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NOT REQUIRING DISTRIBUTIONS
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Abstract: We present a test for the multivariate multi-sample location pro-
blem. It is based on spatial medians. Therefore, it is more robust than the
classical tools. Moreover, it can be used also in situations when the under-
lying distributions of the samples are not of the same type. We prove some
asymptotic properties and present results of a Monte Carlo study.

Abstrakt: Predstavujeme test rovnosti parametrov polohy viacerých mno-
horozmených rozdeleńı, založený na priestorových mediánoch. Je robustneǰśı
než klasické metódy. Navyše sa dá použit’ aj v situáciách, ked’ rozdelenia prav-
depodobnosti v súboroch nie sú rovnakého typu. V článku dokazujeme nie-
kol’ko asymptotických vlasnost́ı a uvádzame výsledky Monte Carlo simulácíı.

1 Introduction

We consider the d-dimensional q-sample location problem. It means that
we have q independent random samples from d-variate distributions with
location parameters θ1, . . . , θq and we wish to test the hypothesis

H0 : θ1 = . . . = θq.

We suppose that the d-variate distributions possess densities w.r.t. Lebesgue
measure. Typically, it is assumed that the densities are of the form f(.− θa)
(a = 1, . . . , q). This means that the underlying distributions can differ only
in location parameters. A lot of tests have been developed to test the above
hypothesis, a good overview can be found in [6]. We have been motivated
by the Lawley-Hotelling test based on the comparison of sample means (see
e.g. [6]). Its test statistic is

T 2 :=

q
∑

a=1

na(X̄(a) − X̄)T S−1(X̄(a) − X̄),

where na is the sample size of the a-th sample, X̄(a) is the sample mean of the
a-th sample. X̄ and S denote the sample mean and the sample covariance
matrix based on the pooled sample of all n := n1 + . . . + nq data points.
Existence of finite second order moments of the underlying distributions is
required. Then the asymptotic distribution of T 2 under H0 is χ2

(q−1)d.
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It is well-known that the performance of the Lawley-Hotelling test is
rather poor (it has low power) when the underlying distributions are heavy-
tailed (see e.g. [5]). The reason is that the sample covariance matrix and the
sample means are very sensitive to outliers. A more robust estimate of lo-
cation is, for example, the spatial median. Therefore, in [5] we have replaced
the sample means by sample spatial medians to obtain a more robust test.

First, a few words about spatial median. The sample spatial median µ̂ of
the data points X1, . . . , Xn is defined as

µ̂ := arg min
M∈Rd

n∑

i=1

‖Xi − M‖, (1)

where ‖.‖ denotes the usual Euclidean norm. Uniqueness and existence of µ̂
is ensured unless the data points lie on a single line (see [3], one of the
shortest contributions ever published in Annals of Statistics). There is no
explicit formula to compute the spatial median. Hence, an iterative algorithm
is needed. The most popular one seems to be the Weiszfeld’s algorithm. It
was developed already in 1937 and refined in [7] to ensure its convergence for
an arbitrary starting point.

The sample spatial median µ̂ can be seen as an estimate of

µ := arg min
M∈Rd

E(‖X − M‖ − ‖X‖)

which is the spatial median of the underlying probability distribution. Now,
we introduce a weak assumption from [2] about this distribution.

Assumption 1. Let the density of the underlying distribution be bounded on
every bounded subset of R

d.

Under Assumption 1 the sample spatial median is asymptomatically nor-
mal: √

n(µ̂ − µ) → Nd(0, V ) in distribution. (2)

See [5] for the definition of the asymptotic covariance matrix V and [2] for
the proof.

(1) defines the sample spatial median as the point from which the sum
of distances to the data points is minimal. The robustness of spatial median
against outliers is not obvious from this definition. To see it, compute the
gradient of the function

∑n
i=1 ‖Xi − M‖ with respect to M which must be

a zero vector for M := µ̂. It follows that the sample spatial median is such
a point that the unit-length vectors pointing from µ̂ to the data points are
balanced, i.e. their sum is a zero vector. Now, the robustness of the spatial
median can be seen from Figure 1: irrespective of how far X4 has moved to
the “north-east” the spatial median of X1, . . . , X4 does not change, whereas
the sample mean “follows” X4.
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Figure 1: Robustness of spatial median.

