsets

of {1, 2, ..., n}. If S is such a subset, define @S as the m-estimate

based on {xi; ieS},
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8g: ] vx-t) = 0. (9.4)
ieS

The 2"-1 values of 68 will be distinct with probability one, under
assumptions (9.3). Their ordered values partition the line into 2t

intervals, say Jl’ JZ’ cees Jzn. For instance Jl = (-0, x(l)), where

b4 is the smallest value of X , X, ..., X .
1) 17 2 n

Typical Value Theorem+. The true value 6 has probability 1/2"%

of being in any interval JE, j=1, 2, ..., 2n.

n _ . _
Proof. There are 2  vectors § = (61, 8 Gn) having com

g3 cees

ponents Gi = +l. For each § define

n n
Q(8,t) = -21 V(8 (x;-t)) = .Zl §; Wix;-t) . (9.5)

l= l=

In particular Q(1,t) = Xi:l W(xi-t), the defining function for 6 in
(9.2). The quantity

Q(8,t)-Q(l,t) = -2 ) Px-t) (9.6)
T ¥ 1ieS(6)

where

S(8) = {i: ai = -1} , (9.7)

is strictly increasing in t, if § # 1.
The following two statements are seen to be equivalent:
(1) Q8,8) > Q,6)

A (9.8)
(ii) es(§) <8

+From Hartigan (1969), who also credits J.Tukey and C. Mallows. The deriQ
vation here follows Maritz (1979).
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(since by (9.6) Q(8,8) - Q(1,8) > 0 implies that zieS(G) Y(x;~t) has
its root to the left of 6.) But by the symmetry of () and f(*) the
2% random variables Q(§,9) = Xigl Gi w(Xi—G) are exchangeable., Thus

Probe{Q(l,e) is j-th largest among the Q(§,0)} = —%; , (9.9)
- ~ 2

i=1, 2, ..., 2%, so by (9.8),

Probe{exactly j-1 of the @S < 8} = ii', i=1, 2, ..., 2" , (9.10)

2
which is the statement of the Theorem. [
The typical value theorem is used to set confidence intervals as
follows: suppose we observe n = 10 observations from a symmetric density

on the real line. Let 6(1) < 6(2) < e < 6(1023) be the ordered sub~
973

sample m-estimates. Then (6(51), 6(973)) = L%=52 JB is a 922/1024 = ,900
central confidence interval for 6. Warning: an exact confidence interval
is not necessarily a good one. For instance if Y(z) = z, SO A=§, and
f(z) 1is Cauchy, then (x(51), x(973)) is a 90% central confidence interval
for the center of the Cauchy distribution, i(j) being the j~th ordered sub-
sample average. This interval can be absurdly long, compared to the optimum

interval for the Cauchy, if the sample includes an outlying observation.

3. Random Subsampling. One needn't evaluate all 2°-1 subsample

values 65 in order to use the typical value theorem. Random subsampling
provides a convenient shortcut:

Corollary. Let Sl’ Sz, ey SB_l be chosen randomly and without
replacement from the 2%-1 nonempty subsets of {1, 2, ..., n}, and let
Jl, Jz, ooy JB be the intervals determined by the ordered values of §S .

3

> .'.’ B.

Then 6 has probability 1/B of being in any interval ,Jj, j=1, 2
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The proof, which appears in Hartigan (1969), is left as a pleasant
exercise for the reader. Note: 'probability" has a different meaning in
the corollary than in the theorem. Write x, = 6+€i|xi—6[, so that

1
1 2
e, ||x,-8] = prob independently i=1, 2, ..., n . (9.11)
it
-1

N

"Probability" in the theorem refers to the conditional distribution (9.11)

of the € given the Ixi—e . The probability statement in the corollary
also averages over the random choice of the subsets Sj' This can be less
satisfactory. Suppose, as a rather farfetched example, that B=n and that
we happen to choose Sl = {xl}, S2 = {XZ}’ ey Sn = {xn}. Then 68, = x.j
for any m-estimate, and so (x(l), x(n)) is an (n-1)/(ntl) centralJcon—

fidence interval for 0, by the corollary. However, since 6 1is the median

of the distribution generating the data, (x isa 1 - l/2nnl

w0 *@)’
central confidence interval for ©! (See Chapter X, Section 2.)

Hartigan also provides a more satisfactory version of the corollary,
in which "probability" refers only to mechanism (9.11). This involves
choosing Sl’ SZ’ ceey SB__1 in a balanced way, "balance" referring to a
symmetry condition between the selected subsets. (Essentially, the set of
vectors }, él’ §2, e §B—l’ relating to the subsets as at (9.7), has to
be such that any one vector has‘the same set of angles with the remaining
B-1.) 1In practice the advantage of balanced subsets over randomly selected
ones seems modest, and we will consider only the latter.

Random subsampling is a resampling plan, as described in Chapter VI,

Section 1. The choice of a single random subsample S amounts to the

*
choice of a resampling vector P as follows: Llet
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Ii = prob independently i=1, 2, ..., n .
1
0 2
n _*
Then, conditional on the event Xi=1 Ii >0,
I*
* i
Pi = n——; . (9.12)
L I
j=1

4. Resampling Asymptotics. Random subsampling belongs to a large

class of resampling methods, including the bootstrap and half-sampling,
which have identical asymptotic properties, at least to a first order of

approximation. Consider an arbitrary resampling plan in which we only

* *
assume that the components of P are exchangeable. Let Var P1 be

the variance of any one component under the resampling plan. Notice that

*

*
1 ) -

%
+ n(n-1) Cov*(Pl, P2

o s
0= Var* 121 Pi =n Var* P

%
We see that P has mean vector and covariance matrix

* e n oy _o *
g (g ' n-l (E - ng E ) Var* Pl) > (9013)

P°= (1, 1, ..., 1)/n  as before.

