
Chapter IV

Linear programming

IV.4. The more-for-less paradox

Let us consider the production problem described in Section I.2.3. and based
on the assumption of the minimization of the costs for the given output level.
Suppose the firm using n different technologies T1, T2, . . . , Tn has to produce the
given amounts b1, b2, . . . , bm ofm different products P1, P2, . . . , Pm. The technology
Tj is described by the output coefficients aij giving the amount of good Pi produced
by the technology Tj with unit intensity. The unit cost of technology Tj is described
by the coefficient cj (j = 1, 2, . . . , n). The decision problem of the firm is: how to
combine the different technologies and at which intensities in order to produce the
given amounts of the products P1, P2, . . . , Pm at the minimal cost.
For simplicity and without loss of generality suppose only two products (m = 2)

and six technologies (n = 6) with the following matrix of output coefficients

A =

(

3 2 3 2 2 4
1 1 2 2 3 5

)

,

with the output requirements b′ = (30, 40) and with the unit cost c = (2, 1, 4, 2, 6, 8),
expressed in Euro. This problem can be formulated as

minimize f0(x) = 2x1 + x2 + 4x3 + 2x4 + 6x5+8x6

subject to 3x1 + 2x2 + 3x3 + 2x4 + 2x5 + 4x6 = 30

x1 + x2 + 2x3 + 2x4 + 3x5 + 5x6 = 40

x1, x2, x3, x4, x5, x6 = 0.
(IV.22)

The optimal solution to problem (IV.22) is x0 = (0, 0, 0, 0, 5, 5) with the objective
value f(x0) = 70 Euro. Although the method of solution will be presented only
in the next section for the problem (IV.22) it can be easily shown - by means of
duality theory from the previous section - that the above solution is optimal.
The dual problem corresponding to the problem (IV.22) has the following form:

maximize g(u) = 30u1 + 40u2

subject to 3u1 + u2 5 2

2u1 + u2 5 1

3u1 + 2u2 5 4

2u1 + 2u2 5 2

2u1 + 3u2 5 6

4u1 + 5u2 5 8

(IV.23)

Due to Theorem 5, which provides the necessary and sufficient conditions for the
optimal solution of a linear programming problem we write the following system of
equations

2u01 + 3u
0
2 = 6 (because of x05 > 0)

4u01 + 5u
0
2 = 8 (because of x06 > 0)

1
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which yields the solution u0 = (−3, 4). Because all dual constraints and all comple-
mentary slackness conditions are fulfilled this is the optimal solution for the dual
problem (IV.23). Substituting u01 = −3 and u02 = 4 into the dual objective function
we get the same value of 70 Euro as for the primal objective function f(x0). The
reader can easily verify that the graphic method for solving problem (IV.23) gives
the same solution.
Suppose we increase the output requirements in the production problem (IV.22)

from (30, 40) to (60, 50) i.e. we change the right handside of problem (IV.22) to
(60, 50). The optimal solution for the new problem is x∗

2 = 10 and x∗

4 = 20 with
the objective value 50 Euro1. We can see the firm produces more units of both
products (100% more of the product P1 and 25% more of the product P2) for less
total costs (71,4% of the previous cost). Hence we have the more-for-less paradox
in this situation.
After the numerical illustration we define the more-for-less paradox generally.

Let us consider the following problem of linear programming with all cj (j =
1, 2, . . . , n) and bi (i = 1, 2, . . . , m) assumed positive:

minimize f0(x) = c
′x

subject to Ax = b

x = 0

(IV.24)

where A is an m× n matrix (m < n) and of full rank, b is an m× 1 vector, x is an
n × 1 vector and c is an n × 1 vector.
The problem (IV.24) has the property more-for-less if we can increase all or

some components of b and reduce the value of the objective function f0(x) without
reducing other components of b, and keeping all cj fixed. The following theorem
provides the necessary and sufficient condition for the more-for-less paradox.

