
Aust. N. Z. J. Stat. 53(2), 2011, 197–215 doi: 10.1111/j.1467-842X.2011.00624.x

AFFINE-EQUIVARIANT SPATIAL MEDIAN AND ITS USE IN THE
MULTIVARIATE MULTI-SAMPLE LOCATION PROBLEM

FRANTIŠEK RUBLÍK1 and JÁN SOMORČÍK2∗

Slovak Academy of Sciences Bratislava and Comenius University Bratislava

Summary

The classical spatial median is not affine-equivariant, which often turns out to be an un-
favourable property. In this paper, the asymptotic properties of an affine-equivariant modi-
fication of the spatial median are investigated. It is shown that under some weak regularity
conditions, the modified spatial median computed by means of the sample norming matrix is
asymptotically equivalent to the one computed by means of the population norming matrix,
which yields its asymptotic normality. A consistent estimate of the asymptotic covariance
matrix of the modified spatial median is also presented. These results are implemented in
a scheme, where the sample norm is determined by means of the sample Dümbgen scatter
matrix. The results are utilized in the construction of affine-invariant test statistics for test-
ing the multi-sample hypothesis of equality of location parameters. The performance of the
proposed tests is demonstrated through a simulation study.

Key words: affine-equivariant spatial median; asymptotic tests of location hypothesis; Dümbgen
matrix.

1. Introduction

The spatial median of a random sample of points in R
d is defined as the point in R

d

with the minimal sum of Euclidean distances to the sample points. It is used as an estimator
of location. It is popular because of its robustness and ease of computation, for example by
means of the improved version of the simple iterative algorithm of Weiszfeld (1937) proposed
in Vardi & Zhang (2000).

However, there is an important deficiency of the spatial median: it is translation-,
rotationally-, but not affine-equivariant. This means that if we perform a linear transfor-
mation of the coordinate system in which the d-dimensional data are measured, the spatial
median of the data does not have to change accordingly. Let us illustrate the issue by an exam-
ple. Suppose we have the measured body weight in kilograms and body height in centimetres
of a sample of people. We compute the sample spatial median (79.4 kg, 180.2 cm)�, say. If
we now express the original data in pounds and inches respectively, which is a linear change
of scales, the lack of affine equivariance of the spatial median means that the sample spatial
median computed from the ‘new’ data sample could be, for example, (168.9 lb, 72.3 in)�,
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198 AFFINE-EQUIVARIANT SPATIAL MEDIAN

which does not correspond to the previous (79.4 kg, 180.2 cm)�. Thus, the location of the
sample expressed by the spatial median may depend on the coordinate system.

In this paper we investigate the properties of a modification of the spatial median that
can be used to generate an affine-equivariant estimator of location. The idea is based on the
transformation–re-transformation approach suggested by Rao (1988). Suppose that a positive-
definite symmetric matrix W associated with the underlying random vector X is such that an
affine transformation AX by a regular matrix A changes the matrix W into (A�)−1WA−1.
For example, the inverse of the covariance matrix of the distribution (if it exists) can be taken
for W. In general, W−1 having the above property is called a scatter matrix – see chapter
3.1 of Oja (2010). Therefore, let us call the matrix W the inverse scatter matrix of X or
of the distribution of X. We denote by W1/2 the unique positive-definite symmetric matrix
satisfying W1/2W1/2 = W.

Now, it is easy to see that if we perform an affine transformation of the data points
X1, . . . ,Xn using W1/2, compute the spatial median of these new points and re-transform it
using W−1/2, we obtain an affine-equivariant estimate, which means that if we apply the above
process to the data points AX1, . . . ,AXn, where A can be any regular matrix, the result will
be A times the result for X1, . . . ,Xn. Note that in the latter transformation–re-transformation
we use (A�)−1WA−1 in place of W.

In practice, however, the value of the matrix W is often unknown and has to be estimated
by an estimator Wn based on X1, . . . ,Xn. It will be subject to some regularity conditions,
under which we will show in Section 2 that asymptotically it does not matter whether
we use the modified spatial medians based on the true inverse scatter matrix W or on its
estimate Wn.

We note that our approach is similar to the affine-equivariant version of the spatial
median presented by Hettmansperger & Randles (2002). However, in Hettmansperger &
Randles (2002) the location parameter and the scatter matrix are estimated simultaneously,
which requires an iterative procedure whose convergence is not ensured. Moreover, the scatter
matrix and its estimate are prescribed to be the Tyler matrices, in contrast to the freedom
of choice provided in our approach. Lopuhaä (1992) treats a similar problem to that of our
paper, but for general M-estimators of location. The spatial median can also be seen as an
M-estimator of location, but, unfortunately, the theory of Lopuhaä (1992) is not applicable
to it owing to some too restrictive assumptions about Lopuhaä’s class of M-estimators. A
version of affine-equivariant spatial median is discussed in Nevalainen, Larocque & Oja (2007)
but under more restrictive assumptions about the underlying distribution, such as elliptical
symmetry and continuous density. Finally, an affine-equivariant spatial median is developed
by Chakraborty, Chaudhuri & Oja (1998). As in our paper, they use the transformation–re-
transformation approach, but the transformation matrix is obtained in a completely different
and computationally intensive way based on the so-called data-driven coordinate system.
Moreover, elliptical symmetry is required.

We apply our modified spatial median to the d-dimensional q-sample location problem.
Its setting is based on q independent random samples of sizes n1, . . . , nq from d-variate
probability distributions with densities of the form f (x − μ1), . . . , f (x − μq), respectively,
where x ∈ R

d and f is an arbitrary non-negative function satisfying
∫

Rd f (x)dx = 1. The aim
of the inference is to test the hypothesis

H0 : μ1 = · · · = μq . (1)
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Many tests not requiring normality assumptions have been developed for this problem. A
test based on interdirections was constructed by Um & Randles (1998), a paper in which
various other test procedures are also mentioned. Another test for this problem based on
multivariate centred ranks is given by Hettmansperger, Möttönen & Oja (1998). The test of
the general linear hypothesis in the multivariate linear model in Bai et al. (1990), based on
the L1-approach, is also applicable. However, as the authors note, its critical values are hard
to obtain when the underlying distribution is not spherically symmetric. Finally, we mention
the multivariate generalizations of the univariate sign and rank tests given by Oja (2010).

Two test statistics M1 and M2 based on spatial medians are presented by Somorčı́k
(2006); details are in Section 3. Their structure is the same as that of the well-known Lawley–
Hotelling test statistic, but they use sample spatial medians instead of sample means to
estimate the location parameters. It was shown that this makes the test more robust in the
case of heavy-tailed underlying distributions. However, because the spatial median is not an
affine-equivariant estimate, the spatial median tests are not affine-invariant either. This means
that the value of the test statistics and, thus, the result of the testing, may change after a linear
transformation of the coordinate system in which the measurements were taken. Moreover,
the lack of affine-invariance negatively affects the power of the spatial median tests, as has
been shown by Somorčı́k (2007) in a simulation study.

For these reasons we present in Section 3 modified versions of test statistics M1 and
M2 that use the affine-equivariant modified spatial median. Its use makes the tests affine-
invariant, and their very good performance in the case of spherically symmetric underlying
distributions remains in the case of elliptical symmetry. Some simulation results comparing
the finite-sample performance of the improved spatial median tests with their competitors are
included in Section 4, and a real-data example is given in Section 5. The proofs and related
remarks are postponed to the Appendix or to the Supplementary Material published online
at the ANZJS website. The Supplementary Material also contains a computer code in R that
implements our proposed methods.

2. Asymptotic properties of the modified spatial median

As is well known, the spatial median of the d-dimensional random vector X is defined as

μ := arg min
M∈Rd

E(‖X − M‖ − ‖X‖),

where ‖·‖ denotes the Euclidean norm in R
d . Its sample counterpart, the sample spatial

median of the random sample X1, . . . , Xn from R
d , is defined as

μ̂ := arg min
M∈Rd

n∑
i=1

‖Xi − M‖. (2)

For any symmetric positive-definite d × d matrix V define a vector norm by the formula
|||x|||V := (x�Vx)1/2. Let W be an inverse scatter matrix of the random vector X. By the
spatial median θ (W) of X given by the norm |||·|||W we understand the vector

θ (W ) := arg min
M∈Rd

E(|||X − M |||W − |||X |||W ).
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200 AFFINE-EQUIVARIANT SPATIAL MEDIAN

Its finite-sample version is

θ̂n(W ) := arg min
M∈Rd

n∑
i=1

|||Xi − M |||W . (3)

Let θW be the spatial median of the distribution of the vector W1/2X given by the standard
Euclidean norm ‖·‖ and let θ̂W

n be its finite-sample version:

θ̂W
n := arg min

M∈Rd

n∑
i=1

‖W 1/2 Xi − M‖. (4)

It is easy to see that

θ (W ) = W −1/2θW , θ̂n(W ) = W −1/2θ̂W
n . (5)

In order to establish our asymptotic results it is natural to require that the estimated matrix
Wn is ‘close enough’ to the theoretical W:

Assumption 1. The matrices {Wn}∞
n =1 and W are positive-definite, Wn → W a.s. and

Wn = W + OP (n−1/2).
We will also require boundedness of the underlying density as in Chaudhuri (1992)

and also directional symmetry. This kind of symmetry also involves spherical or elliptical
symmetry as special cases.

Assumption 2. The random vector X has a density f with respect to the Lebesgue measure
on R

d , which is bounded on every bounded subset of R
d .

Assumption 3. The distribution of X is directionally symmetric around a point μ ∈ R
d ; in

other words, (X − μ)/‖X − μ‖ has the same distribution as −(X − μ)/‖ − (X − μ)‖.

Note that under Assumption 3 the centre of the directional symmetry and the spatial
median of the distribution coincide. Moreover, it is easy to see that the distribution of W1/2X
is also directionally symmetric, this time around W1/2μ, and therefore θW = W1/2μ and
θ (W) ≡ μ. However, the sample counterparts θ̂W

n and θ̂n(W ) in general do not equal W 1/2μ̂

and μ̂ respectively.
Define

U (x) :=
⎧⎨
⎩

x

‖x‖ if x 
= 0,

0 if x = 0.

P(x) :=

⎧⎪⎨
⎪⎩

1

‖x‖
(

Id − xx�

‖x‖2

)
if x 
= 0,

0 if x = 0.

D1 := E(P(W 1/2 X − θW )), D2 := E(U (W 1/2 X − θW ) · U�(W 1/2 X − θW )). (6)

Because the distribution of W1/2X also satisfies Assumption 2, the results of Chaudhuri
(1992) are applicable to θ̂W

n , and one obtains

n1/2(θ̂W
n − θW

) → Nd
(
0, D−1

1 D2 D−1
1

)
in distribution. (7)
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This together with (5) gives

n1/2{θ̂n(W ) − θ (W )} → Nd (0, B), where B := W −1/2 D−1
1 D2 D−1

1 W −1/2. (8)

Our main theoretical result is the following assertion.

Theorem 1. Under Assumptions 1, 2 and 3: θ̂n(Wn) = θ̂n(W ) + oP (n−1/2). Consequently,

n1/2(θ̂n(Wn) − θ (W )) → Nd (0, B) in distribution. (9)

In statistical practice one needs a consistent estimate of B. The following theorem states that a
strategy analogous to that of Somorčı́k (2006) and Bai et al. (1990) in the case of the classical
spatial median (2) can be used.