~

Suppose that ) = Rl and that we are resampling the average, X.

—% *
Given X=x, the resampled average X = P x' has mean and variance

% - n -2 %
X (x, — Z(xi-x) Var, Pl) . (9.14)

under the resampling distribution.
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* —% -
The Bootstrap. Var,, Pl = (n—l)/n3, so Var, X = Z(xi—x)z/nz.

*
Random Subsampling. It is easy to show, using (9.11), that Var, P, =

(n+2) /0> [1 + o(%)], so

-2
Z(x,-x)
i 1
nz [1 + O(;Q] . (9.15)

=*  n+2
Var* X = )

Random Half-Sampling. Randomly choosing subsamples of size n/2, as

*
in line 9 of Table 5.2, gives Var, P

= 1/n2 and so Var i* = I(x —§)2/
1 * i

(n * (n-1)), the usual estimate of variance for a sample average.

The point here is that any resampling plan having E* exchangeable
and 1lim n2 Var,, P: = 1 gives, asymptotically, the same value of Var*i*.
This equivalence extends beyond averages to a wide class of smoothly
defined random quantities. Working in the finite sample space context
of Chapter vy, Section 6, the resampling distribution of f* is approxi-

mately normal,
f*_f > hL 0, 'fg— (n2 Var P*)
n~1 * "1
(the expressions for the mean vector and covariance matrix being exact).
Smoothly defined random quantities Q(f*,f) have the same limiting distri-
bution under any resampling plan satisfying 1lim n2 Var, P; = 1,

1>
5. _Random Subsampling for Other Problems. Line 13 of Table 5.2 shows

random subsampling applied to estimate Sd(f) and Sd($) in the correla-

tion experiment. For each of the 200 trials, B = 128 random subsamples

A% *p

were generated as at (9.11), the corresponding values p ~, ..., D com~
puted, and the standard deviation of 0 estimated by
B
~ N A*b AR 2 1 2
S ® = 11 1577 - 3" 1%/ 1B-11}Y/ (9.16)
SUB bel

(with a similar calculation for SDSUB(¢)).
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The results border on the disasterous, especially for $. They would
have been even worse if we had not placed a restriction on the subsampling:
only subsamples of size > 4 were allowed. Asymptotically, we know that
ébSUB is equivalent to ébBOOT' Obviously the asymptotics cannot be
trusted to predict small sample behavior, at least not in this problem,

Line 14 of Table 5.2 used the same data as line 13, the random sub-

sample values of 8 and $, but calculated standard deviations in a more

robust way,

AF K3

o -p
&) " fe)

SD(P) = 5 , (9.17)

B1 = [.16(B+1)], B2 = [.84(B+1)], where ﬁtj) is the j-th ordered value
of 6*1, 8*2, cens 6*3. In other words, (9.17) is one-half the length of
what would be the central 68% confidence interval for p, if the typical
value theorem applied to this case. (We could just as well apply (9.17)
to the bootstrap if we thought that occasional outlying values of 6*j
were having an inordinate effect on formula (5.6).) The results are
better, but still not encouraging. Another correction, suggested by com-
parison of (9.15) with the corresponding bootstrap calculation, is to
multiply (9.17) by [(n—l)/(n+2)]1/2 = .901. This gives vMSE of .083 for
estimating Sd(p), and .072 for Sd(), quite reasonable results, but
suspect because of the special '"corrections" required.

The problem of choosing among asymptotically equivalent resampling
plans is of considerable practical importance. The author feels that thé

bootstrap has demonstrated some measure of superiority, probably because

it is the nonparametric MLE, but the question is still far from settled.
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X. NONPARAMETRIC CONFIDENCE INTERVALS

So far we have mainly concentrated on estimating the bias and standard
deviation of a point estimator § for a real parameter 0. This is often
all that is needed in applications. However a confidence interval for 6
is usually preferable. This section, which is highly speculative in con-
tent, concerns setting approximate confidence intervals in small sample
nonparametric situations.

We begin on familiar ground: setting a confidence interval for the
median of a distribution F on the real line. The typical value theorem
reduces to the standard order statistic intervals for the median in this
case. The bootstrap distribution of the sample median is derived, this
being one case where theoretical calculation of the bootstrap distribution
is possible., It is shown that the percentiles of the bootstrap distribution
also provide (almost) the classical confidence intervals for the median.
The method of using the bootstrap distribution, called the percentile
method, is justified from various theoretical points of view, and improve-
ments suggested. The section ends with a brief discussion of more adven-
turous bootstrap methods for obtaining confidence intervals.

l. The Median. Let F be a distribution on Rl with median 0,

defined as 6 = inf[ProbF{X S_t} = ,5]. TFor convenience we assume that
t
F 1is continuous. Having observed an i.i.d. sample Xi =X, i=1, 2, ...,

n from F, we can construct exact confidence intervals for 6 using the

order statistics X(l) < x(z) < eee < X(n)' Define

b a® = @ P a-m™E, (10.1)
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the binomial probability of observing k heads in n independent flips

of a coin having probability p of heads. The random variable
z = #{xi < 0} (10.2)

has a binomial distribution with p = %3 Z ~ Bi(n, %). Therefore

k,-1

}= b, (.5) (10.3)
2) kjél k,n

ProbF{x(kl) < 0 f_x(k

since the event {x( < 0 f_x(k )} is the same as the event {kl <z

k) 2
< k,}.
As an example of the use of (10.3), take n = 13, kl =4, k2 = 10,
Then a binomial table gives
Prob_{x <6 <x } = .908 . (10.4)

F T (4) (10)

The two tail probabilities are equal, ProbF{e f_x(a)} = Prob{z 5_3} = ,046,

and ProbF{G > x } = Prob{z 2_10} = ,046. In this case

(10) ®(4)> *(10)!

is a central 90.8% confidence interval for 6.