Theorem 6: The linear programming problem (IV.24) has the property more-for-
less if and only if every optimal solution of the corresponding dual problem

maximize g(u) = b′u

subject to A′u 5 c

has at least one negative dual variable u0i .
The proof of this theorem can be found in two independent papers, first by

CHOBOT - TURNOVEC (1974), p. 379 and then by CHARNES - DUFFUAA -
RYAN (1987), p. 195. The more-for-less paradox in the case of the distribution
model was first studied by CHARNES - KLINGMAN (1971) and similar theorems
about this paradox was proved by SZWARC (1962), (1971). The Theorem 6 is an
extension of the main theorem in CHARNES - KLINGMAN (1971). For illustration
we return to our numerical example (IV.22). Because the optimal solution x0 =
(0, 0, 0, 0, 5, 5) is non-degenerate, the corresponding dual solution u01 = −3 and
u02 = 4 is unique and with one negative component. Due to Theorem 6 there exists
a vector ∆b > 0 (in our example ∆b1 = 30, ∆b2 = 10) such that the optimal
solution x∗ = (0, 10, 0, 20, 0, 0) for the problem with these new right handsides

1The optimality of the solution can be shown in the same way as before. The optimal dual
solution for the new problem is u

∗ = (0, 1)
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yields a lower objective function value (∆f0(x) = −20). The optimal solution for
the corresponding dual problem is degenerate and nonnegative u∗ = (0, 1). The
new problem does not have the property more-for-less.
¿From the economic interpretation point of view is this result remarkable. How

to explain for a given linear technology that the increasing production of all goods
can lead to a decreasing total production cost? Or in other words the reduced level
of production is accompanied by increasing total cost.
For the given unit cost cj (j = 1, 2, . . . , n) and the technological coefficients aij

there exist a ”technological” optimal structure of production described by s0 =
(s01, s

0
2, . . . , s

0
m) which can be found by solving the following linear programming

problem (CHOBOT - TURNOVEC, (1974), p. 348):

minimize f0(x) =

n
∑

j=1

cjxj (IV.25)

subject to

n
∑

j=1

aijxj − si = 0 (i = 1, 2, . . . , m)

m
∑

i=1

si = 1 (IV.26)

xj = 0 (j = 1, 2, . . . , n)

si = 0 (i = 1, 2, . . . , m).

The ”technological” optimal structure can deviate considerably from the given
structure, described by the coefficients bi:

s = (s1, s2, . . . , sn),

where si =
bi

∑n

i=1 bi

.

Because of the equalities constraints in the problem (IV.24) it is not always possible
to realize the ”technological” optimal structure s0. If the value of the structure s0,
described by the optimal value of the objective function (IV.25) deviates consider-
ably from the value of the required production structure s, the increasing production
in the problem (IV.24) accompanied by changing the production structure towards
the ”technological” optimal structure s0 will lead to decreasing production costs.
In order to characterize the ”technological” optimal structure analytically we

consider the dual problem corresponding to the problem (IV.25) - (IV.26):

maximize g(u) = um+1 (IV.27)

subject to

m
∑

i=1

aijui 5 cj (j = 1, 2, . . . , n) (IV.28)

−ui + um+1 5 0 (i = 1, 2, . . . , m) (IV.29)

Assuming si > 0 the complementary slackness theorem yields:

um+1 = ui (i = 1, 2, . . . , m).
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The dual constraints (IV.28) can be then rewritten as:

m
∑

i=1

aijum+1 5 cj (j = 1, 2, . . . , n)

or um+1 5
cj

∑m

i=1 aij

(j = 1, 2, . . . , n).