Theorem 2. Define

D̂1 := 1

n

n∑
i=1

P
(
W 1/2

n Xi − W 1/2
n θ̂n(Wn)

)
,

D̂2 := 1

n

n∑
i=1

U
(
W 1/2

n Xi − W 1/2
n θ̂n(Wn)

) · U�(
W 1/2

n Xi − W 1/2
n θ̂n(Wn)

)
,

B̂n := W −1/2
n D̂−1

1 D̂2 D̂−1
1 W −1/2

n . (10)

Suppose that Assumptions 1, 2 and 3 hold. If d ≥ 3, then B̂n = B + oP (1).

If the dimension d = 2 then the asymptotic properties of the estimator (10) turn out
to be a more complicated problem, which occurs in a similar context also in Bose (1995)
and Bose & Chaudhuri (1993). Consistency of this estimate can be established under the
following conditions.

Assumption 4. Let Wnk denote the estimate of W based on all n data points except of the
k th. Then max k =1, ... ,n‖W1/2

nk − W1/2‖ → 0 a.s.

Assumption 5. max k =1, ... ,n‖W1/2
nk − W1/2

n ‖ = OP (n−1/2).

Theorem 3. Suppose that Assumptions 1–5 are fulfilled. Then the result of Theorem 2 holds
also for d = 2.

Because the proof of the previous theorem requires a relatively large amount of space, it
is not included in this paper. Details can be found in Somorčı́k (2009); see also the remark in
the Appendix.

The next result states that in some cases the classical and the modified spatial median
asymptotically coincide, a fact that we will use to study the efficiency of the latter.

Theorem 4. Suppose that Assumptions 1, 2 and 3 are fulfilled. If W = c·Id for a positive
scalar c then θ̂n(Wn) = μ̂ + oP (n−1/2), where μ̂ is given by (2).
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202 AFFINE-EQUIVARIANT SPATIAL MEDIAN

The validity of the condition W = c·Id in the above theorem depends on the choice of
the matrix W. However, because W is the inverse of a scatter matrix, it always holds, for
instance, under a broad class of distributions with exchangeable and symmetric marginals.
See theorem 3.1 of Oja (2010).

We note that the asymptotic relative efficiency (ARE) of an estimator ξ̂1 relative to
another ξ̂2 is defined as ARE(ξ̂1, ξ̂2) := (det(V2)/ det(V1))1/d , where V1 and V2 are the
asymptotic covariance matrices of ξ̂1 and ξ̂2 respectively. Hence, under the assumptions of
Theorem 4,

ARE(θ̂n(Wn), μ̂) = 1. (11)

Suppose that the underlying distribution is elliptically symmetric; hence, its density is of the
form g(x��−1x)). If the affine-equivariant θ̂n(Wn) and an affine-equivariant location estimator
ξ̂ have asymptotic covariance matrices B and V under the density g(x�x) then the affine
equivariance implies that their asymptotic covariance matrices under the aforementioned
elliptical symmetry will be �1/2B�1/2 and �1/2V�1/2. This means that

ARE(θ̂n(Wn), ξ̂ ) =
(

det (�1/2V �1/2)

det (�1/2 B�1/2)

)1/d

=
(

det (V )

det (B)

)1/d

= dV

dB
, (12)

where dV and dB are the diagonal elements of V and B respectively, as affine equivariance en-
sures that under spherical symmetry these matrices are of the form V = dV ·Id and B = dB·Id .
Hence, what we obtain is the ARE of θ̂n(Wn) relative to ξ̂ under the spherically symmetric
density g(x�x). ARE(μ̂, ξ̂ ) has been evaluated in many papers under spherically symmetric
distributions for various affine-equivariant estimators ξ̂ ; see, for example, Bai et al. (1990),
Oja & Niinimaa (1985) or Möttönen, Oja & Tienari (1997). Under spherical symmetry the
condition W = c·Id is guaranteed, (11) and (12) imply that ARE(θ̂n(Wn), ξ̂ ) = ARE(μ̂, ξ̂ ),
and this equality holds also under elliptically symmetric versions of these spherically sym-
metric distributions.

3. Modified spatial median in multi-sample location tests

In this section we use the modified affine-equivariant spatial medians for testing the
hypothesis (1). Classical spatial medians were used by Somorčı́k (2006) in the statistics

M1 :=
q∑

a=1

na(μ̂a − μ̄)�V̂ −1(μ̂a − μ̄), M2 :=
q∑

a=1

na(μ̂a − μ̂)�V̂ −1(μ̂a − μ̂),

where μ̂1, . . . , μ̂q are the classical spatial medians of the particular samples (see (2)), μ̄ :=
(1/n)

∑q
a=1 naμ̂a is their weighted mean, μ̂ is the sample spatial median of the pooled sample

and V̂ is a consistent estimate of the asymptotic covariance matrix V of the sample spatial
medians. The asymptotic distribution of M1 and M2 was proved to be χ2

(q −1)d provided that
H0 holds and Assumption 2 is fulfilled; in this case, no symmetry assumptions about the
underlying distribution are needed. In the test based on Mi , the null hypothesis (1) is rejected
for large values of Mi ; more precisely, it is rejected if Mi exceeds the αth critical value of the
χ2

(q −1)d distribution.
The modified spatial median can be used for testing the q-sample hypothesis of the

equality of location parameters too. Let Xa1, . . . , Xana be a random sample from the d-
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dimensional distribution with density of the form f (x − μa ), (x ∈ R
d and f is an arbitrary

non-negative function satisfying
∫

Rd f (x)dx = 1), a = 1, . . . , q, with the samples being
independent. Let η̂a := θ̂na (Wn) denote the modified spatial median of the ath sample defined
by (5) with Wn based on the pooled sample of all n := n1 + · · · + nq data points, and η̄ :=
(1/n)

∑q
a=1 na η̂a . Finally, B̂ := B̂n denotes the estimate (10) of the asymptotic covariance

matrix of the affine-equivariant spatial median computed from the pooled sample. Define new
test statistics by the formulas

A1 :=
q∑

a=1

na(η̂a − η̄)� B̂−1(η̂a − η̄), A2 :=
q∑

a=1

na(η̂a − η̂)� B̂−1(η̂a − η̂).

Because the modified spatial medians are affine-equivariant, these statistics are invariant under
affine transformation of the data.

In the following theorem we consider also the Pitman alternatives, which means that
in accordance with Assumption 3 the centre of directional symmetry of the ath sample is
μa = μ + ha/n1/2. The constant vectors ha ∈ R

d satisfy the natural condition
∑q

a =1paha =
0, where pa = lim(na /n) > 0.

Theorem 5. Suppose that Assumptions 1, 2 and 3 are fulfilled.

(I) A1 and A2 are asymptotically equal under the null hypothesis (1): A1 = A2 + oP (1).
Moreover, both converge to χ2

(q −1)d in distribution as n1 → ∞, . . . , nq → ∞.
(II) Under the Pitman alternatives, the asymptotic distribution of A1 is non-central chi-

squared χ2
(q−1)d (δA1 ) with non-centrality parameter δA1 := ∑q

a=1 pah�
a B−1ha , where B

is defined in (8).
(III) If W = c·Id for a positive scalar c, thenA1 = M1 + oP (1) under H0 or the Pitman

alternatives and A2 = M2 + oP (1) under H0.

If the underlying distribution is such that the Pitman alternatives are contiguous to H0

then Theorem 5(I) implies that the asymptotic distribution of A2 under the Pitman alternatives
is the same as that of A1, with the same non-centrality parameter δA2 = δA1 . Also note that
Theorem 5(I) in this paper and theorem 3 in Somorčı́k (2006) imply that A1 and A2 are
asymptotically equal to the well-known several-sample spatial sign test statistic. Moreover,
the affine invariance of A1 and A2 provides a similar relationship also under elliptical
symmetry: A1 and A2 are asymptotically equal to the affine-invariant generalizations of the
several-sample spatial sign test statistic: to the one based on interdirections and presented in
Um & Randles (1998) and to the other one presented in Oja (2010) on p. 156 and considered
also in the simulation study below.

To carry out the modification described in the general setting, we have chosen the
Dümbgen matrix in the role of the scatter matrix W−1. The Dümbgen matrix ϒ of the distri-
bution of X is defined by Dümbgen (1998) and Dümbgen & Tyler (2005) as the symmetric
positive-definite matrix satisfying the equalities

ϒ = d · E

(
(X − Y )(X − Y )�

(X − Y )�ϒ−1(X − Y )

∣∣∣X − Y 
= 0

)
, tr(ϒ) = d,

where Y is an independent copy of X. Its sample version ϒn = ϒn(X1, . . . , Xn)
based on the data points X1, . . . , Xn is defined as the positive-definite symmetric matrix
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204 AFFINE-EQUIVARIANT SPATIAL MEDIAN

satisfying

ϒn = d

m

n−1∑
i=1

n∑
j=i+1

τ (Xi − X j , ϒn), tr(ϒn) = d,

where m is the number of the indices i < j such that Xi 
= Xj, τ (x, ϒn) = xx�/x�ϒ−1
n x if

x 
= 0 and τ (x, ϒn) = 0 otherwise. The following theorem sets the minimal number of data
points to ensure the almost sure existence of the modified spatial median based on the sample
Dümbgen matrix.

Theorem 6. Let X1, . . . , Xn be a random sample from the distribution of the random vector
X, having a density with respect to the d-dimensional Lebesque measure, and θ̂n(Wn) be the
modified spatial median defined by (5) with Wn := ϒ−1

n . Suppose that

n > max

{
d, 2d

(n − 1)

(n + 1)

}
. (13)

Then with probability 1 this median θ̂n(Wn) exists, is uniquely defined and affine-equivariant.

We shall employ the previous modified spatial median for testing (1). Thus in the rest of
this section Wn :=ϒ−1

n . Because according to corollary 4.1 of Dümbgen (1998) Assumption 1
holds for this choice of Wn, according to Theorem 5 under validity of Assumptions 2 and 3
the test based on Ai rejects the null hypothesis (1) if Ai exceeds the αth critical value of the
χ2

(q −1)d distribution.

The choice of the Dümbgen matrix enables us to use a simpler form of B̂. Dümbgen
(1998) specifies certain classes of symmetric underlying distributions under which the
Dümbgen matrix ϒ is equal to the Tyler matrix � defined in Tyler (1987) by the implicit
formula

� = d · E

(
(X − μ) (X − μ)�

(X − μ)��−1(X − μ)

∣∣∣X 
= 0

)
, tr(�) = d.

Then the definition (6) immediately implies that D2 = (1/d)·Id , as W = ϒ−1 = �−1 and
θW = W1/2μ. Thus in these cases it is not necessary to estimate D2, and one may estimate
B by the estimator B̂ := W −1/2

n D̂−1
1 D2 D̂−1

1 W −1/2
n . This form of B̂ is used in the forthcom-

ing simulation study, as the symmetric classes mentioned in Dümbgen (1998) cover also
elliptically symmetric distributions and linear transformations of distributions with indepen-
dent, identically distributed components symmetric around a location parameter. In a general
situation, however, B̂ := B̂n given by (10) has to be used.

4. Simulation study

The performance of the obtained tests in the finite-sample case is illustrated by simula-
tion estimates in Table 1 in the case of q = 3 samples of n1 = n2 = n3 = 30 data points from
3-variate (d = 3) distributions, (possibly) differing only by the shifts. We consider multivari-
ate spherically symmetric normal (normal distribution), multivariate spherically symmetric
Cauchy (Cauchy distribution I) with density of the form const × 1/(1 + ‖x‖2)(d +1)/2,
and multivariate but not spherically symmetric Cauchy with independent components
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TABLE 1
Simulated probabilities of type I error ( H0 true = yes) and powers (H0 true = no) of our affine-invariant
A1, A2 and affine-non-invariantM1, M2; of the Lawley-Hotelling’s T2 and the Oja’s Q2

sign and Q2
rank.