2. Typical Value Theorem for the Median. The median is an M-estimator

as described in Chapter IX, Section 1, with (z) = sgn(z). Since Y(z) is
not strictly monotonic, and we have made no assumptions about the symmetry
of F, the typical value theorem of Chapter IX, Section 2 does not apply.
However a version of the theorem does hold in this case, as we shall see,
and in fact reduces exactly to the binomial interval (10.3).

For any nonempty subset S of {1, 2, ..., n} 1let @S be the sample
median of {xi, i e s},

éS = middle order statistic if #S, the number of elements in
S, is odd ,

106



gs = any number between the two middle order statistics if

#S is even .

("Between" X(a) and x(b) means lying in the interval (x

(a)* Xyl

Define the random variable

Y = #{s: és <0}, (10.5)

the number of nonempty subsets S for which the sample median is less
than the true median. Definition (10.5) assigns Y a range of integer
values depending on how the even sized cases are assigned.

Example: Suppose n=4 and Z = #{Xi <0} =2, i.e. 6 ¢ (X(Z)’ x(3)].

Then there are 24—1 = 15 nonempty subsets S, of which 5 have @S < 8,

D) By xayds =

{X(Z)}' There are 5 sets S for which §S > 0, namely {x

namely {x ay* *(2y° x(3)}, {x(l), X9y x(4)}, and

(3)}, {x

x(4)}, {X(Z)’ X(B)’ x(4)}, {x(l), x(3), x(4)}, and {x(4)}. Finally,
b, {x 1,

(3)°

there are 5 ambiguous sets S, namely {x

1)’ #3727 *3)
{x(l)’ X(4)}, {X(Z)’ x(4)}, and {X(l), X(Z), X(B)’ X(4)}, for which we

A

can have either GS <0 or §S > 6. 1In this case Y takes on the range
of values {5, 6, 7, 8, 9, 10}, depending on how the ambiguous cases are
assigned. 1In general we have the following relation between the random

variables Z = #{Xi < 8} and Y = #{s: @S < 0}:

Theorem 10.1. The event {Z=z} is equivalent to the event

Z—l n Z n ‘
I D y< ] G - . (10.6)
=0 3=0

(Proof left to the reader.) in other words, Y is really the same random
variable as Z, except it takes its values in a more complicated space.

With n=4 for example, the values Z = 0, 1, 2, 3, 4 correspond to
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Y = {0}, {1, 2, 3, 4}, {5, 6, 7, 8, 9, 10}, {11, 12, 13, 14}, {15}, res-
pectively.

Theorem 10.1 is a version of the typical value theorem. To see this,
notice that any postulated value of O assigns a value to 2, say z =
#{xi < 6}. The attained one-sided significance level of Z=z, according

to the binomial distribution Z ~ Bi(n, %), satisfies

221 n, 1 4 n, 1

L Q) = < sig level < ) ) = (10.7)
3=0 3 2 j=0 1 2
depending on, how the atom at z is assigned.

Going back to the situation described in Chapter IX, Sections 1 and 2,

let Y #{68 <8} . Any postulated value of © assigns a value to Y,

say y = #{s: §S < 6}. The attained one-sided significance level according

to the typical value theorem is

L < sig level < y+l
ol — o0

> (10.8)

since y of the intervals Gj lie to the left of 6.

In the case of the median we can't observe Y=y exactly, but rather a
range of values y depending on Z=z, namely Z?;g (?) <y< ijo (?). 1f
(10.8) applied here, this range of y values would correspond to the range
of significance levels (10.7), which is exactly what we get from the binomial
theory. In other words, the typical value theorem does apply to the median,
in somewhat coarser form. This coarseness is due to the fact that for the
median the 2%-1 choices of S don;t correspond to - 2”1 different values
of @S.

It is not surprising that the typical value theorem for the median does

not require F to be symmetric about its true median 6. If F 1is not
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symmetric about ©§ to begin with, we can symmetrize it with a monotonic
transformation of the data. This transformation doesn't effect the value
of Z or Y.

3. Bootstrap Theory for the Median. The bootstrap distribution for

the sample median can be caluclated theoretically, without recourse to
Monte Carlo methods. It is convenient to consider odd sample sizes, say
n = 2m-1. Then the sample median ) equals x(m), the middle order

statistic.

* % * §id A

The bootstrap sample X,, XZ’ coey Xn ~  F has bootstrap sample
~k %k %

median © ==X(m), the m-th ordered value of the Xi' (Notice that this is

true even though there are ties among the bootstrap observations.) Define

* *
M, = #Hx, = %50 o (10.9)
. % . . k%
j=1l, 2, ..., n. The event {X(m) > x(k)} is equivalent to {zj=1 M%
f_m—l}, so that
%k koou
Prob, {6 > Xy = Prob,{ ] M, < m-1} (10.10)
j=1
_ m-1
= Prob{Bi(n, B) < m-1} = z b, (E) .
n’ — je0 Jsm m

*
Here we are using zjzl MH ~ Bi(n, %), see (6.6), and definition (10.1).

Ak
Therefore the bootstrap distribution of © is concentrated on the values

X(l) < x(z) < vee < x(n), say with bootstrap probability p(k) of equaling

*(k)>

m-1

- 6% - - k-1 k
Py = Probyl = x. ) = jZO by o G5 - b, o @Y. ao.an
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Example. For n = 13 the bootstrap distribution is as follows:

p(k) .0000 .0015 .0142 .0550 1242 .1936 .2230
° ® ® ° ® e ———
k 1 2 3 4 5 6 7
p(k) .1936 1242 .0550 0142 .0015 .0000
® ® ® ° ° *—
k 8 9 10 11 12 13

The bootstrap estimate of standard deviation is &

2,1/2
P o (1)) ]

the true standard deviation of 6, in contrast to the jackknife Sd esti-

2
BOOT [Zp(k)x(k) -

This can be shown to be asymptotically consistent for

mate, Chapter III, Section 4.