2 Test statistics based on spatial medians

In [5] we introduced two test statistics whose form is inspired by the Lawley-
Hotelling T 2:

M1 :=

q
∑

a=1

na(µ̂a − µ̄)T V̂ −1(µ̂a − µ̄),

M2 :=

q
∑

a=1

na(µ̂a − µ̂)T V̂ −1(µ̂a − µ̂),

where the µ̂a’s are the sample spatial medians, µ̄ := (1/n)
∑q

a=1 naµ̂a, µ̂ is the

sample spatial median of the pooled sample and V̂ (see [5]) is an estimate
of the asymptotic covariance matrix V of the sample spatial medians. We
have shown that the asymptotic distribution of M1 and M2 under H0 is
χ2

(q−1)d. See [5] for more asymptotic properties and comparison with other
test statistics.

However, there is an important deficiency concerning M1 and M2: they
require that the underlying densities are of the form f(.−θa), i.e. of the same
type, differing at most in location parameters. But it is natural to test H0

also in more general situations. Think, for example, about the situation that
we have random samples from d-variate spherically symmetric distributions
with (possibly) different centers of symmetry θ1, . . . , θq but also with different
scatter matrices describing the variability of the spherical distributions.

This motivated us to adjust M1 or M2 to get rid of the assumption that
the distributions of the samples must be of the same type. Our solution is as
follows:
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M3 :=

q
∑

a=1

na(µ̂a − µ̃)T V̂ −1
a (µ̂a − µ̃),

where V̂a (a = 1, . . . , q) are the estimates of the asymptotic covariance mat-
rices Va of the sample spatial medians µ̂a and

µ̃ := Ŝ−1

q
∑

a=1

naV̂ −1
a µ̂a

where Ŝ :=
∑q

a=1 naV̂ −1
a . Hence, µ̃ is a weighted average of the sample

spatial medians µ̂a. The impact of a particular µ̂a increases with increasing
sample size na and decreases with “increasing” V̂a because V̂a measures the
variability of the estimate µ̂a. Our idea is not new, it was used e.g. in [4] in
a different multi-sample testing problem.

Strictly speaking, the test statistics M1, M2 and M3 test the equality of
the spatial medians µ1, . . . , µq of the underlying distributions. If these distri-
butions are of the same type the equality of the µa’s implies also the equality
of the location parameters θa’s, no matter how the term “location parame-
ter” is defined. But if the underlying distributions are not of the same type
(it is the case when M1 and M2 can not be used but M3 can) the above
implication is not necessarily true. However, in many practical situations
each of the underlying distributions possesses certain kind of symmetry and
the location parameters θa’s are defined as the centers of these symmetries.
Typically, also the spatial medians µa’s of the distributions coincide with the
centers of the symmetries. Therefore, the equality of the location parame-
ters θa’s is the consequence of the equality of the spatial medians µa’s.

To establish the asymptotic distribution of M3 we will need an assumption
about the asymptotic “proportions” of the samples:

Assumption 2. Let ∃pa := lim(na/n) > 0 for a = 1, . . . , q.

The following theorem provides a tool for testing the hypothesis H0. Its
proof and also the proofs of the following theorems can be found in the
Appendix.

Theorem 1. Let the underlying densities of the samples satisfy Assumption 1.
Then under Assumption 2 the asymptotic distribution of M3 under H0 is
χ2

(q−1)d.

In [5] it was shown that in case of underlying distributions of the same
type the test statistics M1 and M2 are asymptotically equal under H0, i.e.
M1 = M2 + oP (1). Now, a natural question arises about the relationship
between M3 and M1 (or M2). The following theorem gives the answer.
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Theorem 2. Let the distributions of the samples be of the same type (i.e. their
densities are of the form f(.− θa)). Let f satisfy Assumption 1. Then under
Assumption 2: M3 = M1 + oP (1).