The optimal solution of the dual problem (IV.27) - (IV.29) is given by

u0m+1 = min
cj

∑

ij aij

(j = 1, 2, . . . , n). (IV.30)

Using the complementary slackness theorem the ”technological” optimal structure
can be easily obtained according to the relation (IV.30).
For illustration we consider our example (IV.22) again. According to (IV.25) -

(IV.26) the linear programming problem for the estimation of the ”technological”
optimal structure is the following:

minimize f0(x) = 2x1 + x2 + 4x3 + 2x4 + 6x5 + 8x6

subject to 3x1 + 2x2 + 3x3 + 2x4 + 2x5 + 4x6 − s1 = 0

x1 + x2 + 2x3 + 2x4 + 3x5 + 5x6 − s2 = 0

s1 + s2 = 1

s1 = 0, s2 = 0, xj = 0 (j = 1, . . . , n).

The corresponding dual problem

maximize g(u) = u3

subject to 3u1 +u2 5 2

2u1 +u2 5 1

3u1+2u2 5 4

2u1+2u2 5 2

2u1+3u2 5 6

4u1+5u2 5 8

−u1 +u3 5 0

−u2+u3 5 0

is easily to solve. Assuming s1 > 0, s2 > 0 we obtain u3 = u2 = u1. Then the
remaining dual constraints reduce to

4u3 5 2

3u3 5 1

5u3 5 4

4u3 5 2

5u3 5 6

9u3 5 8.
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Under the maximization of u3 the optimal solution is u03 = 1/3, which corresponds
exactly to the relation (IV.30). Due to the complementary slackness theorem the
optimal value for the primal variables x1, x3, x4, x5 and x6 must be equal zero.
Consequently x02 = 1/3, s01 = 2/3 and s02 = 1/3. The ”technological optimal” is
the technology T2 with the structure of production s01 : s02 = 2 : 1. In our nu-
merical example (IV.22) we changed the initial output requirements b = (30, 40)
to b∗ = (60, 50), which are more closed to the technological optimal structure s0

and the optimal solution was switching from the technologies T5 and T6 to the
technologies T2 and T4. The reader can easily verify that if we change the out-
put requirements according the structure s0 (e.g. b01 = 100 and b02 = 50) the firm
will use the technology T2 only (x

0
2 = 50 and the optimal value of the objective

function f(x0) = 50). This is a degenerate optimal solution which implies that the
optimal solution of the dual problems is not unique. One of the optimal solutions
is u01 = 1/2 and u02 = 0 (the solution is feasible and the value of the dual objec-
tive function g(u0) = f(x0) = 50). Because of the nonnegative dual solution the
modified problem (with the right handside vector b∗) has no more the property
more-for-less. According to CHARNES - DUFFUAA - RYAN (1987) we obtained
an optimal solution which resolves the paradox. By resolve the paradox they mean
the increase of the right handside until the total costs starts to increase from the
minimum obtained over all possible increases. CHARNES - DUFFUAA - RYAN
(1987), p. 196 proved the following:

Theorem 7: In the more-for-less situation of (IV.24) with increased right handside
to resolve the paradox, there exists a degenerate basic optimal solution.

The first view of the numerical example (IV.22) may imply that the reason for
the ”technological” optimality of the process T2 is the lowest unit cost (c2 = 1). In
other words, the reduction of the total cost is caused by switch to the technology
with lower unit cost. Using slightly modified data of the example (IV.22) it can be
shown that ”technological” optimal can be even process with the highest coefficient
in the objective function. Increasing the production of all goods the total cost can
decrease by switching to the technology with higher unit cost defined by coefficient
of the objective function. Let us consider the following example:

minimize f0(x) = 5x1 + 4x2 + 6x3 + 5x4 + 6x5 + 10x6

subject to 3x1 + 2x2 + 4x3 + 2x4 + 2x5 + 9x6 = 41

x1 + x2 + 2x3 + 2x4 + 4x5 + 16x6 = 32

xj = 0 (j = 1, 2, . . . , 6)

At the same way as in previous example the reader can verify that the optimal
solution is: x03 = 8, x06 = 1 and f0(x

0) = 58. The optimal solution of the dual
problem is: u01 = 1, 7 and u02 = −0, 3, which imply the property ”more for less”
for the given example. Increasing the first output to 45(∆b1 = 4) and the second
output to 80(∆b2 = 48) the optimal solution is given by x∗

6 = 5. It is optimal to
switch to the most expensive (defined by the coefficients of the objective function)
technology. Even in this case the total cost decreases from 58 units to 50 units
(f0(x

∗) = 50). According to the relation (IV.30) the process T6 is ”technological”
optimal despite the highest coefficient in the objective function (c6 = 10). There-
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upon ”technological” optimal is the process with the lowest cost per total product
(provided by unit intensity).