Aperm
1 , Aperm

2 : permutation approach applied to A1, A2 (1000 random data rearrangements).

Test statistic

H0 true Distribution A1 A2 Aperm
1 Aperm

2 M1 M2 T2 Q2
sign Q2

rank

Yes Cauchy I .070 .077 .050 .049 .073 .079 .023 .045 .046
Normal .047 .050 .053 .053 .049 .052 .068 .049 .049
Cauchy II .069 .077 .046 .046 .073 .080 .023 .052 .050

No Cauchy I .44 .453 .411 .407 .430 .449 .049 .497 .322
Normal .740 .749 .771 .770 .738 .749 .876 .762 .832
Cauchy II .230 .243 .197 .196 .228 .243 .033 .240 .157

Setup: q = 3 samples of n1 = n2 = n3 = 30 data points from some d = 3-variate distributions. Each entry
based on 5000 Monte Carlo simulations.

TABLE 2
Simulated probabilities of type I error ( H0 true = yes) and powers ( H0 true = no) of the affine-non-

invariant M1 (first lines) and M2 (latter lines) under elliptical deformations.

ρ

H0 Distribu-
true tion −0.4 −0.3 −0.2 −0.1 0 0.5 0.6 0.7 0.8 0.9 0.95

Yes Cauchy I .080 .074 .073 .072 .073 .080 .081 .085 .097 .114 .151
.088 .082 .078 .079 .079 .086 .089 .094 .107 .132 .174

Normal .051 .049 .049 .049 .049 .050 .050 .050 .053 .066 .087
.057 .053 .052 .052 .052 .054 .055 .055 .062 .077 .105

Cauchy II .075 .073 .071 .073 .073 .081 .088 .093 .112 .145 .212
.085 .081 .078 .080 .080 .092 .098 .106 .124 .169 .246

No Cauchy I .421 .430 .430 .431 .430 .438 .436 .433 .425 .414 .404
.445 .452 .449 .447 .449 .454 .454 .451 .446 .440 .441

Normal .726 .733 .735 .738 .738 .722 .714 .702 .682 .637 .585
.738 .744 .744 .748 .749 .730 .721 .710 .694 .653 .612

Cauchy II .221 .218 .222 .226 .228 .255 .264 .267 .276 .303 .341
.240 .234 .236 .240 .243 .272 .280 .286 .303 .331 .376

Setup: q = 3 samples of n1 = n2 = n3 = 30 data points from some elliptically deformed d = 3-variate
distributions. Elliptical deformations given by the square root of the 3 × 3 matrix � = (�ij) with �ij = 1 if
i = j and �ij = ρ otherwise. Each entry based on 5000 Monte Carlo simulations.

(Cauchy distribution II) where each of the d independent components has the classical univari-
ate Cauchy distribution with location 0 and scale 1. The simulation results include other affine-
invariant test statistics: the Lawley–Hotelling test statistic T2 from Um & Randles (1998),
and the sign and rank test statistics Q2

sign and Q2
rank presented in Oja (2010) on p. 156 and

pp. 159–160. In computing the Dümbgen matrix we used the function duembgen.shape() from
the package ICSNP in the statistical software R provided by Nordhausen et al. (2010). Q2

sign

and Q2
rank were evaluated using the package MNM by Nordhausen, Möttönen & Oja (2009).

In Table 2, the effect of the lack of affine invariance of the statistics M1 and M2 is
illustrated by multiplying the sample data with the square root of the 3 × 3 matrix � = (�ij),
where �ij = 1 if i = j and �ij = ρ otherwise. Thus ρ ∈ ( − 1/2, 1) determines the ‘shape’ of
the elliptical deformation of the data clouds. The condition ρ > −1/2 is necessary for � to
be positive-definite.
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Based on 5000 Monte Carlo replications, the values in both tables report the proportions
of times H0 was rejected while testing at the nominal level of 5%. Except for the columns
Aperm

1 and Aperm
2 , the asymptotic approach was adopted, which means that the 5% critical

value of the χ2
(q −1)d distribution was used for rejection of H0. To obtain columns Aperm

1 and
Aperm

2 , the permutation instead of the asymptotic approach was applied to the statistics A1

and A2: for each original sample of data points with labels specifying their belonging to one
of the q = 3 samples, 1000 random rearrangements of the labels were performed to obtain
the permutation p-value corresponding to the original arrangement of the labels. Thus, the
proportion of times the permutation p-value was found under 5% is reported in columns
Aperm

1 and Aperm
2 . We note that because the inverse Wn of the Dümbgen matrix, the matrix B̂,

and the modified spatial median η̂ are all given by the pooled sample, for each of the 1000
permutations of the labels only η̂1, η̂2, η̂3 and consequently η̄ had to be recomputed.

From the point of view of the significance level, lines with ‘H0 true = yes’ show that the
statistics A1, A2 are more suitable for testing (1) than M1, M2. Indeed, for ρ = 0 (Table 1) the
simulated probabilities of type I error of A1 and A2 are similar to those of M1 and M2. With
ρ moving away from 0 (Table 2), however, the probabilities of type I error of M1 and M2

seem to increase, up to 0.246 in the case of Cauchy distribution II, whereas the probabilities
for A1 and A2 stay constant because of the affine invariance. The probabilities of type I
error of A1 and A2 are slightly over 0.05, but, as indicated by columns Aperm

1 and Aperm
2 , the

permutation approach to the testing cures this deficiency. The simulated probabilities of type
I error of Q2

sign and Q2
rank appear to be close enough to the nominal level, without the need for

the permutation approach.
Lines with ‘H0 true = no’ present results of simulations where we used the location

parameters μ1 := (0, 0.4, 0)�, μ2 := ( − 0.4, 0.4, 0.4)� and μ3 := (0.4, 0, 0)� to violate the
null hypothesis (1). For ρ = 0 (Table 1), the powers of A1 and A2 are similar to those of M1

and M2. With ρ moving away from 0 (Table 2), however, we see a decrease of the powers
of M1 and M2 under Cauchy distribution I and in particular under multivariate normality,
whereas the powers of A1 and A2 remain constant. Under Cauchy distribution II we observe
an increase of simulated powers of M1 and M2, but, as already noted, under this distribution
the simulated probabilities of type I error are unacceptably high.

In the case of ‘H0 true = no’, when comparing A1, A2, Aperm
1 and Aperm

2 with their
affine-invariant competitors T2, Q2

sign and Q2
rank, one can see the superior performance when

confronted with Q2
rank and T2 under both Cauchy distributions. This was previously observed

for M1 and M2 vs. T2 in the case of ρ = 0; see Somorčı́k (2006). The affine invariance of A1,
A2, Aperm

1 and Aperm
2 preserves this favourable property also after an elliptical deformation of

the data distribution. The performance of A1 and A2 when compared with Q2
sign is similar,

except for the domination of Q2
sign under Cauchy distribution I and the slightly higher simulated

probabilities of type I error of A1 and A2 under both Cauchy distributions, owing to small
sample sizes. Aperm

1 and Aperm
2 with ideal probabilities of type I error result in slightly lower

powers than those of A1 and A2 under both Cauchy distributions. The superior performance
of T2 under multivariate normality is not surprising, as it is associated with the well-known
optimality of the sample mean under this distribution. However, the A1, A2, Aperm

1 and Aperm
2

also compete quite well in this case.
Under Cauchy distribution II, Hettmansperger’s H from Hettmansperger et al. (1998)

was included in the simulations, resulting in a good probability of type I error (0.044) and in
power (0.240) similar to the powers of A1 and A2. However, the advantage of A1 and A2
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compared with H lies in the fact that H is computationally much more intensive. Therefore,
H is difficult to use for large data sets, and cross-validation would be very slow.

5. An example

Let us illustrate the usage of our tests based on A1 and A2 by an application to the
famous Egyptian skull data from q = 3 epochs: around 4000, around 3000, and around 1850
BC. For each of the n1 = n2 = n3 = 30 skulls from each epoch we have d = 4 measurements:
maximum breadth, basibregmatic height, basialiveolar length, and nasal height of the skull.
The hypothesis (1) means that the measurements do not change over time; the opposite would
indicate interbreeding with immigrant populations. See, for example, the R package HSAUR
for details about the data.

First we compute by means of the function duembgen.shape() the inverse of the sample
Düembgen matrix Wn given by the pooled sample of all n = n1 + n2 + n3 = 90 data points.
Then we multiply all the data points by the matrix W1/2

n and calculate the classical spatial
medians of the q = 3 transformed samples; one can use the function spatial.median() from
the R package ICSNP, for example. In accordance with (5), multiplying these spatial medians
by W−1/2

n yields the modified spatial medians η̂1 = θ̂n1 (Wn), η̂2 = θ̂n2 (Wn), η̂3 = θ̂n3 (Wn) and
their weighted average η̄. In the same way, we also compute the modified spatial median η̂ of
the pooled sample. It remains to calculate the estimate B̂ = B̂n of the asymptotic covariance
matrix given by (10); we again use the pooled sample and the modified spatial median η̂ of
the pooled sample to centre the data. Now everything is ready to enumerate the test statistics
A1 and A2 defined in Section 3. Here we summarize the numerical results:

Wn =

⎛
⎜⎜⎜⎜⎜⎝

0.90 −0.11 0.04 −0.26

−0.11 0.88 −0.03 −0.24

0.04 −0.03 0.67 −0.01

−0.26 −0.24 −0.01 2.08

⎞
⎟⎟⎟⎟⎟⎠ ,

η̂1 = (131.40, 133.67, 99.61, 50.46)�

η̂2 = (132.29, 133.05, 98.93, 50.34)�

η̂3 = (135.03, 133.87, 95.79, 50.34)�

η̄ = (132.98, 133.55, 98.03, 50.38)�

η̂ = (132.85, 133.56, 98.23, 50.46)�

B̂ =

⎛
⎜⎜⎜⎜⎜⎝

24.43 7.83 −2.45 5.02

7.83 22.88 −1.44 5.28

−2.45 −1.44 29.67 −0.25

5.02 5.28 −0.25 9.72

⎞
⎟⎟⎟⎟⎟⎠ ,

A1 = 17.63

A2 = 17.77.

The p-values based on the asymptotic χ2
(q −1)d = χ2

8 distribution are 2.4% and 2.3% re-
spectively. The p-values of the corresponding permutation test based on 1000 random rear-
rangements of the ‘epoch’ labels of the skulls are both 1.0%; see Section 4 for details on
the permutation approach. Therefore, we reject H0 at the usual nominal level of 5% and
conclude that the Egyptian skulls seem to have changed over time. We note that to obtain the
above numerical results the reader can use the computer code in R that can be found in the
Supplementary Material published online at the ANZJS website.
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6. Discussion

From a theoretical point of view, the first two theorems presented in our paper provide a
wide spectrum of possibilities for making statistical inferences based on an affine-equivariant
modification of the classical spatial median. These possibilities are given by the general choice
of the inverse scatter matrix and by the fact that the assumptions about its estimate are rather
weak.

We utilized the modified spatial median to improve our previously published multivari-
ate multi-sample location tests M1 and M2. The simulation study has shown that their lack
of affine invariance can be eliminated in this way, because the finite-sample performance of
the affine-invariant procedures A1 and A2 did not become worse despite the necessity of
estimating the unknown inverse scatter matrix. Moreover, the good performance in the case
of heavy-tailed underlying distributions remained, also owing to good robust properties of the
sample Dümbgen matrix employed in estimating the scatter matrix. However, the simulation
study has also shown that under smaller sample sizes the probability of type I error is in gen-
eral slightly above the nominal level, a phenomenon that did not appear when considering, for
instance, the affine-invariant sign and rank competitors Q2

sign and Q2
rank. Fortunately, the pre-

sented simulation study has shown that the easy-to-apply permutation approach instead of the
asymptotic testing overcomes this difficulty, with no substantial decrease of power observed.