Now, we are going to study the asymptotic performance of M3 when H0 is
not true. Consider the sequence of Pitman alternatives, i.e. the spatial medi-
ans do not share the same value µ but the spatial median of the distribution
of the a-th sample is

µ +
ha√
n

,

where the ha’s are some constant vectors satisfying

q
∑

a=1

paV −1
a ha = 0, (3)

which means that asymptotically the “shifts” of the distributions are balan-
ced.

Theorem 3. Under Pitman alternatives and Assumptions 1 and 2 the
asymptotic distribution of M3 is noncentral chi-squared χ2

(q−1)d(δ) where the

noncentrality parameter is δ :=
∑q

a=1 pahT
a V −1

a ha.

Condition (3) is just technical and enables us to compare M3 with other
tests by the ratio of the noncentrality parameters. Note that in case of un-
derlying distributions of the same type the noncentrality parameters of M1,
M2 and M3 are the same (cf. [5]).

3 Monte Carlo study

We have performed a simulation study to illustrate the finite sample perfor-
mance of the test statistics M1, M2 and especially the performance of M3.
Also four other multivariate multi-sample test statistics were included in the
study: Lawley-Hotelling T 2, LN based on component-wise ranks (see [6]) and
Wφ1

, Wφ2
based on spatial signs (see [5]). Only M3 and Wφ1

do not require
underlying distributions of the same type, however, Wφ1

needs spherical sy-
mmetry.

We have been generating q = 3 samples of n1 = n2 = n3 data points from
3-variate distributions (i.e. d = 3). The first sample has been generated from
N3(θ1, I3), the second and third from spherically symmetric Cauchy distri-
butions (see [6]) with centers of symmetry θ2 and θ3. If not stated otherwise,
the location parameters θ1, θ2, θ3 were set to (0, 0, 0)T . We have simulated
three different cases, each of them 5000-times. The 5% critical value of χ2

6

was used to reject H0. The results are in Table 1.
The simulated probabilities of Type I error of M1, M2 and M3 are slightly

higher than the nominal level 5%. In case of M3 it is just because of too
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M1 M2 M3 T 2 LN Wφ1
Wφ2

H0 true .060 .064 .063 .029 .049 .049 0.057

θ1 = (0.3, 0.3, 0)T .497 .500 .580 .038 .421 .567 .369

θ2 = (0.3, 0.3, 0)T .480 .489 .485 .042 .315 .456 .283

Table 1: Simulated probabilities of Type I error and powers.

small sample sizes. For M1 and M2 it is because of underlying distributions
of different type (compare with simulated probabilities of Type I error of M1

and M2 proposed in [5] in case of n1 = n2 = n3 = 100 and underlying
distributions of the same type).

If the first sample is shifted (i.e. the one with lower variability) the simu-
lated powers of M1 and M2 lag behind the simulated powers of M3 and Wφ1

.
However, in case of shift in the second sample (here the variability is higher)
the simulated powers of M1 and M2 are similar to that of M3. The pre-
sence of the heavy-tailed Cauchy distribution makes the performance of the
Lawley-Hotelling T 2 really poor. Also note that the powers of LN and Wφ2

are significantly smaller than the powers of M3 and Wφ1
.

4 Conclusions

The test statistic M3 based on spatial medians turns out to be a quite ro-
bust tool for testing the multivariate multi-sample location problem when
the underlying distributions are not of the same type. Some non-parametric
multivariate test statistics are computationally intensive and, therefore, not
easy to use for larger data sets. Thanks to Weiszfeld’s spatial median algori-
thm M3 can be obtained quite quickly. Also its χ2-approximation seems to
work already for relatively small sample sizes.