4, The Percentile Method. We now discuss a simple method for assigning

approximate confidence intervals to any real-valued parameter 8 = §(F),
based on the bootstrap distribution of 6 = 6(%). Once we have introduced
the method, we will apply it to the case of the median and obtain, almost,
the binomial result (10.3).

Let

P Ak
CDF(t) = Prob, {6 < t} (10.12)

be the cumulative distribution function of the bootstrap distribution of
Ak PSS
O . (If the bootstrap distribution is obtained by Monte Carlo then CDF(t)

~
is approximated by #{6 b < t}/B.) TFor a given o between 0 and .5

define
6 ol 8 - ort 10.13
usually denoted simply QLOW’ §UP'- The percentile method consists of taking
[eLow(u), GUP(a)] (10.14)
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as an approximate 1-20 central confidence interval for 6. ‘Since

A N A
o = CDF(8, ), l-a = CDF(SUP), the percentile method interval consists

LOW
of the central 1-20 proportion of the bootstrap distribution.

As an example, consider the law school data, as given in Table 2.1.
The bootstrap distribution is displayed in Figure 5.1. A large number of
bootstrap replications, B = 1000 in this case, is necessary to get reason-
able accuracy in the tails of the distribution. For o = .16, the central
1-20. = .68 percentile confidence interval for p is [.66, .91] = [p - .12,
p + .13]. This differs noticeably from the standard normal theory confidence

interval for o, [.62, .87]1 = [p - .16, § + .09], which is skewed to the left

relative to the observed value p = .78. (The normal theory interval has

2( ~-1) —
l-a point for a standard normal, z 16 = 1, it is an approximate inversion

o) 1
2(n-1)° a3 ")

Section 7 suggests a bias correction for the percentile method which recti-—

endpoints tanh[ - + z /V n-3] where $ = tanh_l 6 and z, is the

of the confidence interval for ¢ based on ¢ ~ h(d +

fies this disagreement.

The results of a small Monte Carlo experiment are reported in Table

10.1. 100 trials of n = 15 independent bivariate normal observations

il

were generated, true p .5. For each trial the bootstrap distribution

K
of p was approximated by B = 1000 bootstrap replications. We see,
for example, that in 22 of the 100 trials the true value .5 lay in the
. 1 N1 .
region [CDF "(.25), CDF " (.5)], compared to the expected number 25 if the
percentile method were generating exact confidence intervals.
Table 10.1 is reassuring, perhaps misleadingly so when viewed in con-

junction with Table 10.2. Central 68% confidence intervals (a = .16),

with p subtracted from each endpoint, are presented for the first ten
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Region 0-107% 10-257 25-507 50-75% 75-90% 90-100%
Expected # 10 15 25 25 15 10

Observed # 13 16 22 27 12 10

Table 10.1. 100 trials of Xl’ X2’ cans Xls‘vbivariate normal with p = .5,
*

For each trial the bootstrap distribution of § was calculated, based on

B = 1000 bootstrap replications. In 13 of the 100 trials, the true value

.5 1lay in the lower 10% of the bootstrap distribution, etc.

Smoothed and

Bias-Corrected,Bias-Corrected
. Percentile Percentile Percentile

Trial D Normal Theory Method Method Met hod

1 .16 (~.29, .26) | (-.29, .24) (-.28, .25) (-.28, .24)
2 .75 (-.17, .09 (-.05, .18) (-.13, .04) (-.12, .08)
3 .55 (-.25, .16) (~.24, .16) (-.34, .12) (-.27, .15)
4 .53 (-.26, .17) (-.16, .16) (-.19, .13) (-.21, .16)
5 .73 (-.18, .10) (-.12, .14) (-.16, .10) (-.20, .10)
6 .50 (-.26, .18) (-.18, .18) (-.22, .15) (-.26, .14)
7 .70 (-.20, .11) | (-.17, .12) | (-.21, .10) | (-.18, .11)
8 .30 (-.29, .23) (-.29, .25) (-.33, .24) (-.29, .25)
9 .33 (-.29, .22) (-.36, .24) (-.30, .27) (-.30, .26)
10 .22 (-.29, .24) (-.50, .34) (-.48, .36) (-.38, .34)
AVE .48 (-.25, .18) (-.21, .19) (-.26, .18) (-.25, .18)

Table 10.2. Central 68% confidence intervals for the first ten trials of
the Monte Carlo experiment, each interval having § subtracted from both

endpoints.
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trials of the Monte Carlo experiment. Compared to the normal theory
intervals, which are correct here, the percentile method gives somewhat
erratic results, both in terms of the length of the intervals and of
their skewness about {. (Four of the ten percentile intervals are
symmetric or even skewed to the right.) The bias corrected percentile
method of Section 7 performs better. The final column, which combines
smoothing, as at (5.8), with the bias correction is more satisfactory
still, but is suspect since the smoothing biases the answers toward what
we know is the correct model in this situation,

The percentile method is not as trustworthy as GBOOT’ which, in the
author's experience, can be relied upon to automatically give quite rea-
sonable estimates. On the other hand, setting confidence intervals is a
harder problem than estimating standard deviations. The percentile method,
perhaps modified as in Table 10.2, is usually more informative than the

a ~
naive interval 6 + cuc, where cy is a number taken from the normal or t-

tables, though it requires more bootstrap sampling than does the estimation
of G. Some theoretical justification for the percentile intervals is

given in Sections 5-9. More ambitious methods are discussed in Section 10.