Appendix: The proofs and related remarks

Frequently we will use the fact noted by Chaudhuri (1992) that 1/‖x‖α is finitely inte-
grable in any bounded neighbourhood of 0 for 0 ≤α < d. An immediate consequence is that
for such an α under Assumption 2 the integral E(1/‖X‖α) is finite.

We will suppose that Assumptions 1, 2 and 3 hold, without stating this fact explicitly in
the lemmas below. Without loss of generality, we assume that μ, the centre of the directional
symmetry of the underlying density, is a zero vector. Note that the directional symmetry from
Assumption 3 implies that the distribution of W1/2X is also directionally symmetric and
therefore θW = 0, by lemma 5.3 of Chaudhuri (1992).

For a d × d matrix A we will use the notation ‖A‖ to denote its Frobenius norm. Finally,
for the sake of brevity let θ̂n stand for θ̂Wn

n .

Proof of Theorem 1

The strategy of the proof is inspired by the proof of the Bahadur-type representation
of the classical spatial median in Chaudhuri (1992). This approach relies on step-wise ap-
proximations that use mainly the Bernstein inequality and similar results of Serfling (1980).
The methodology of our proof differs substantially from the proof of the asymptotic normal-
ity of a general class of affine-equivariant M-estimators of location presented by Lopuhaä
(1992), as we do not utilize concepts such as permissible classes of functions, polynomial
discrimination, or envelopes.

First we introduce Lemmas 1–10. Their proofs can be found in the Supplementary
Material published online at the ANZJS website.

Lemma 1. For all x, y ∈ R
d such that x 
= 0:

(I) ‖U(x + y) − U(x)‖ ≤ 2‖y‖/‖x‖.
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(II) If x + y 
= 0: ‖P(x + y) − P(x)‖ ≤ ((d1/2 + 1)/‖x + y‖2 + (d1/2 + 5)/‖x‖2)·‖y‖.
(III) If x + y 
= 0: ‖P(x + y) − P(x)‖ ≤ (d1/2 + 5)·‖y‖/(‖x‖·‖x + y‖).

Lemma 2. There exists a non-increasing sequence {δn}∞
n =1 of real numbers such that

δn → 0 and almost surely ‖W1/2
n − W1/2‖ < δn for all n sufficiently large.

Lemma 3. There exists a constant K 1 such that almost surely ‖θ̂n‖ ≤ K1 for all n suffi-
ciently large.

Lemma 4. Let K 1 be the constant from Lemma 3 and {δn}∞
n =1 be the sequence

from Lemma 2. Put Bn := {θ ; ‖θ‖ < K1, θ = (v1/n4, . . . , vd/n4)�, v j are integers} and
Un := {U ; U is a symmetric positive-definite matrix, ‖U − W 1/2‖ ≤ δn}. Let Ũn denote the
set of all symmetric matrices V = (vij/n4)d

i,j =1 such that vij are integers and there is a matrix
U = U (V ) ∈ Un for which ‖V − U‖ ≤ d/n4.

(I) For every U ∈ Un there exists V ∈ Ũn such that ‖V − U‖ ≤ d/n4. Moreover, for all n
large enough if V ∈ Ũn then V is positive-definite and

‖V ‖ ≤ ‖W 1/2‖ + 1, ‖V −1‖ ≤ ‖W −1/2‖ + 1, det(V ) ≤ det(W 1/2) + 1,

det(V −1) ≤ det(W −1/2) + 1, λd (V ) > λd (W 1/2)/2,

where λd (·) denotes the smallest eigenvalue.
(II) There exists a constant K 2 > 0 such that almost surely for all n sufficiently large

max
θ∈Bn

max
V ∈Ũn

∥∥∥∥∥1

n

n∑
i=1

U (V Xi − θ ) − E
(
U (V X − θ )

)∥∥∥∥∥ ≤ K2

(
ln n

n

)1/2

. (14)

(III) There exists a constant K 3 > 0 such that almost surely for all n sufficiently large

max
θ∈Bn

max
V ∈Ũn

1

n

n∑
i=1

�

(
‖V Xi − θ‖ ≤ max{1, ‖Xi‖}

n2

)
≤ K3

ln n

n
.

Lemma 5. Throughout this lemma assume that V is a symmetric positive-definite d × d
matrix. LetG(V , y) := ∫

Rd U (V x + y) f (x)dx = ∫
Rd U (x + y) fV (x)dx and H (V , y) :=∫

Rd (U (x + y) − U (x)) · (U (x + y) − U (x))� fV (x)dx , where fV (·) is the density of the ran-
dom vector VX.

(I) The function G(V, ·) has continuous partial derivatives JV (y) := ∂G/∂ y� =∫
Rd P(x + y) fV (x)dx and JV (y) is always positive-definite.

(II) If yn → y and Vn → V then JVn (yn) → JV (y).
(III) y = 0 is the unique root of the equation G(V, y) = 0.

Assume further, that a and M are constants,

‖V ‖ ≤ a, ‖V −1‖ ≤ a (15)

and ‖y‖ ≤ M. Then there exist constants g > 0, m1, m2, m3 not depending on y or V such
that

(IV) ‖G(V, y)‖ ≥ g‖y‖,
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(V) ‖G(V, y)‖ ≤ m1‖y‖,
(VI) for d ≥ 3: ‖H(V, y)‖ ≤ m2‖y‖2, for d = 2 and α ∈ (0, 1): ‖H(V, y)‖ ≤ m2‖y‖2α ,

(VII) for d ≥ 3: ‖JV (y) − JV (0)‖ ≤ m3‖y‖, for d = 2 and α ∈ (0, 1): ‖JV (y) − JV (0)‖ ≤
m3‖y‖α .

Lemma 6. Let V be a compact set of symmetric positive-definite matrices. Then there exists
a constant M̃ such that ‖JV (0) − JW (0)‖ ≤ M̃‖V − W‖ for all V , W ∈ V .

Lemma 7. There exists a constant K 4 such that almost surely for all n sufficiently large
‖θ̂n(Wn)‖ ≤ K4

(
(ln n)/n

)1/2
.

Lemma 8. Let M > 0. Then

sup

{
‖G(V ,−θ ) + JV (0)θ‖; ‖θ‖ ≤ M

(
ln n

n

)1/2

, V satisfies (15)

}
= Zn,

where Zn stands for O((ln n)/n) for d ≥ 3. For d = 2 it stands for o(((ln n)/n)(1 +α)/2) where
α ∈ (0, 1) is arbitrary.

Lemma 9. Denote �n(V, θ ) := (1/n)
∑n

i =1(U(VXi ) − U(VXi − θ ) + G(V, −θ )), and
B̃n := {θ ; ‖θ‖ ≤ 2K4((ln n)/n)1/2, θ = (v1/n4, . . . , vd/n4)�, v j are integers}, where the con-
stant K 4 comes from Lemma 7. Then almost surely for all n sufficiently large

max
θ∈B̃n ,V ∈Ũn

‖�n(V , θ )‖ ≤ K(n),

where K(n) = K5(ln n)/n if d ≥ 3, and K(n) = o(((ln n)/n)α) if d = 2. Here K 5 is a suitably
chosen constant and α ∈ (0, 1) is arbitrary.

Lemma 10. Let {Wn}∞
n =1 be the sequence from Assumption 1. Then almost surely

1

n

n∑
i=1

U (W 1/2
n Xi ) = JW 1/2

n
(0) · W 1/2

n · θ̂n(Wn) + Rn,

where Rn = O((ln n)/n) if d ≥ 3. If d = 2, then Rn = o(((ln n)/n)α) where α ∈ (0, 1) is
arbitrary.

Main part of the proof of Theorem 1. For all non-zero vectors x and symmetric
positive-definite matrices W define the vector-valued function g(W, x) := W1/2·U(W1/2x) =
Wx/(x�Wx)1/2. Its partial derivatives are

∂g(W , x)

∂wst
=

((
ese�

t + et e
�
s

)
W −1 − xs xt

x�W x

)
g(W , x) for s < t,

=
(

eses
�W −1 − x2

s

2x�W x

)
g(W , x) for s = t,

where es(s = 1, . . . , d) are the unit vectors with 1 in the sth coordinate. Note that
xsxt /(x�Wx) = (W−1/2U(W1/2x)U�(W1/2x)W−1/2)st for s, t = 1, . . . , d which means
that ∂g(W, x)/∂wst =: ζ (W, U(W1/2x)) is a function of W and U(W1/2x) and its norm can
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be bounded by a constant not depending on x because ‖U(W1/2x)‖ = 1. Since Assumption 3
implies that U(W1/2X) has the same distribution as U( − W1/2X), we obtain that
∂g(W, X)/∂wst = ζ (W, U(W1/2X)) has the same distribution as ζ (W, U( − W1/2X)) =
−∂g(W, X)/∂wst , and therefore E(∂g(W, X)/∂wst ) = 0. Hence by the central limit theorem

1

n

n∑
i=1

∂g(W , Xi )

∂wst
= OP (n−1/2). (16)

After computing the formula for the second partial derivative ∂2g(W∗, x)/(∂wst∂wuv) one
easily finds that there exist constants a and K such that∥∥∥∥∂2g(W ∗, x)

∂wst∂wuv

∥∥∥∥ ≤ K (17)

for all x 
= 0 and W∗ such that W∗ satisfies (15). Consider the second-order Taylor series
expansion

1

n

n∑
i=1

g(Wn, Xi ) = 1

n

n∑
i=1

g(W , Xi ) +
∑

s, t = 1, . . . , d
s ≤ t

1

n

n∑
i=1

∂g(W , Xi )

∂wst
(Wn(s, t) − W (s, t)) + Rn,

(18)

where

Rn =
∑

s, t, u, v = 1, . . . , d
s ≤ t ; u ≤ v

1

n

n∑
i=1

∂2g(W + β(Wn − W ), Xi )

∂wst∂wuv
· (Wn(s, t) − W (s, t))(Wn(u, v) − W (u, v)),

β ∈ (0, 1) and W(s, t ) denotes the (s, t )th element of W. According to Assumption 1: Wn − W = OP (n−1/2).
This together with (16) and (17) applied to (18) gives that

1

n

n∑
i=1

g(Wn, Xi ) = 1

n

n∑
i=1

g(W , Xi ) + oP (n−1/2). (19)

Further, (5) and theorem 3.2 on p. 901 of Chaudhuri (1992) applied to the transformed data W1/2X1, . . . ,
W1/2Xn ensure that

W 1/2 · θ̂n(W ) = θ̂W
n = J−1

W 1/2 (0) · W−1/2 · 1

n

n∑
i=1

g(W , Xi ) + oP (n−1/2). (20)

Now, Lemma 10, (19) and (20) imply that almost surely

W 1/2
n · JW 1/2

n
(0) · W 1/2

n · θ̂n(Wn) = 1

n

n∑
i=1

g(Wn, Xi ) − W 1/2
n Rn

= 1

n

n∑
i=1

g(W , Xi ) + oP (n−1/2)

= W 1/2 · JW 1/2 (0) · W 1/2 · θ̂n(W ) + oP (n−1/2)

because W1/2
n Rn = oP (n−1/2). This means that

θ̂n(Wn) =
[(

W 1/2
n · JW 1/2

n
(0) · W 1/2

n

)−1 · W 1/2 · JW 1/2 (0) · W 1/2 − Id

]
· θ̂n(W )

+ θ̂n(W ) + oP (n−1/2).
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Note that the expression in square brackets is oP (1) and θ̂n(W ) is OP (n−1/2) because of (8). The rest of the
proof is obvious. �
Proof of Theorem 2

Lemma 11. If the dimension d ≥ 3, then (1/n)
∑n

i=1 1/‖Xi − θ̂n(Wn)‖2 = OP (1).