IV.6. Some applications of linear programming in economics

In Section I.2 we already formulated some models of mathematical programming
used in economics. Now we want to analyse some of these models more deeply
in order to show how the linear programming can be used as an instrument of
qualitative analysis.

6.1. The theory of comparative advantage. One field of economics where the
linear programming is very oft applied is the international trade (e.g. GANDOLFO
(1998)). A well known example of RICARDO (1817) in the slightly modification
by DORFMAN - SAMULESON - SOLOW (1958), pp. 31-32 leads - for England -
to the following linear programming model (as formulated in Section I.2.4):

maximize Z =
p1
p2

x1+x2

subject to 2x1+x2 5 C

x1 = 0, x2 = 0

where Z denotes the National Product (NP) of England.
The optimization problem for Portugal has the same structure:

maximize Z ′ =
p1
p2

x′

1+x′

2

subject to x′

1+x′

2 5 C ′

x′

1 = 0, x′

2 = 0

where Z ′ denotes the National Product of Portugal.
The graphical representation of the feasible set or ”production - possibility”

curve for England is given in Fig. 4.3, for Portugal in Fig. 4.4.

Fig.4.3.
Fig.4.4

We can see that the decision about the production of food and clothing in Eng-
land and in Portugal depends on the slope of objective function, in other words on
the international price ratio p1/p2. If there exists a price ration p1/p2 somewhere
between 1 and 2 it is optimal for England to produce only clothing and for Portugal
to produce only food. Although Portugal needs less (or no more) input for both
products, the best production pattern for this country involves zero clothing pro-
duction and complete specialization on food. Portugal will export food in exchange
for clothing imports from England which will specialize completely in clothing. Por-
tugal has comparative advantage in the food production (it can convert one unit
of food into one unit of clothing but the price for food is higher than for clothing),
England in the clothing production (it can convert one unit of food into two units
of clothing, but it get for one unit of food less than for two units of clothing). Both
countries will be better off than if they do not specialize. The world will in fact
be at the Ricardo point where 1 5 marginal cost (MC) 5 2. The reader may
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easily verify that for p1/p2 = 2, the optimal solution for England is not unique (the
contour line for NP, isoincome line is parallel with the ”production - possibility”
curve). The best production pattern for Portugal in this situation is a complete
specialization on food.

When p1/p2 = 1, the optimal solution for Portugal is not unique.

When p1/p2 < 1 (or > 2), both countries will specialize completely in clothing
(in food).

In the next step we want to generalize this model for m commodities and n coun-
tries (GANDOLFO (1998), Chapter 2 and Appendix to Chapter 2; TAKAYAMA
(1972), Chapter 6). The following notation is introduced (i = 1, 2, . . . , m; j =
1, 2, . . . , n):

xij = quantity of good i produced in country j,

lij = constant labour - input coefficient in the production of good i in country j,

Lj = total quantity of labour available in country j,

pi = given international price of good i.

In the previous simple model with two countries and two commodities we have
formulated the problem in terms of maximization of the (value of) National Product
of each country separately considered. Now we will formulate the problem directly
in terms of maximization of world output. It can be shown (TAKAYAMA (1972),
pp. 172-173) that world output will be maximized, if and only if, each country
maximizes its own national output.