5. Percentile Method for the Median. 1In the case where 6(F) is

the median of a distribution F on the real line, and 8 is the sample
median, the percentile method comes very close to giving the classical
binomial intervals, (10.3). TFor instance consider the case n = 13. The
bootstrap distribution of é* is supported on the order statistics X(k)’
as’'shown at the end of Chapter X, Section 3, so any percentile interval
will be of the form [x(kl), x(kz)]. Take kl =4 and k2 = 10. The

interval [x(4), x(lO)] is a central 1-2a interval of the bootstrap
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distribution with o = (.0000 + .0015 + .0142 + .0550/2) = .0432. Here
we have split the bbotstrap probability at the endpoint of the interval,
for reasons discussed at the end of this section. The percentile method

assigns

A

oy [x(kl), x(kz)] (10.15)

approximate confidence level 1-20 = .914 for 6. This compares remark-
ably well with (10.4). Numerical investigation confirms that the agreement
is always very good as long as o > .0l. A theoretical reason for this
agreement is given next.

We consider just the lower limit of the interval, the argument for
the uppef limit being the same. For the classical binomial interval of

Section 1, the o-level connected with the event {8 E-X(k } o ois

1)

a = Prob{z < k -1} = Prob{Bi(n, %) <kg-1) (10.16)

' N

Looking at (10.10), notice that Prob, {8 < x )} = Prob{Bi(n, %) > m}.
1

The percentile method for the median, taking into account splitting the

boctstrap probability at the endpoint, assigns approximate significance

1,

level O to {6 f_x(kl)

a = %{Prob{Bi(n, %p z_m} + Prob{Bi(n, Eilﬁ Z_m}] . (10.17)
If the reader replaces (10.16) and (10.17) with their usual normal approxi-
mations, making the continuity corrections, but ignoring the difference in
denominators, he will see why a approximates o. (Actually the approxi-

mation is mysteriously better than this computation suggests, especially

when kl/n is much less than 1/2.)
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Let
#{x, <t}
_+r

D(t) = ProbF{X <t} , D) = -

(10.18)

be the cumulative and empirical cumulative distribution functions. Then
D(t) ~ Bi(n, D(t))/n , ’ (10.19)

so if D(t) = %— then ﬁ(t) ~ Bi(n, %)/n. According to (10.16), another
way to describe the binomial a-level interval is the following: the lower
limit of the interval is the smallest value of t for which we can accept
the null hypothesis D(t) = %— with one-sided significance level ao. The
lower limit of the percentile interval has this interpretétion: it is the
smallest value of t for which the oa-level upper confidence interval for
D(t), based on (10.19), includes the value 1/2. In other words, the
binomial interval checks whether ﬁ(t) is too small compared to expec-
tation 1/2, while the percentile interval checks whether 1/2 is too

large compared to expectation D(t).

It is‘not surprising that the percentile method for the median requires
splitting the bootstrap probability at the endpoints. The problem is the
same as in the typical value theory for the median, namely that the sample
median takes on only n possible different values under bootstrap sampling.
This contrasts with smoothly defined statistics, such as the correlation,
for which the bootstrap distribution is effectively continuous when n > 10.
Suppose that instead of the sample median we were considering the m-estimator
éc of Example 2, Chapter IX, Section 1, with ¢ very large. Then if a

Ak AR
bootstrap median 8  equals X(k)’ the corresponding value of Gc will

be almost but not quite equal to X(x)* Take n =13 and o = .0432 as
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at (10.15). Then 1lim eLOW,c = x(4), and 1i2 eUP,c = x(lO)' In this

oo (o4

sense, [x is a .914 confidence interval for the median, as

4)**10)!

claimed. The Bayesian arguments of the next section provide another jus-

tification for splitting the endpoint probabilities.

6. Bayesian Justification of the Percentile Method. We assume that

the sample space Y is discrete as in Chapter V, Section 6. This is no
real restriction since we can take the number L of discrete categories

arbitrarily large. If Y is the real line, for instance, we might parti-

tion [-1010, 1010] into 2 - 1020 intervals of length 10_10. Then

L=2- 1020 + 2, counting the semi-infinite end intervals, and for

practical purposes the discretization will have no effect on our inferences.
As in Chapter V, Section 6, we let fz equal the probability that X

occurs in category 2, with fz equal the corresponding observed frequency

£

~

#{xi € category %}/n, and denote f = (fl, f2, cees fL), f= (fl, 2
cens fL).

We take the prior distribution on f to be a symmetric Dirichlet

distribution with parameter a,

£f~ DiL(al) s (10.20)

i.e. the prior density of f is taken proportional to I fz—l. Having

~ L
observed £, the a posteriori density of f is

f]f ~ DiL(a% + nf) .
n§2+a—l
with density function proportional to I[ f . Letting a»>0 to repre-
: 2

sent prior ignorance gives the well known result

£|£ ~ D1 (af) . (10.21)

116



Distribution (10.21) is quite similar to the bootstrap distribution

(5.13),

%A A
f o[£ ~ MhltL(n,f)/n . (10.22)

(i) Both distributions are supported entirely on those categories

having £ > 0, i.e. on those categories in which data was observed.

%

(ii) Both distributions have expectation vector £, (iii) The covari-

~

A %
ance matrices are also nearly equal, Cov(f|f) = X%/(n+l), Cov, (f l£) =

if/n, where ig has diagonal elements %z(l—gz) and off-diagonal ele-
2fn

The point here is that the a posteriori distribution of e(f)lf is

ments -f

likely to be well approximated by the bootstrap distribution of G(E*)lg,
if G(E) is any reasonably smooth function of f. If this is true,

the percentile method 1-20, central confidence interval will be a good
approximation to the central Bayes interval of probability 1-2o.