As the simulations suggest, the violation of the assumption of underlying
distributions of the same type does not necessarily mean a poor performance
of tests based on that assumption. Nevertheless, M3 ensures that the favou-
rable properties of the spatial median test statistics M1, M2 remain valid also
in more general situations.

Appendix

Proof of Theorem 1:

M3 can be written in the matrix form:

M3 =







√
n1(µ̂1 − µ̃)

...
√

nq(µ̂q − µ̃)







T 





V̂ −1
1 · · · 0
...

. . .
...

0 · · · V̂ −1
q







︸ ︷︷ ︸

=:Ŵ−1







√
n1(µ̂1 − µ̃)

...
√

nq(µ̂q − µ̃)







︸ ︷︷ ︸

=:Z

.
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In [1] it was shown that V̂a = Va +oP (1). It means that Ŵ−1 = W−1 +oP (1),
where

W :=







V1 · · · 0
...

. . .
...

0 · · · Vq







.

Further, Z can be rewritten into the form

Z =







Iqd −







√
n1

n
Id

...
√

nq

n
Id







(√
n1

n
nŜ−1, . . . ,

√
nq

n
nŜ−1

)

Ŵ−1







︸ ︷︷ ︸

=:B̂

·X,

where X := (
√

n1(µ̂1 − µ)T , . . . ,
√

nq(µ̂q − µ)T )T , µ is the common value

of µ1, . . . , µq. Assumption 2 and the fact that V̂a = Va + oP (1) imply that

B̂ = B + oP (1) where

B := Iqd − (
√

p ⊗ Id)(
√

p
T ⊗ R−1)W−1,

√
p := (

√
p1, . . . ,

√
pq)

T , R :=
∑q

a=1 paV −1
a and ⊗ denotes the Kronecker pro-

duct. Summarizing the above asymptotic results about Ŵ and B̂ we obtain
that

M3 = XT (B+oP (1))T (W−1+oP (1))(B+oP (1))X = XT BT W−1BX+oP (1),

where the second equality follows from the fact X = OP (1) (ensured by (2)).
It is easy to verify that

(
√

p
T ⊗ Id)W

−1(
√

p ⊗ R−1) = Id, (4)

which implies that

M3 = XT [W−1 − W−1(
√

p ⊗ R−1)(
√

p
T ⊗ Id)W

−1

︸ ︷︷ ︸

=:A

]X + oP (1).

From (2) we have that asymptotically X ∼ Nqd(0,W ). Hence, to show that
the asymptotic distribution of the quadratic form XT AX is χ2

(q−1)d it is

sufficient to prove that WAWAW = WAW and trace(AW ) = (q − 1)d.
These two equalities can be verified by a straightforward computation making
use of (4).

Proof of Theorem 2:

Let V denotes the common value of V1, . . . , Vq. Then W =Iq⊗V , R=V −1

and one easily obtains that A = (Iq −√
p
√

pT ) ⊗ V −1. But for this form of
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the matrix A it was shown (see the proofs in [5]) that M1 = XT AX + oP (1)
and the proof is complete.

Proof of Theorem 3:

As in the proof of Theorem 1 one obtains that M3 = XT AX +oP (1). But
here the asymptotic distribution of X is Nqd(h

∗,W ), where

h∗ := (
√

p1h
T
1 , . . . ,

√
pqh

T
q )T .

It was already shown that WAWAW = WAW and trace(AW ) = (q − 1)d.
To complete the proof we have to verify that WAh∗ ∈ M(WAW ) and
h∗T Ah∗ = h∗T AWAh∗, where M(.) denotes the linear subspace spanned by
the columns of the matrix. The first condition is satisfied because W is regular
and therefore we can write WAh∗ = WAWW−1h∗ ∈ M(WAW ). The vali-
dity of the second condition follows from the equality AWA = A which can be
verified by (4). The noncentrality parameter is given by δ = h∗T AWAWAh∗.
From (4) it is easy to see that AWAWA = A. Further, we apply (3) and
obtain that δ =

∑q
a=1 pahT

a V −1
a ha.
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