Proof of Lemma 11. Let the random events

En =
{

1

n

n∑
i=1

1

‖Xi − θ̂n(Wn)‖2
> M

}
, Fn =

{
‖θ̂n(Wn)‖ > K4

(
ln n

n

)1/2
}

.

Then

Pr(En) ≤ Pr(En ∩ FC
n ) + Pr(Fn) = Pr(En ∩ FC

n ) + o(1), (21)

where the last equality follows from Lemma 7. Further,

Pr
(
En ∩ FC

n

) ≤ Pr
(
En ∩ FC

n ∩ GC
n

) + Pr(Gn), (22)

where Gn denotes the random event min {‖X1‖, ‖X2‖, . . . , ‖Xn‖} ≤ 2K 4((ln n)/n)1/2. Note
that for d ≥ 3

Pr(Gn) ≤
n∑

i=1

Pr

(
‖Xi‖ ≤ 2K4

(
ln n

n

)1/2
)

≤ nM10 M11

(
2K4

(
ln n

n

)1/2
)d

n→∞−→ 0,

(23)

where the constant M10 bounds the density of X in the ball with centre 0 and radius K 4, cf.
Assumption 2. The constant M11 comes from the formula for the volume of a d-dimensional
ball. On the set F C

n ∩G C
n , however, the inequality ‖Xi − θ̂n(Wn)‖ > K4((ln n)/n)1/2 holds for

i = 1, . . . , n and therefore∣∣∣∣ 1

‖Xi − θ̂n(Wn)‖ − 1

‖Xi‖
∣∣∣∣ ≤ ‖θ̂n(Wn)‖

‖Xi − θ̂n(Wn)‖ · ‖Xi‖
<

1

‖Xi‖ .

This means that

Pr
(
En ∩ FC

n ∩ GC
n

) ≤ Pr

(
1

n

n∑
i=1

4

‖Xi‖2
> M

)
. (24)

Since E(1/‖X‖2) < ∞ because d ≥ 3, employing the law of large numbers and taking into
account (21)–(24) one obtains that the lemma is true. �
Main part of the proof of Theorem 2. In view of Assumption 1 it is sufficient to show that
D̂2 = D2 + oP (1) and D̂1 = D1 + oP (1).

Define D∗
2 := (1/n)

∑n
i=1 U (W 1/2 Xi − W 1/2θ̂n(Wn)) · U�(W 1/2 Xi − W 1/2θ̂n(Wn)). It

is easy to derive by Lemma 1 (I) that ‖U(x)U�(x) − U(y)U�(y)‖ ≤ 4‖x − y‖/‖y‖. This
and Assumption 1 imply that

‖D̂2 − D∗
2‖ ≤ 4

‖W 1/2
n − W 1/2‖
λd (W 1/2)

= oP (1).

C© 2011 Australian Statistical Publishing Association Inc.
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Similarly, for D∗∗
2 := (1/n)

∑n
i =1U(W1/2Xi )·U�(W1/2Xi ) the inequality

‖D∗
2 − D∗∗

2 ‖ ≤ 4‖W 1/2‖
(

1

n

n∑
i=1

1

‖W 1/2 Xi‖

)
‖θ̂n(Wn)‖

holds. But Assumption 2 and the law of large numbers imply that E(1/‖X‖) < ∞ and
(1/n)

∑n
i =11/‖Xi‖ = OP (1), which together with (9) ensures that ‖D∗

2 − D2
∗∗‖ = oP (1).

Finally, note that by the law of large numbers D∗∗
2 = D2 + oP (1). Hence, we conclude that

D̂2 = D2 + oP (1).
Now, put D∗

1 := (1/n)
∑n

i =1P(W1/2
n Xi ) and D∗∗

1 := (1/n)
∑n

i =1P(W1/2Xi ). Similar argu-
ments to above and Lemma 1 (III) ensure that almost surely for all n large enough

‖D∗
1 − D∗∗

1 ‖ ≤ (d1/2 + 5) · 1

n

n∑
i=1

‖W 1/2
n − W 1/2‖ · ‖Xi‖

‖W 1/2
n Xi‖ · ‖W 1/2 Xi‖

≤ (d1/2 + 5) · ‖W 1/2
n − W 1/2‖

λ2
d (W 1/2)/2

· 1

n

n∑
i=1

1

‖Xi‖ = oP (1).

(25)

Further, by Lemma 1 (II) we obtain that

‖D̂1 − D∗
1‖ ≤ 1

n

n∑
i=1

(
d1/2 + 1

‖Xi − θ̂n(Wn)‖2
+ d1/2 + 5

‖Xi‖2

)
· 1

λ2
d (W 1/2

n )
· ‖W 1/2

n ‖ · ‖θ̂n(Wn)‖

≤
(

1

n

n∑
i=1

d1/2 + 1

‖Xi − θ̂n(Wn)‖2
+ 1

n

n∑
i=1

d1/2 + 5

‖Xi‖2

)

· 1

λ2
d (W 1/2)/2

· (‖W 1/2‖ + 1) · ‖θ̂n(Wn)‖,

(26)

where the second inequality holds almost surely for all n large enough. ‖θ̂n(Wn)‖ is oP (1) by
(9) and the second sum is OP (1), cf. proof of Lemma 11. Finally, let us apply Lemma 11 to
the first sum so that we obtain that ‖D̂1 − D∗

1‖ = oP (1). Moreover, the law of large numbers
ensures that D∗∗

1 = D1 + oP (1). Hence, with (25) in mind we obtain that D̂1 = D1 + oP (1)
and the proof is complete. �
Remark on the proof of Theorem 3. It is natural to ask why the rather simple proof
of Theorem 2 cannot be applied also in the case of d = 2. Problems arise when proving
‖D̂1 − D∗

1‖ = oP (1), because the expansion (26) is useless. Note that one cannot rely on
E(1/‖X‖2) < ∞ any more, because it may not hold under the weak Assumption 2 when
d = 2. Therefore, the frequently used (1/n)

∑n
i =11/‖Xi‖2 = OP (1) becomes questionable. This

ruins also the proof of Lemma 11. Attempts to prove at least (1/n)
∑n

i=1 1/‖Xi − θ̂n(Wn)‖ =
OP (1), a statement similar to Lemma 11, reveal that also the final convergence in (23) depends
strongly on the condition d ≥ 3. This is given by the fact that the convergence to zero of
the radius K 4((ln n)/n)1/2 of the ball, which according to Lemma 7 encapsulates θ̂n(Wn), is
insufficiently slow for d = 2.

The above complications forced us to utilize the methodology of Bai et al. (1990),
developed to prove the consistency of the asymptotic covariance matrix estimate of the

C© 2011 Australian Statistical Publishing Association Inc.
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L1-estimator in general linear regression models. However, this approach required us to
establish some asymptotic properties of θ̂nk(Wnk), which is defined in the same way as
θ̂n(Wn), but with the k th observation omitted. For this reason it was necessary to impose
additional Assumptions 4 and 5. See Somorčı́k (2009) for a detailed proof of Theorem 3.

Proof of Theorem 4. If W is a scalar multiple of the identity matrix, then the estimate
θ̂n(W ) does not depend on W and θ̂n(W ) = μ̂. Theorem 1 completes the proof. �
Proofs of Theorems 5 and 6. See the Supplementary Material published online at the
ANZJS website.
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SOMORČÍK, J. (2007). Performance of some spatial median tests under elliptical symmetry. Measurement

Science Review 7, 43–50.
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Supplementary material

Proof of Lemma 1

The inequality (I) can be found in Chaudhuri (1992) and (III) is just a simple corollary.

Finally, making use of (I) and an other inequality
∣

∣1/‖x+ y‖ − 1/‖x‖
∣

∣ ≤ (1/‖x+ y‖2 +

1/‖x‖2)‖y‖ from Chaudhuri (1992), one obtains (II).

Proof of Lemma 2

An application of the Egoroff theorem yields that there exist positive integers n∗
r and sets

Ar, r = 1, 2, . . . such that 1 − Pr(Ar) < 1/2r and for all n ≥ n∗
r the inequality ‖W 1/2

n −

W 1/2‖ < 1/2r holds on Ar. Let Bm = ∩∞
r=mAr. Then 1 − Pr(Bm) ≤

∑∞
r=m 1/2r

m→∞−→ 0

and the probability of the set B = ∪∞
m=1Bm equals 1. Put nr =

∑r
j=1 n

∗
j and δn = 1 or

1/2r, if n < n1 or nr ≤ n < nr+1, respectively. Since {Bm}∞m=1 is an increasing sequence

of sets and on Bm the inequality ‖W 1/2
n − W 1/2‖ < δn holds if n ≥ nm, the lemma is

proved. �

Proof of Lemma 3

The lemma is almost the same as Lemma 5.2 on p. 906 in Chaudhuri (1992). The

only distinction is that instead of the random sample X1, . . . , Xn our data points are

W
1/2
n X1, . . . ,W

1/2
n Xn, whereWn is the randommatrix. It is shown on p. 907 in Chaudhuri

(1992) that for K1 large enough almost surely for all n sufficiently large

1

n

n
∑

i=1

Ψ

(

‖Xi‖ >
K1

4

)

≤ 2δ, (S.1)

where Ψ(·) is the indicator function of the set. Further, Assumption 1 ensures that almost

surely for all n large enough ‖W 1/2
n −W 1/2‖ ≤ 1, which means that

‖W 1/2
n Xi‖ ≤ ‖W 1/2

n ‖ · ‖Xi‖ ≤ (‖W 1/2
n −W 1/2‖+ ‖W 1/2‖) · ‖Xi‖ ≤ (1 + ‖W 1/2‖) · ‖Xi‖.

1



Hence ‖W 1/2
n Xi‖ > K ′

1/4 implies that ‖Xi‖ > K1/4, where K ′
1 := (1 + ‖W 1/2‖) · K1,

and by (S.1) almost surely (1/n)
∑n

i=1Ψ(‖W 1/2
n Xi‖ > K ′

1/4) ≤ 2δ for all n large enough.

Finally, making use of this inequality one can prove similarly as in Chaudhuri (1992) that

if ‖θ‖ > K ′
1 then (1/n)

∑n
i=1(‖W

1/2
n Xi−θ‖−‖W 1/2

n Xi‖) > 0, which completes the proof.

�

Proof of Lemma 4

(I) Let U = {uij}di,j=1 ∈ Un and vij = sign(uij) · max{v; v is integer, v ≤ |uij|n4}. Then

|vij/n4 − uij| ≤ 1/n4, the matrix V = (vij/n
4)di,j=1 belongs to Ũn and ‖V − U‖ ≤ d/n4.

Further, for all V ∈ Ũn and corresponding U ∈ Un

‖V −W 1/2‖ ≤ ‖V − U‖+ ‖U −W 1/2‖ ≤ d

n4
+ δn → 0,

and since the matrix W 1/2 is positive-definite, for all n large enough also V is positive-

definite. The remaining statements are immediate consequences of continuity of the

functions ‖ · ‖, det(·) and λd(·).