The prior distribution DiL(a%), o+0, may seem unreasonablef, but it
gives a reasonable answer when 6(5) is the median of a distribution on
the real line. 1In this case, letting the discretization of 7 become
infinitely fine, it can be shown that

k,-1
£} = J b .5 , (10.23)
(k2) ~ k=k1 k,n-1

Prob{x(kl) < G(E) < x

comparing nicely with the classic binomial interval (10.3).

In a recent paper, Rubin (1979), this criticism is made, with the sugges-
tion that it would be better to do the Bayesian analysis using a more

informative prior distribution.
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Realistically we would never believe that our a posteriori distribu-
tion for f concentrates exclusively on just the data points already seen,
Smoothing the distribution (10.21) even slightly splits the endpoint prob-
abilities in (10.23), as in the application of the percentile method to the
median,

7. The Bias-Corrected Percentile Method. The bootstrap distribution

for the sample median, Chapter X, Section 3, is median umbiased in the sense
that Prob*{é* < 8} = .50 (splitting the probability at 8 = x(m)). The
argument which follows suggests that if Prob*{é* E_é} # .50 then a bias
correction to the peréentile method is called for.

To be specific, define

z = O (10.24)

where CDF(t) = Prob*{én E_t} as at (10.12), and ¢ is the cumulative dis-
tribution function for a standard normal variate. The bias corrected per-

centile method consists of taking
-1 N1
(Cov (@22, - 2.)), CDF " (8(22 + 2 ))] (10.25)

as an approximate 1-2a central confidence interval for 6. Here z,
is the upper o point for a standard normal, @(zu) = 1-a,

Notice that if Prob*{g* 5_9} = .50 then z = 0 and (10.25) reduces
to (10.14), the uncorrected percentile interval. However even small dif-
ferences of Prob*{@* 5_@} from .50 can make (10.25) much different thank
(10.14). In the law school data, for example,'EBE(a) = ,433 (i.e. 433
out of 1000 bootstrap replications 6* were less than p = .776). There-
fore z = @_1(.433) = -.17, and taking o = .16, z, = 1, in (10.25) gives

the approximate 68% interval
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_ A~
(eor~L(0(-1.34)), ODF (8(.66))1 = [CDF L(090), CDF (.745)]

= [p - .17, p + .10]

for p. This compares with the uncorrected percentile interval
/\__l /\_1 A ~
[cDF ~(.16), CDF ~(.84)] = [p - .12, p + .13] and the normal theory
interval [a - .16, 6 + .09].

The argument supporting (10.25) is based on hypothesizing a trans-
formation to a normal pivotal quantity. Suppose there exists some mono-

tonic increasing function g(-) such that the transformed quantitieé

¢ = g(e),k$ = g(®, " = g(é*) (10.26)

satisfy

§ - ¢~ n-z_ 0, o9
(10.27)
A% ~

3" - 3 5 n-z, 0, o
for some constants z_  and 0. 1In other words, $ ~ ¢ is a normal pivotal
quantity, havipg the same normal distribution under F and F. (Remember,
the distribution of R = $-—¢ under § is what we call the bootstrap dis-
tribution of R* = $*-$, ";" indicating the distribution under i.i.d.
sampling from F.)

In parametric contexts, (10.27) is a device frequently used to obtain
confidence intervals. Fisher's transformation ¢ = tanh_l p or the
correlation coefficient is the classical example. Within the class of
bivariate normal distributions it produces a good approximation to (10.27),

___pvyn-3

with 02 = 1/(n-3) and z = a1y The distributions are not per-

o
fectly normal; and z is not perfectly constant, but the theory still

produces useful intervals, as described in Section 10.4.
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The middle statement in (10.26) is actually a definition of the
estimator ¢. If 6 = 6(?) is a functional statistic, then
$ = 8(6(%)) is the nonparametric maximum likelihood estimator for ¢.
» . . § A* ~ * * *
The last relationship in (10.26) follows from ¢ = ¢(X1,X2,...,Xn) =
A %% * At
= g(e(Xl,Xz,...,Xn)) = g(8 ). It implies that the bootstrap distribution

A

Ak
of ¢ is the obvious mapping of the bootstrap distribution of 6 . Letting

P . A%
CDG(s) = Prob {9 < s} ,
we have

TD8(g(t)) = CDF(t) (10.28)

for all t.

The standard - 1-20, confidence interval for ¢ is
¢ e [+ z 0 - 2,0, ¢ + 2,0 + zao] . (10.29)

Using (10.27), we will see that mapping (10.29) back to the 0 scale gives

(10.25). First notice that (10.27) and (10.28) imply
~% ~ P A N A
Prob {¢ <o} = ®(z) = CDG(g(B)) ="CDF(O) ,

-1

which gives z = ¢ CDF(@)) as at (10.24).

Using (10.27) again,
6T <% } 0 }
< L0 % = : < + = :
Prob,{¢ ¢ + z0*z0 ProbF o< ¢+ z,0*z0 <I>(Zzo + ;u) .
N A
or, since this can be written as CDG(¢4-zOGi:zaG) = @(Zzo:tza) ,

~ /\_l
+ = +
¢ + zoo * zao CDG [@(220 * za)]
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Transforming (10.29) back to the 6 scale by the inverse mapping g_l(-)

-1

-1.A P
gives the interval with endpoints g l(¢4—zooftza0)==g CDG l[@(Zzoiza)]

P
= CDF l[@(Zzoztza)], the last equality following from (10.28),

-1 -1 .
CDG ~. We have now derived (10.25) from (10.27) []

(EoF1 ™t = D8 g1t = &

The normal distribution plays no special role in this argument. In-
stead of (10.27) we could assume that the pivotal quantity has some other
symmetric distribution than normal, in which case "®" would have a
different meaning in (10.25). In the unbiased case,‘where z, = 0, the
normal distribution plays no role at all since we get the ungorrected
percentile interval (10.14). This is worth stating separately: <f we assume
there exists a monotonic mapping g(-) such that $ - ¢ and $* - & have
the same distribution, symmetric about the origin, then the percentile in-
terval (10.14) has the correct coverage probability.