The problem of maximizing the value of world output under the constraints that
the amount of labour employed in each country cannot exceed the amount dis-
posable and under the nonnegativity constraints for outputs leads to the following
linear programming model:

maximize p1





n
∑

j=1

x1j



+p2





n
∑

j=1

x2j



+ · · ·+

+pm





n
∑

j=1

xmj



 (IV.42)

subject to
m

∑

i=1

lijxij 5 Lj (j = 1, 2, . . . , n)

xij = 0

(

i = 1, 2, . . . , m
j = 1, 2, . . . , n

)

.

We are assuming that the resources within each country are completely substi-
tutable so that there is only a single resource limitation (labour) in each country.
Further, we postulate constant returns to scale in each country.

The solution to the primal problem (IV.42) yields the allocation of m products
between n countries. In order to find it we now ask a different question: what will
be the value of labour in each country?
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For this purpose we consider the dual problem to problem (IV.42):

minimize
n

∑

j=1

wjLj (IV.43)

subject to lijwj = pi (i = 1, 2, . . . , m)

wj = 0 (j = 1, 2, . . . , n)

where the shadow price of labour in country j, wj is interpreted as the money
wage rate. Therefore the dual problem (IV.43) consists in minimizing the world
total labour reward (world production cost) subject both to the constraint that
the value of the resources used will be at least as great as the value of the goods
produced and to the nonnegativity constraint on the wage rate.
Given pi > 0 (i = 1, 2, . . . , m) and lij > 0 (i = 1, 2, . . . , m; j = 1, 2, . . . , n) it

follows from the constraints of the dual problem (IV.43) that the optimal wage rate
w0j must be positive in every country. Due to the complementary slackness theorem

if w0j > 0, then
m

∑

i=1

lijx
0
ij = Lj (j = 1, 2, . . . , n)

where x0ij denotes the optimal solution to the primal problem (IV.42). Because the
optimal money wage rate is positive in the j-th country, all of the labour available
in that country must be fully utilized. Consequently - due to the nonnegativity
of outputs and positivity of labour - input coefficients lij - at least one good must
be produced in each country. Because the optimal solution to the problem (IV.42)
must be basic solution, it consists n positive components. Assuming

pi

lij
6=

pk

lkj

(i, k = 1, 2, . . . , m)

(j = 1, 2, . . . , n)
(IV.44)

each country will specialize on its best product. To find it we rewrite the constraint
in the dual problem (IV.43) as:

wj =
pi

lij

(i = 1, 2, . . . , m)

(j = 1, 2, . . . , n)
.

Then w0j = max
pi

lij
(i = 1, 2, . . . , m).

Because of the assumption (IV.44) the optimal wage rate in country j is unique and
determined by the maximal ratio of the given international price pi to the labour
input coefficient lij for i = 1, 2, . . . , m. For this good (say k) is the dual constraint
in (IV.43) fulfil as an equality whereas

w0j >
pi

lij

or

w0j lij > pi for i = 1, 2, . . . , n and i 6= k.
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According to the complementary slackness theorem if the unit cost of good i (i =
1, 2, . . . , n; i 6= k) in country j is greater than the price of this good, then good
i will not be produced in country j. In other words, country j will specialize on
product k.
This reasoning can be applied for all countries (j = 1, 2, . . . , n) in order to

estimate the best product for each country.
The answer to the question whether the best product k is different from the best

product of all other countries or many countries will specialize on the same product
depends on the international relative prices for the goods.
Due to Theorem 4 for the optimal quantities x0ij and the optimal wage rates w0j

the values of the objective functions are equal:

m
∑

i=1

pi

n
∑

i=1

x0ij =
n

∑

i=1

w0j Lj.

In economic terms, the value of world output coincides with total factor income of
the world.
The reader will verify that the application of this general model to the simple

Ricardian example from Section I.2.4 leads to the same results as the graphical
solution at Fig. 4.3 and Fig. 4.4.