(II) By the definition of Un, Ũn there exists K̃1 such that ‖V ‖ ≤ K̃1 whenever V ∈ Ũn.

For such a V = (vij/n
4)di,j=1 the only possible values of vij are 0,±1,±2, . . . ,±⌊K̃1n

4⌋

and Ũn has at most

#Ũn ≤ (2K̃1n
4 + 1)d

2 ≤ (2K̃1 + 1)d
2

n4d2 (S.2)

elements. Similarly it can be shown that

#Bn ≤ (2K1 + 1)dn4d. (S.3)

Let Fn be the event defined in (14) and FC
n denote the complementary event. An applica-

tion of the inequalities
√

a21 + · · ·+ a2d ≤ |a1|+ · · ·+ |ad|, maxx
∑

j aj(x) ≤
∑

j maxx aj(x)

2



and sub-additivity of probability ensure that

Pr(FC
n ) ≤

d
∑

j=1

∑

θ∈Bn

∑

V ∈Ũn

Pr

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Uj(V Xi − θ)− E(Uj(V X − θ))

∣

∣

∣

∣

∣

>
K2

d

√

lnn

n

)

,

(S.4)

where Uj(x) denotes the j-th coordinate of U(x). Since the function Uj(·) is bounded by

−1 and 1, the Lemma on p. 75 in Serfling (1980) implies

Pr

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Uj(V Xi − θ)− E(Uj(V X − θ))

∣

∣

∣

∣

∣

>
K2

d

√

lnn

n

)

≤ 2 exp







−2n
(

K2

d

√

lnn
n

)2

(1− (−1))2






.

(S.5)

Combining (S.2)–(S.5) we get that for K2 sufficiently large
∑∞

n=1 Pr(F
C
n ) < ∞. This

together with the Borel-Cantelli lemma completes the proof.

(III) Let V ∈ Ũn. The random vector Y = V X has the density of the form fV (y) :=

f(V −1y)| det(V −1)|. Using Assumption 2 and Lemma 4 (I) we obtain that

sup
n≥n0

sup{fV (y); ‖y‖ ≤ K1 + 1, V ∈ Ũn} = M1 < +∞.

Let θ ∈ Bn. Then the set An = {y; ‖y − θ‖ ≤ 1/n2} ⊆ {y; ‖y‖ ≤ K1 + 1} and for a

suitable constant M2

Pr

(

‖V X − θ‖ ≤ 1

n2

)

=

∫

An

fV (y)dy ≤ M2

(

1

n2

)d

. (S.6)

By Lemma 4 (I) for n large enough λd(V ) > λd(W
1/2)/2 =: K0 > 0 and 1/(K0n

2) < 1/2.

Then

{

x; ‖V x− θ‖ ≤ ‖x‖
n2

, ‖x‖ ≥ 1

}

⊆
{

x; ‖x− V −1θ‖ ≤ ‖x‖
K0n2

, ‖x‖ ≥ 1

}

⊆

⊆ Cn := {x; r1 ≤ ‖x‖ ≤ r2, ‖x‖ ≥ 1}, r1 =
‖V −1θ‖
1 + 1

K0n2

, r2 =
‖V −1θ‖
1− 1

K0n2

.

It can be shown that there exist M3,M4 not depending on n such that r2 < M3 and

the Lebesgue measure of Cn is dominated by M4/n
2. By Assumption 2 there exists a

3



constant M5 such that sup‖x‖≤M3
f(x) = M5. Combining these facts we obtain

Pr

(

‖V X − θ‖ ≤ ‖X‖
n2

, ‖X‖ ≥ 1

)

≤ Pr(Cn) ≤ M5
M4

n2
. (S.7)

The inequalities (S.6) and (S.7) enable us to estimate from above

E(Ψ) := E

(

Ψ

(

‖V X − θ‖ ≤ max{1, ‖X‖}
n2

))

≤

≤ Pr

(

‖V X − θ‖ ≤ 1

n2

)

+ Pr

(

‖V X − θ‖ ≤ ‖X‖
n2

, ‖X‖ ≥ 1

)

≤ M6

n2

for a suitable constant M6. Then also V ar(Ψ) ≤ E(Ψ2) = E(Ψ) ≤ M6/n
2. Put

FC
n :=

{

ω; max
θ∈Bn

max
V ∈Ũn

1

n

n
∑

i=1

Ψi > K3
lnn

n

}

,

where Ψi := Ψ(‖V Xi − θ‖ ≤ max{1, ‖Xi‖}/n2). Then for all n sufficiently large

Pr(FC
n ) ≤ Pr

(

max
θ∈Bn

max
V ∈Ũn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ψi − E(Ψ)

∣

∣

∣

∣

∣

> K3
lnn

n
− M6

n2

)

≤

≤ Pr

(

max
θ∈Bn

max
V ∈Ũn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ψi − E(Ψ)

∣

∣

∣

∣

∣

>
K3

2
· lnn

n

)

Now, proceeding similarly as in the proof of part (II) of this lemma and using the

Bernstein inequality on p. 95 in Serfling (1980) we obtain that for K3 large enough

Pr(FC
n ) ≤ M7/n

2 for a suitable constant M7 and all n large enough. Then the proof

proceeds as the proof of part (II). �

Proof of Lemma 5

(I) & (III) Note that for any given regular matrix V the density fV (·) satisfies Assumption

2. Assumption 3 ensures that the distribution of V X is also directionally symmetric and

according to Chaudhuri (1992) the spatial median of the distribution of the vector V X

is 0, irrespective of V . Therefore (I) and (III) are now consequences of Lemma 5.3 of

Chaudhuri (1992).
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(II) It can be shown that

‖P (Vnx+ yn)‖3/2 ≤
(√

d+ 1

λd(Vn)

)3/2
1

‖x+ V −1
n yn‖3/2

. (S.8)

For n large enough 1/λd(Vn) ≤ 2/λd(V ) and as V −1
n yn is bounded,

sup
n

∫

Rd

1

‖x+ V −1
n yn‖3/2

f(x)dx = sup
n

∫

Rd

1

‖x‖3/2 f(x− V −1
n yn)dx < ∞.

This together with (S.8) means that {P (VnX + yn)}∞n=1 is uniformly integrable. Since

JVn(yn) =
∫

Rd P (Vnx + yn)f(x)dx, an application of Vitali convergence theorem yields

(II).

(IV) Fix ǫ > 0. Let Q > 0 be a constant. If ‖z‖ > M +Q, then ‖z + y‖ > Q and

‖P (z + y)− P (z)‖ ≤
(

1

Q
+

1

Q+M

)

· (
√
d+ 1).

This means that for Q large enough

∫

‖z‖>M+Q

‖P (z + y)− P (z)‖fV (z)dz <
ǫ

2
(S.9)

for all regular V and ‖y‖ ≤ M . Let {yn}∞n=1 be an arbitrary sequence such that ‖yn‖ ≤ M

and yn → 0. Since the inequalities

sup{fV (z); ‖z‖ ≤ M +Q, V satisfies (15)} =: C < ∞,

‖P (z + yn)− P (z)‖3/2 ≤ (
√
d+ 1)3/2 ·

(

1

‖z + yn‖
+

1

‖z‖

)3/2

hold, uniform integrability and the Vitali convergence theorem can be utilized in a similar

way as in the proof of part (II) to show that

∫

‖z‖≤M+Q

‖P (z + yn)− P (z)‖fV (z)dz ≤
∫

‖z‖≤M+Q

‖P (z + yn)− P (z)‖Cdz → 0

as n → ∞. Combining this result with (S.9) one obtains that there exists δ > 0 such

5



that if ‖y‖ < δ then

‖JV (y)− JV (0)‖ < ǫ, (S.10)

irrespective of V satisfying (15). Let Gj and jJV denote the j-th coordinate and j-th row

of G and J respectively. Using the mean value theorem one obtains that

Gj(V, y) = Gj(V, y)−Gj(V, 0) = jJV (ξjy)y

for some ξj ∈ (0, 1). Applying Euclidean norm we obtain

‖G(V, y)‖ ≥ ‖JV (0)y‖ −
d
∑

j=1

‖jJV (ξjy)− jJV (0)‖ · ‖y‖. (S.11)

Let g1 := inf{λ;λ is the smallest eigenvalue of JV (0), V satisfies (15)}. Since part (II) of

this lemma holds, g1 is a positive number and in accordance with (S.10) there exists δ > 0

such that ‖JV (y)−JV (0)‖ < g1/(2d) for all ‖y‖ ≤ δ and V satisfying (15). This together

with (S.11) means that ‖G(V, y)‖ ≥ (g1/2)‖y‖ for all ‖y‖ ≤ δ. If M ≤ δ it is enough to

put g := g1/2. If not, the function G(V, ·)/‖ · ‖ is continuous and positive (cf. (III)) on

the compact set {y; δ ≤ y ≤ M}, and obviously is here bounded from below by a g2 > 0

for all V satisfying (15). Thus putting g := min{g1/2, g2} one obtains that (IV) holds.

(V) By Lemma 1 (I) we obtain

‖G(V, y)‖ = ‖G(V, y)−G(V, 0)‖ ≤ 2‖y‖
∫

Rd

1

‖x‖fV (x)dx ≤

≤ 2‖y‖
(
∫

‖x‖≤1

1

‖x‖fV (x)dx+

∫

‖x‖>1

fV (x)dx

)

.

The second integral is bounded by 1. Since sup{fV (x); ‖x‖ ≤ 1, V satisfies (15)} is a real

number, the existence of m1 is proved.

(VI) If d ≥ 3, it is easy to derive by means of Lemma 1 (I) that ‖H(V, y)‖ ≤

4‖y‖2
∫

Rd(1/‖x‖2)fV (x)dx. Now the proof continues similarly as in part (V).

6



Let d = 2. We shall use the inequality

‖y‖β
‖x‖ · ‖x+ y‖ ≤ 2β(‖x‖β−2 + ‖x+ y‖β−2) (S.12)

from Chaudhuri (1992) which is true for β ∈ (0, 1). Employing Lemma 1 (I) and (S.12)

we obtain that for α ∈ (1/2, 1) and β := 2− 2α ∈ (0, 1)

‖y‖β−2 · ‖H(V, y)‖ ≤ 4

∫

Rd

‖y‖β
‖x‖ · ‖x+ y‖fV (x)dx ≤

≤ 4 · 2β
(
∫

Rd

1

‖x‖2−β
fV (x)dx+

∫

Rd

1

‖x+ y‖2−β
fV (x)dx

)

.

Note that 2 − β ∈ (1, 2), hence, the integrals are finite. We can continue similarly as in

the proof of part (V) to prove that the first integral is bounded, irrespective of y and V .

The second integral can be written in the form
∫

Rd(1/‖x‖2−β)fV (x − y)dx and treated

similarly. Hence, we have shown that for α ∈ (1/2, 1) there exists m2 such that

‖H(V, y)‖ ≤ m2‖y‖2−β = m2‖y‖2α.

For α ∈ (0, 1/2) put α∗ = α+ 1/2 and use the proved inequality.

(VII) For d ≥ 3 Lemma 1 (II) ensures that

‖JV (y)− JV (0)‖ ≤
(

∫

Rd

√
d+ 1

‖x+ y‖2fV (x)dx +

∫

Rd

√
d+ 5

‖x‖2 fV (x)dx

)

‖y‖.

The boundedness of the second integral was treated in the proof of part (VI). The first

integral can be written in the form
∫

Rd

(

(
√
d+1)/‖x‖2

)

fV (x− y)dx and its boundedness

is now obvious.