None of these arguments require knowing the form of the transformation
g, only of its existence. Consider the correlation coefficient again,
assuming that the true distribution F is bivariate normal. Applying the

parametric bootstrap of Section 5.2, and following definition (10.25),

will automatically give almost exactly the normal theory interval
b, %o,
2(n-1) ~ ’

a\) = tanh~l 6.

tanh[¢ - without any knowledge of the transformation

8. Typical Value Theory and the Percentile Method. The uncorrected

percentile method (10.13), (10.14) is a direct analogue of typical value
theory, as described in Section 9.2. In fact, if we let 6Bf(t) be the
cumulative distribution function of the subsample values rather than of
the bootstrap values, EEE(t) = #{§6 f_t}/(zn—l), then (10.13), (10.14)

gives the 1-20 central subsample interval. The same connection holds
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for the Monte Carlo versions of the two methods, where ‘EBF, either
subsample or bootstrap defined, is approximated by Monte Carlo simula-
tions.

The asymptotic considerations of Section 9.4 suggest that the typical
value intervals will be wider than the percentile intervals by a factor
of about VTE;§$7TH:IT. We see this effect in Table 10.3. Ten i.i.d.
samples Xl’ X2, ceny X15 were obtained from the negative exponential
distribution, Prob{X>x} = e_x, x > 0. TFour different methods were used
to obtain confidence intervals for the expectation g : (1) the percentile
method, B=1000, based on the bootstrap distribution of i*; (2) random

subsampling, B=1000 subsample values of X_ ; (3) the bias-corrected

S
percentile method based on i*, B=1000; (4) and the Pitman intervals.
The latter assume that we are sampling from a translated and rescaled
negative exponential, say 0 + 0(X-1), X as above, and are the Bayes
posterior intervals versus the uninformative prior d6 do/o, 0 > 0, see
Pitman (1938). The Pitman intervals are a parametric technique making
full use of the negative exponential form, and as such give the "correct"
answer. We will use them as the standard here, even though it is not
clear that they are the optimum resultT

Before computing the confidence limits, each sample X1sXgseeesXyg
was translated to have x=0 and scaled to have Z(xi-x)2/14 = 1,
This stabilized the entries of Table 10.3, without affecting comparisons

between the different methods. With n=15, V(n+2)/(n-1) = 1.10, and

wevsee that this is just about the ratio of the widths of random subsample

+The Pitman intervals based on the translation model 6 + o(X-1), X
negative exponential, 0=1 known, uniform prior distribution do,
are completely different. They are longer toward the left than toward
the right of x.
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intervals compared to the percentile method. For 1-2a = .90, the outer
two numbers in each quadruple, the ratio obtained from the AVE row is
(.46 + .44)/(.43 + .39) = 1.10.

Both of these methods are disappointing in one major aspect: their
intervals are not nearly as extended toward the right as the Pitman in-
tervals. The bias correction is helpful in this regard, shifting all 10
intervals rightwards, though not far énough so. The methods discussed in
Section 10.10 are more drastic.

The central limit theorem implies that the bootstrap distribution
of X will be approximately n(x, 82/n) when 0% = Z(xi-i)zln. 1f
this is an accurate approximation, then the percentile interval will equal,
apprbximately, i:tza 8//5. This is narrower than the standard t in-
terval E:tta,n_l 6/Va-1 ; ta,f the upper 0 point of a student's t

distribution with f degrees of freedom, and it is reasonable to suggest

ta,n—l 2 ]%

widening the percentile interval by factor — 0T Interestingly,
o
+2.% . .
this factor is quite close to [%:% ° for a = .05. However, using this

correction factor is not universally helpful, a counterexample being the
case of the median. More pertinently, there are other defects of the
percentile method, and of the other methods so far introduced, demanding
greater attention. The worst of those is discussed next. A more direct
method of correcting for the "t effect" is introduced in Section 10.

The bias corrected interval (10.25), based on the typical value
distribution rather than the bootstrap, was tried here, but had little
effect, often moving the typical value intervals slightly leftwards. In

this example the typical value method appeared insensitive to asymmetry
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in the observed sample. This suggests that it should be used with caution,
or not at all, when distributional asymmetry is a definite possibility.

9. The Percentile Method for M Estimates. We consider m-estimates,

as defined in (9.2), (9.3). For such estimates there are two seemingly
distinct ways that the percentile method can be used to construct approx-
imate confidence intervals for the true 0. These two ways turn out to

give the same answer. So we see that whether or not the percentile method

is any good in general, it is at least consistent with itself for m-estimates.

Define

o n
A 1
M(t) = J b(x-t) dF (%), M(t) = = Y Ux, -t) . (10.30)
-—C0 n=1
The "true 6" is defined as those values of t satisfying M(t) = O.

For each value of t we can use (10.14) to construct an approximate cen-

tral 1-2a interval for M(t),

M (85 Mp(ed] . (10.31)
This leads to an approximate 1-200 region for ©, namely
{t:0e M (6), M (B)]} . (10.32)

If (10.31) gave exact 1-2a intervals for M(t), then (10.32) would be
exactly 1-2a for 6.

Theorem 10.2. The region (10.32) is the same as the 1-20 percentile

interval for 8, [GLOW(a), GUP(OL)]°

Proof. Theorem 10.2 follows from the equivalence of these two events,

) > 0te {87 >},

for every bootstrap sample []
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Boos (1980) has suggested constructing confidence intervals for
m-estimates using an interesting variation of (10.31), (10.32): for each
t the interval (10.31) is replaced by an interval for M(t) constructed
in the standard way, using a student's t approximation for the sampling
distribution of ﬁ(t). Boos' method requires less computation than the
percentile method, at the expense of greater reliance on approximation
theory. It is nice to see that the two methods agree in principle.