6.3. Leontief pollution model

In the Section I.2.8 the basic Leontief’s input-output model has been introduced.
With the increasing pollution as a by-product of regular economic activities arises
the need to incorporate environmental effects in an input-output framework. In
the well known paper LEONTIEF (1970) extended the input-output model in two
ways. Firstly, he added rows to show the output of pollutants by industries. Sec-
ondly, he introduced a pollution abatement ”industry” with a specific technology
for the elimination of each pollutant. With respect to the exogenously given level
of tolerated pollution two formulations of the model can be found in his paper.
In the first version an exogenously given vector of tolerated level of pollutants

or environmental standards is treated as a negative variable on the right-hand side
of the model (see also LOWE (1979), MILLER - BLAIR (1985)). It consists of the
following equations:

(E − A11)x1 − A12x2 = y1 (IV.49a)

−A21x1 + (E − A22)x2 = −y2 (IV.49b)

where
x1 is the n-dimensional vector of gross industrial outputs;
x2 is the k-dimensional vector of abatement (or anti-pollution) activity levels;

A11 is the n× n matrix of conventional input coefficients, showing the input of good
i per unit of the output of good j (produced by sector j);

A12 is the n × k matrix with aig representing the input of good i per unit of the
eliminated pollutant g (eliminated by abatement activity g);

A21 is the k × n matrix that shows the output of pollutant g per unit of good i
(produced by sector i);

A22 is the k × k matrix that shows the output of pollutant g per unit of eliminated
pollutant h (eliminated by abatement activity h);
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E is the identity matrix;
y1 is the n-dimensional vector of final demands for economic commodities;
y2 is the k-dimensional vector of the net generation of pollutants which remain
untreated. The g-th element of this vector represents the environmental standard
of pollutant g and indicates the tolerated level of net pollution.

¿From equation (IV.49a) we can see that one part of the industrial output is used
as an input in the other sectors of the economy (A11x1), another part as an input
for the abatement activities (A12x2) and one part is devoted for the final demand
(y1). The balance equations for the pollutants or for the undesirable outputs are
given by (IV.49b). The total amount of pollution consists of pollution generated by
production of desirable goods (A21x1) and by the abatement activities themselves
(A22x2). One part of the gross pollution will be eliminated (x2) and the amount
y2 remain untreated because it is tolerated.
The solution of equations (IV.49) for given levels of final demand y1 and given

pollution standards y2 can be obtained by inverting the augmented Leontief matrix
such that

(

x1
x2

)

=

(

E − A11 −A12
−A21 E − A22

)

−1 (

y1
−y2

)

.

The sufficient conditions for the existence of non-negative solution of the systems
(IV.49) are given by LUPTÁČIK - BÖHM (1994).
The price model corresponding to the model (IV.49) has the following form

p′(E − A11)− r
′A21 = v

′

1 (IV.50a)

−p′A12 + r
′(E − A22) = v

′

2 (IV.50b)

with p′ the (1× n) vector of commodity prices, and r′ the (1× k) vector of prices
(= cost per unit) for eliminating pollutants. v′1 and v

′

2 are the exogenously given
(1×n) and (1× k) vectors of primary inputs values per unit of production and per
unit level of abatement activities respectively.
Equation (IV.50a) shows that the commodity prices p′ must be such they cover

the costs of inputs from other sectors of the economy (p′A11), the costs of pri-
mary factors v′1 and the pollution costs (r

′A21). Equation (IV.50b) determines the
prices of pollutant r′ from abatement cost (p′A12), costs of primary inputs per unit
level of abatement activities v′2 and the pollution costs of the abatement activities
themselves (r′A22).
The solution of the price or of the dual model is then

(p′, r′) = (v′1,v
′

2)

(

E − A11 −A12
−A21 E − A22

)

−1

.