In the case of d = 2 we apply Lemma 1 (III) and (S.12) to obtain that for β := 1−α ∈

(0, 1)

‖y‖β−1 · ‖JV (y)− JV (0)‖ ≤
∫

Rd

(
√
d+ 5)

‖y‖β
‖x‖ · ‖x+ y‖fV (x)dx ≤

≤ (
√
d+ 5)2β

(
∫

Rd

1

‖x‖2−β
fV (x)dx+

∫

Rd

1

‖x+ y‖2−β
fV (x)dx

)

.
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The proof can be completed in the same way as the proof of (VI) for d = 2. �

Proof of Lemma 6

Since the set V is compact and the smallest eigenvalue is a continuous function of its

symmetric matrix argument, there exists a positive real number λ such that ‖Ax‖ ≥ λ‖x‖

for all A ∈ V. Using this inequality and Lemma 1 (III) one obtains

‖P (V x)− P (Wx)‖ ≤
√
d+ 5

λ2
· 1

‖x‖ · ‖V −W‖.

This implies that ‖JV (0)−JW (0)‖ ≤
(

(
√
d+5)/λ2

) ∫

Rd(1/‖x‖)f(x)dx · ‖V −W‖ and the

proof is complete. �

Proof of Lemma 7

Since θ̂n(Wn) = W
−1/2
n θ̂n and Lemma 2 holds, it is sufficient to prove the lemma for θ̂n

instead of θ̂n(Wn). Let θ∗n ∈ Bn and V ∗
n ∈ Ũn be the elements of Bn and Ũn, which are

the nearest to θ̂n and W
1/2
n , respectively. Lemma 2 ensures that almost surely for all n

large enough W
1/2
n ∈ Un which together with Lemma 4 (I) means that

‖V ∗
n −W 1/2

n ‖ ≤ d

n4
. (S.13)

Lemma 3 implies that almost surely for all n large enough

‖θ̂n − θ∗n‖ ≤ d

n4
. (S.14)

If ‖V ∗
nXi−θ∗n‖ ≥ max {1, ‖Xi‖} /n2 then using Lemma 1 (I), (S.13) and (S.14) one obtains

‖U(W 1/2
n Xi − θ̂n)− U(V ∗

nXi − θ∗n)‖ ≤ 4d

n2
. (S.15)
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Denote Ψ∗
i := Ψ (‖V ∗

nXi − θ∗n‖ ≤ max{1/n2, ‖Xi‖/n2}). Then

∥

∥

∥

∥

∥

1

n

n
∑

i=1

U(V ∗
nXi − θ∗n)

∥

∥

∥

∥

∥

≤ 1

n

n
∑

i=1

‖U(W 1/2
n Xi − θ̂n)− U(V ∗

nXi − θ∗n)‖ ·Ψ∗
i +

+
1

n

n
∑

i=1

‖U(W 1/2
n Xi − θ̂n)− U(V ∗

nXi − θ∗n)‖ · (1−Ψ∗
i )

+
1

n

∥

∥

∥

∥

∥

n
∑

i=1

U(W 1/2
n Xi − θ̂n)

∥

∥

∥

∥

∥

.

We apply Lemma 4 (III) to the first sum. The second sum can be bounded from above

using (S.15) and the norm of the third one by 1, cf. Fact 5.5 on p. 909 in Chaudhuri

(1992). Thus we obtain that almost surely for all n large enough

∥

∥

∥

1

n

n
∑

i=1

U(V ∗
nXi − θ∗n)

∥

∥

∥
≤ 2K3

lnn

n
+

4d

n2
+

1

n
. (S.16)

Similarly as (S.15) it can be shown that if ‖V ∗
nXi − θ‖ ≥ max {1/n2, ‖Xi‖/n2} then

‖U(W 1/2
n Xi − θ)− U(V ∗

nXi − θ)‖ ≤ 2d

n2

and analogously as in (S.16)

max
θ∈Bn

∥

∥

∥

1

n

n
∑

i=1

(U(W 1/2
n Xi − θ)− U(V ∗

nXi − θ))
∥

∥

∥
≤ 2K3

lnn

n
+

2d

n2
(S.17)

almost surely for all n large enough. Taking into account both (S.16) and (S.17) with

θ∗n ∈ Bn in place of θ we obtain that almost surely for all n large enough

∥

∥

∥

1

n

n
∑

i=1

U(W 1/2
n Xi − θ∗n)

∥

∥

∥
≤ (4K3 + 6d+ 1)

lnn

n
. (S.18)
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Let K ′
4 be a constant, θ ∈ Bn and ‖θ‖ > K ′

4

√

(lnn)/n. Obviously,

∥

∥

∥

∥

∥

1

n

n
∑

i=1

U(W 1/2
n Xi − θ)

∥

∥

∥

∥

∥

≥ ‖G(V ∗
n ,−θ)‖ −

∥

∥

∥

∥

∥

1

n

n
∑

i=1

U(V ∗
nXi − θ)−G(V ∗

n ,−θ)

∥

∥

∥

∥

∥

−

−
∥

∥

∥

∥

∥

1

n

n
∑

i=1

(

U(W 1/2
n Xi − θ)− U(V ∗

nXi − θ)
)

∥

∥

∥

∥

∥

.

Lemma 5 (IV) can be applied to the first term because the existence of the constant a

required by this lemma is ensured almost surely for all n large enough by Lemma 4 (I).

Lemma 4 (II) may be used for the second term and (S.17) for the third term. We obtain

∥

∥

∥

∥

∥

1

n

n
∑

i=1

U(W 1/2
n Xi − θ)

∥

∥

∥

∥

∥

≥ g‖θ‖ −K2

√

lnn

n
−
(

2K3
lnn

n
+

2d

n2

)

≥

≥ (gK ′
4 −K2 − 2K3 − 2d)

√

lnn

n

almost surely for all n large enough. Hence ifK ′
4 is large enough then ‖θ∗n‖ ≤ K ′

4

√

(lnn)/n

by (S.18) and the rest of the proof follows from (S.14). �

Proof of Lemma 8

We apply the mean value theorem to the j-th component of the function G(V, ·) and by

(III) and (I) of Lemma 5 we obtain

(G(V,−θ) + JV (0)θ)j = Gj(V, 0) +
∂Gj

∂θ⊤
(αjθ) · (−θ) + jJV (0)θ = j (−JV (αjθ) + JV (0)) θ,

for a suitable αj ∈ (0, 1) depending on θ. Now Lemma 5 (VII) can be utilized and one

obtains the inequalities

Zn ≤ sup

{

m3‖θ‖2; ‖θ‖ ≤ M

√

lnn

n

}

= O

(

lnn

n

)

,

Zn ≤ sup

{

m3‖θ‖α+1; ‖θ‖ ≤ M

√

lnn

n

}

= o

(

(

lnn

n

)(1+α)/2
)

,

where the upper line holds for d ≥ 3 and the lower one for d = 2. �
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Proof of Lemma 9

From Lemma 5 (III) we have G(V, 0) = 0. It implies that

V ar
(

U(V X)− U(V X − θ) +G(V,−θ)
)

= H(V,−θ)−G(V,−θ) ·G⊤(V,−θ).

If V ∈ Ũn then according to Lemma 4 (I) the matrix V satisfies condition (15) for n large

enough. Hence, if also θ ∈ B̃n then Lemma 5 (V), (VI) can be used and one obtains that

max
j=1,...,d

V ar
(

Uj(V X)− Uj(V X − θ) +Gj(V,−θ)
)

≤ K0(n),

where K0(n) = M8(lnn)/n if d ≥ 3 and K0(n) = o
(

(

(lnn)/n
)α
)

if d = 2, M8 is a suitably

chosen constant and α ∈ (0, 1) is arbitrary. Let

FC
n =

{

max
θ∈B̃n

max
V ∈Ũn

‖Γn(V, θ)‖ > K1(n)

}

,

where K1(n) = K5(lnn)/n if d ≥ 3 and K1(n) = K5

(

(lnn)/n
)α

if d = 2. Following the

steps in the proof of Lemma 4 (II), using the Bernstein inequality on p. 95 in Serfling

(1980) and choosing K5 sufficiently large one obtains that for a suitable constant M9 and

all n large enough Pr(FC
n ) ≤ M9/n

2. Now the proof can be completed as that of Lemma

4 (II). �

Proof of Lemma 10

Recall V ∗
n ∈ Ũn and θ∗n ∈ Bn defined in the proof of Lemma 7. It was shown therein that

almost surely for all n large enough θ̂n ≤ K4

√

(lnn)/n. Therefore taking into account

(S.14) one obtains that θ∗n ∈ B̃n almost surely for all n large enough. Then according to

Assumption 1 almost surely for all n large enough λd(W
1/2
n ) > λd(W

1/2)/2 which together
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with Lemma 1 (I) and (S.13) means that

∥

∥

∥

∥

∥

1

n

n
∑

i=1

(

U(W 1/2
n Xi)− U(V ∗

nXi)
)

∥

∥

∥

∥

∥

≤ 1

n

n
∑

i=1

2
‖(W 1/2

n − V ∗
n )Xi‖

‖W 1/2
n Xi‖

≤

≤ 1

n

n
∑

i=1

2
d
n4‖Xi‖

1
2
λd(W 1/2)‖Xi‖

=
4d

λd(W 1/2)n4
(S.19)

almost surely for all n large enough. Consider the decomposition

1

n

n
∑

i=1

U(V ∗
nXi) =

1

n

n
∑

i=1

(

U(V ∗
nXi)− U(V ∗

nXi − θ∗n) +G(V ∗
n ,−θ∗n)

)

+

+
1

n

n
∑

i=1

U(V ∗
nXi − θ∗n)−

(

G(V ∗
n ,−θ∗n) + JV ∗

n
(0)θ∗n

)

+ JV ∗

n
(0)θ∗n.

Application of Lemma 9, (S.16) and Lemma 8 to the first, second and third term respec-

tively gives that almost surely

1

n

n
∑

i=1

U(V ∗
nXi) = δ(n) + JV ∗

n
(0)θ∗n,

where δ(n) = O

(

lnn

n

)

if d ≥ 3, and δ(n) = o

(

( lnn

n

)α
)

if d = 2.

(S.20)

Further, (5) implies the equality

JV ∗

n
(0) · θ∗n = JV ∗

n
(0) · (θ∗n − θ̂n) +

(

JV ∗

n
(0)− J

W
1/2
n

(0)
)

· θ̂n + J
W

1/2
n

(0) ·W 1/2
n · θ̂n(Wn).

Thus Lemma 5 (II), (S.14), Lemma 6, (S.13) and Lemma 3 ensure that almost surely

JV ∗

n
(0) · θ∗n = O(n−4) + J

W
1/2
n

(0) ·W 1/2
n · θ̂n(Wn). (S.21)

Combine (S.19), (S.20) and (S.21) and the proof is complete. �

Proof of Theorem 5

(I) By multiplied samples we will understand the original q samples with each data point

multiplied by W 1/2. Let the µ̂W
a ’s denote the classical spatial medians of the multiplied
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samples given by (4) and let µ̄W := (1/n)
∑q

a=1 naµ̂
W
a be their weighted average. Since

according to (5) the equality µW
i = W 1/2µi holds, the difference µ̂

W
a − µ̄W = T1+T2+T3,

where T1 = µ̂W
a −W 1/2µa, T2 = W 1/2µa−

∑q
b=1(nb/n) ·W 1/2µb, and T3 = −

∑q
b=1(nb/n) ·

(µ̂W
b −W 1/2µb). T1 and T3 are OP (n

−1/2) by (7), both underH0 or the Pitman alternatives.