Efron (1980A) applies (10.14) to obtain confidence intervals for
trimmed and winsorized means, including the median, in a censored data
.situation. Brookmeyer and Crowley (1978) and Emerson (1979) use a tech-
nique similar to Boos' to obtain confidence intervals for the median,
witﬁ censored data. The connection with the bootstrap is the same as
above.

10. Bootstrap t and Tilting. Table 10.4 shows the application

of two new methods to the 10 negative exponential samples of Table 10.3,

again with the goal of providing approximate confidence intervals for

the expectation. Only a brief description will be given of each method.
The true distribution of

X-6

T = =,

where Xl’ X2’ sees X15 are independent negative exponentials, © =1
is the expectation, and S2 = Z(Xi-i)2/14, does not look anything like
the normal theory distribution, which is a student's t with 14 degrees

of freedom, divided by v15. Instead, it is sharply skewed left,

Prob{T < -.69} = Prob{T > .36} = .05, Prob{T < -.50} = Prob{T > .28} = .10.
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Knowing this distribution, we could construct confidence intervals
for © based on the observed values of x and s. For example,
[x - .36s, X + ;693] is a central 90% confidence interval for 0. (It
can be shown that this is the .90 Bayes a posteriori interval for 6
versus the uninformative prior dO do/0 assuming the same model as for
the Pitman interval: a translatioﬁ~scale family based on the negative
exponential, but where only x and s are observed, rather than the
entire sample Xys Koy cees XlS') These intervals would all equal the

" in Table 10.4, since we have standardized each

entries given by "True T
sample to have x =0, s = 1.

In a nonparametric problem we don'’t know the true distribution of
T, but we can use the bootstrap to estimate it. The bootstrap t
entries in Table 10.4 were obtained in this way. For each sample, B=1000
bootstrap values T* = (i*-i)/s* were generated. The 90% central in-
X - %LOWS]’ where Prob*{T* < ﬁLOW} = .05,
Prob*{T* > %UP} = ,05. Since we set x = 0, s=1, the boo;strap t

terval was then [x - %UPS,
entries for each trial are negatives of the T* percentiles, -95%, -90%,
-10%, -5%. DNotice how closely the averages for the 10 trials approximate
the True T values.

This method gives more realistic answers than any of‘the nonparametric
techniques reported in Table 10.3, though the upper 95% point is a bit
wild in trials 5, 8, and 10. There is an interesting connection of the
bootstrap t with Johnson's (1978) work on Cornish-Fisher approximations
for T, which we will not present here. A drawback is that the method
seems specific to translation problems. An attempt to use it for the

correlation coefficient,now defining
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35(8) being the jackknife standard deviation estimate, gave poor
results.

Exponential Tilting in Table 10.4 refers to the following method
applied to the observed sample Xys Xgs cevs X5 D= 15:

1) For a given value of t define the weights

t txi n tx,
w, = e yoed i=1,2,...n, (10.33) -

j=1

and the "trial value" of the expectation
N n
6% = I W x, . (10.34)
i=1

*
2) Generate resampling vectors P according to the multinomial

~

distribution

* t
P 3 Multn(n,y Y/n . (10.35)

(For t = 0 this is the distribution (6.6), but otherwise it puts
different probabilities in the categories 1, 2, 3, ..., n.) Define the

significance level &t corresponding to t as the bootstrap probability

A ~ke A~
af = prob {8° < 6}, (10.36)
w
nk o *
where & = ) Py x; and Prob c indicate probability under distribu-
i=1 w
tion (10.35).
3) The upper 95% point of the approximate confidence interval

(= .56 for trial 1 of Table 10.4) is the value of @t for t such that

at = ,05, etc.
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Without going into details, the distribution F ¢ putting mass
w

wg on x, is the closest distribution to F (in a certain plausible

metric) which is supported entirely on the observed data points X5 and

which has expectation equal to the trial value @t. R is small,

A

then the value 0°© is excluded from the confidence interval for 6 be-
cause even the distribution F ¢ would be unlikely to yield the ob-

W
served value é. Exponential Eilting is similar to parametric techniques
of obtaining confidence intervals for a real function of a vector of
parameters.

The term "tilting" comes from exponential family theory. The tilted

density ft(x) corresponding to a given density fo(x) on the real line

00

fo(x), P(t) being chosen so that J ft(x)dx = 1.

=00

is ft(x) = etx_w(t)

The tilted bootstrap distribution of 6* under (10.35) is in fact ob-
tained by tilting the usual bootstrap distribution of §*, (6.6) in just
this way. The entries in Table 10.4 were obtained by first approximating
the usual bootstrap distribution with B=1000 replications of é*, and
then tilting this distribution to obtain the values at = .95, .90, .10,
.05.

Comparing Tables 10.4 and 10.3, exponential tilting gave results
intermediate between the bias-corrected percentile intervals with the
bootstrap t. Unlike the latter method, it performed well when applied
(with suitable alterations) to the correlation coefficient problem.

Whether or not tilting is a useful approach, it emphasizes a prin-
ciple limitation of the jackknife, the bootstrap, and the other methods
we have discussed. They are nonparametric in not making specific model

assumptions, but they all tacitly assume that the true distribution
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is supported on the observed data points K15 Koy eees X . This

seems to be harmless enough in estimating a standard deviation, but may

be seriously misleading in more delicate problems such as setting confi-
dence intervals. Smoothing, as introduced in Sgction (5.3), helps over-

come this objection, at the expense of introducing a parametric element

into the estimation procedure.
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