Thus obviously

µ̂W
a − µ̄W = OP (n

−1/2) (S.22)

under H0 or the Pitman alternatives. Then by Theorem 1, (5), Theorem 2 and (S.22) we

obtain

A1 =

q
∑

a=1

na

(

W−1/2µ̂W
a −W−1/2µ̄W + oP (n

−1/2)
)⊤

(B−1 + oP (1)) ·

·
(

W−1/2µ̂W
a −W−1/2µ̄W + oP (n

−1/2)
)

=

=

q
∑

a=1

na(µ̂
W
a − µ̄W )⊤D1D

−1
2 D1(µ̂

W
a − µ̄W ) + oP (1) =

=

q
∑

a=1

na(µ̂
W
a − µ̄W )⊤

(

(V̂ W )−1 + oP (1)
)

(µ̂W
a − µ̄W ) + oP (1) = MW

1 + oP (1)(S.23)

under H0 or Pitman alternatives, where V̂ W = V W + oP (1) is the estimate of V W :=

D−1
1 D2D

−1
1 in the case of multiplied samples given in Somorč́ık (2006) and MW

1 is the

test statistics M1 computed from multiplied samples. Similar reasoning as above, making

also use of the fact that µ̂W
a − µ̂W = OP (n

−1/2) under H0, where µ̂W denotes the spatial

median of the multiplied pooled sample, implies that

A2 = MW
2 + oP (1) (S.24)

under H0. Since we know from Theorem 1 of Somorč́ık (2006) that MW
1 = MW

2 + oP (1)

under H0 and MW
1 converges to χ2

(q−1)d in distribution under H0, the result (I) follows.

(II) Since in accordance with the assumptions the centre of directional symmetry of

the a-th multiplied sample is W 1/2µ+W 1/2ha/
√
n, according to Theorem 2 of Somorč́ık

(2006) the asymptotic distribution of MW
1 under Pitman alternatives is noncentral chi-
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squared χ2
(q−1)d(δMW

1
) with noncentrality parameter

δMW
1

=

q
∑

a=1

pa(W
1/2ha)

⊤(V W )−1W 1/2ha =

q
∑

a=1

pah
⊤
a B

−1ha = δA1
,

which together with (S.23) completes the proof.

(III) If W = c ·Id then MW
1 and MW

2 do not depend on W and MW
1 = M1, M

W
2 = M2.

(S.23) and (S.24) complete the proof. �

Proof of Theorem 6

Let Pn(A) =
(

2/(n(n + 1))
)

#{(i, j); 1 ≤ i < j ≤ n,Xi −Xj ∈ A} denote the empirical

probability generated by {Xi − Xj; 1 ≤ i < j ≤ n}. The continuity of the distribution

implies that we may assume without the loss of generality that for i = 1, . . . , n− d

i1 < i2 < . . . < id ∈ {i+ 1, i+ 2, . . . , n} =⇒ rank(Xi −Xi1, . . . , Xi −Xid) = d. (S.25)

Suppose that V ⊂ R
d is a linear space and 1 ≤ v = dim(V ) < d. Putting A =

{Xi−Xj ; 1 ≤ i < j ≤ n}, Ai = {Xi−Xj ; i < j ≤ n} one obtains by means of (S.25) that

Pn(V ) = Pn(V ∩ A) =

n−1
∑

i=1

Pn(V ∩ Ai) ≤
2

n(n+ 1)

(

n−v
∑

i=1

v +

v−1
∑

i=1

i
)

=
δ(v)

n(n+ 1)
,

where δ(v) = 2(n− v)v + (v − 1)v. But

δ(v)

n(n + 1)
− v

d
=

v
(

2d(n− 1)− n(n + 1)
)

n(n+ 1)d

which together with (13) means that Pn(V ) < v/d and the existence result follows from

Theorem 2.1 of Dümbgen (1998) and the Theorem of Milasevic & Ducharme (1987). The

affine equivariance follows from formula (4.1) of Dümbgen (1998) and from (3) of this

paper. �
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# Below we provide the commented code of the R function "RublikSomorcik(...)" which computes the values
# of our test statistics A_1 and A_2.
# It also computes the p-values of the corresponding tests based on the asymptotic or permutation approach.
#
# In our implementation, W_n is the inverse of be the sample Duembgen matrix of the pooled sample.
# To evaluate sample spatial medians and the sample Duembgen matrix, RublikSomorcik(...) relies on the functions
# spatial.median(...) and duembgen.shape(...) from the R package ICSNP. Therefore, make sure that ICSNP is installed.
#
# The matrix D_2 is estimated. In some cases of symmetry (see the main paper), D_2 can be set to diag(d)/d.
# This requires manual change of the code.
#
# RublikSomorcik(...) was built under R 2.11.1.
#
#
#___________
# ARGUMENTS:
#
# X: Matrix or data.frame with "n_1+...+n_q" rows and "1+d" columns.
#    The first column of X is used to indicate the samples the corresponding rows belong to.
#
# Stat: Which test statistic should be computed? Possible values are "A1" (default) and "A2".
#
# Permute: Use the permutation approach to compute the p-value? Possible values are TRUE and FALSE (default).
#
# N.of.perm: Number of random permutations to obtain the permutation p-value (default is 1000). Used only if Permute=TRUE.
#
#
#___________
# VALUE:
#
# A list is returned containing the following components:
#
# value: Value of the test statistic.
#
# Stat: Name of the evaluated test statistic ("A1", or "A2").
#
# p.value: The corresponding p-value based on the asymptotic (if Permute=FALSE) or permutation (if Permute=TRUE) approach.
#
# Permute: Was the permutation approach used to compute the p-value?
#
# N.of.perm: Number of random permutations to obtain the permutation p-value. NA is returned if Permute=FALSE.
#
#
#___________
# EXAMPLES OF USAGE:
#
#  library(HSAUR)
#  X <- skulls[1:90,] #Egyptian skulls from three epochs
#
# # p-values based on the asymptotic distribution:
#  RublikSomorcik(X)
#  RublikSomorcik(X,Stat="A2")
# # p-values based on the permutation approach:
#  set.seed(1)
#  RublikSomorcik(X,Permute=TRUE,N.of.perm=1000)
#  RublikSomorcik(X,Stat="A2",Permute=TRUE,N.of.perm=1000)

RublikSomorcik <- function(X, Stat="A1", Permute=FALSE, N.of.perm=1000)
{
 # the package ICSNP provides functions to compute the spatial median [function spatial.median(...)]
 # and the Duembgen matrix [function duembgen.shape(...)]:
  require(ICSNP)

 # preparation of the input data X:
 # - the constants n_1,...,n_q [stored in vector n], q, and d are obtained
 # - rows are possibly reordered to collate the rows of each of the "q" samples
  X[,1] <- as.factor(X[,1])
  XX <- NULL
  n <- NULL
  for(X.level in levels(X[,1]))
   if( sum(X[,1]==X.level)>0 )
         {
          n <- c(n,sum(X[,1]==X.level))
          XX <- rbind( XX , X[X[,1]==X.level,-1] )
         }
  X <- XX
  q <- length(n)
  d <- ncol(X)

 # Wn.Sqr.Rt is the square root of W_n and inv.Wn.Sqr.Rt is its inverse:
  Duembgen.eigen <- eigen( duembgen.shape(X) )
  inv.Wn.Sqr.Rt <- Duembgen.eigen$vectors %*% diag( sqrt(Duembgen.eigen$values) ) %*% t(Duembgen.eigen$vectors)
  Wn.Sqr.Rt <- solve(inv.Wn.Sqr.Rt)

 # Y = the original data transformed by the square root of W_n:
  Y <- as.matrix(X) %*% Wn.Sqr.Rt

 # columns of the matrix MEDIANS are the modified spatial medians \hat\eta_1,...,\hat\eta_q
  MEDIANS <- matrix(ncol=q,nrow=d)
  for(j in 1:q) MEDIANS[,j] <- inv.Wn.Sqr.Rt %*% spatial.median( Y[(sum(n[1:j])-n[j]+1):sum(n[1:j]),] )

 # Median.transformed is the classical spatial median of the pooled sample of the transformed data:
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  Median.transformed <- spatial.median(Y)

 # inv.B is the inverse of the sample covariance matrix \hat{B}:
  D1 <- matrix(0,ncol=d,nrow=d)
  D2 <- matrix(0,ncol=d,nrow=d)
  for(i in 1:sum(n))
        {
         Distance <- dist( rbind(Y[i,],Median.transformed) )
         D1 <- D1 + (diag(d) - (Y[i,]-Median.transformed)%*%t(Y[i,]-Median.transformed) / Distance^2 ) / Distance
         D2 <- D2 + (Y[i,]-Median.transformed)%*%t(Y[i,]-Median.transformed) / Distance^2
        } 
  D1 <- D1/sum(n)
  D2 <- D2/sum(n)
  inv.B <- Wn.Sqr.Rt %*% D1 %*% solve(D2) %*% D1 %*% Wn.Sqr.Rt

 # location parameter used in the test statistic:
 # A1: weighted average \bar\eta of the the modified spatial medians \hat\eta_1,...,\hat\eta_q
 # A2: modified spatial median \hat\eta of the pooled sample
  Location <- switch(Stat,
                     A1 = MEDIANS %*% n / sum(n),
                     A2 = inv.Wn.Sqr.Rt %*% Median.transformed
                    )

 # final evaluation of the test statistic:
  A <- 0
  for (j in 1:q) A <- A+n[j]*t(MEDIANS[,j]-Location) %*% inv.B %*% (MEDIANS[,j]-Location)
  A <- as.numeric(A)
 
  if(Permute)
   {#_________beginning of permutations__________

    # save current .Random.seed, if it currently exists:
     if(exists(".Random.seed")) {Existed.Random.seed <- TRUE; old.seed <- .Random.seed} else Existed.Random.seed <- FALSE

    # values of the test statistic based on the N.of.perm permutations of the data will be stored in permA:
     permA <- rep(0,times=N.of.perm)

     for(Counter in 1:N.of.perm)
     {
      # generate random permutation of the rows:
       Permutation <- sample(1:sum(n),size=sum(n),replace=FALSE)

      # columns of the matrix MEDIANS are the modified spatial medians \hat\eta_1,...,\hat\eta_q of the permuted data:
       for(j in 1:q) MEDIANS[,j] <- inv.Wn.Sqr.Rt %*% spatial.median( Y[Permutation[(sum(n[1:j])-n[j]+1):sum(n[1:j])],] )

      # in the case of A1 new location parameter used in the test statistic has to be recomputed,
      # in the case of A2 the \hat\eta does not depend on the permutations
       if(Stat=="A1") Location <- MEDIANS %*% n / sum(n)

      # final evaluation of the test statistic based on the permuted data:
       for (j in 1:q) permA[Counter] <- permA[Counter]+n[j]*t(MEDIANS[,j]-Location) %*% inv.B %*% (MEDIANS[,j]-Location)
     }

    # restore the old .Random.seed [or remove .Ramdom.seed if it previously did not exist]:
     if(Existed.Random.seed) assign(".Random.seed", old.seed, envir=.GlobalEnv) else rm(.Random.seed,envir=.GlobalEnv)

    # the value of the test statistic and the permutation p-value is returned:  
     return( list(value=A, Stat=Stat, p.value=sum(permA>A)/N.of.perm, Permute=Permute, N.of.perm=N.of.perm) )

   }#_________end of permutations__________

 # if no permutations, the value of the test statistic and the asymptotic p-value are returned:
  return( list(value=A, Stat=Stat, p.value=1-pchisq(A,df=(q-1)*d), Permute=Permute, N.of.perm=NA))
}
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