In the second version of the Leontief pollution model the environmental standard
has been defined - in the one pollutant case - as the ratio of eliminated pollution
x2g to the gross pollution which is the sum of net pollution and abatement activity
(x2g + y2g). Denoting the (k × k) diagonal matrix of proportions of abated gross

pollutants by Ŝ, we have

Ŝ(x2 + y2) = x2.
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Then the quantity model can be formulated as (see also STENGE (1978), LOWE
(1979) and ARROUS (1994))

(E − A11)x1 − A12x2 = y1 (IV.51a)

−ŜA21x1 + (E − ŜA22)x2 = 0. (IV.51b)

The equation (IV.51b) determines the level of abatement activity x2 as the sum of

abated pollution generated by the production (ŜA21x1) and by the antipollution

activities themselves (ŜA22x2). Obviously, if y2 = 0, then Ŝ = E. This is the case
of complete abatement (no pollution is tolerated), where the models (IV.49) and
(IV.51) coincide.
The corresponding price model is

p′s(E − A11)− r
′

sŜA21 = v
′

1 (IV.52a)

−p′sA12 + r
′

s(E − ŜA22) = v
′

2. (IV.52b)

Note that prices in this model are subscripted by ”s”.
According to (IV.52a) the commodity prices p′s include the costs of intermediate

inputs (p′sA11) and of the primary inputs (v
′

1), and the pollution abatement costs

(r′sŜA21). The interpretation of the equation (IV.52b) for the pollutant prices r
′

s is
similar.
The solution of the price model (IV.52) is

(p′s, r
′

s) = (v
′

1,v
′

2)

(

E − A11 −A12
−ŜA21 E − ŜA22

)

−1

.

The given environmental standards or the tolerated level of the net pollution y2,
the corresponding elements of the diagonal matrix Ŝ can be chosen such that the
models (IV.49) and (IV.51) share the same solution (for the levels of production
and abatement). Even in this case the commodity prices ps and the prices for
eliminating pollutants rs are smaller than or equal to the prices determined by the
model (IV.50) for any nonnegative vector (v′1,v

′

2) when some net pollution is left

untreated (LUPTÁČIK - BÖHM (1999), Theorem 1, p. 267).
Already in the paper by LOWE (1979) the price solutions of both models were

compared. He showed that only the prices ps and rs were the appropriate industrial
prices and effluent charges because they were consistent with financial viability and
national income-expenditure balance. That means, all chosen activities could be
met from revenue. At the other side the prices determinated by model (IV.50) only
possessed the property of opportunity costs of environmental restriction in terms
of extra value-added or lost final demand. Differences in the two sets of prices
appear, because of untreated net pollution is discharged free to final consumers.
The question that arises by imposing emissions charges (effluent taxes) for untreated
pollution is: how to estimate the level of emissions charges in both models, such
that the prices for both models - providing the same level of production and of net
pollution - are the same?
For this purpose the augmented Leontief model (IV.49) is formulated as an op-

timization model with the net generation of pollutants y2 as endogenous variables
which are limited to specified amounts y2. However, untreated pollutants are not
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discharged free in a receiving medium but the polluters have to pay effluent charge
on every untreated unit. Denoting by t the vector of effluent taxes levied per unit
of residual pollutants, the environmental costs t′y2 will be added to the costs of
primary factors required by industrial production x1 and abatement activities x2.
The gross national product (GNP) at factor costs, including the environmental
costs should be minimized for a given level of final demand y1. The resulting opti-
mization model (with a possibility of including alternative techniques of industrial

production and pollution abatement), denoted as Model I, (LUPTÁČIK - BÖHM,
1999, p. 269), is then

minimize V (x1,x2,y2) = v
′

1x1 + v
′

2x2 + t
′y2 (IV.53)

subject to (E − A11)x1 − A12x2 = y1 (IV.54)

−A21x1 + (E − A22)x2 + y2 = 0 (IV.55)

−y2 = −y2 (IV.56)

x1 = 0, x2 = 0, y2 = 0. (IV.57)

The inequalities (IV.54) express the requirement that a given bill of goods y1 for
final demand must be provided. According to expressions (IV.55) and (IV.56) the
actual amount of pollutants y2 which remain untreated after abatement activity
does not exceed the environmental standards y2.
The subject of our interest is the dual or price model corresponding to model

(IV.53) - (IV.57), i.e.

maximize W (p, r, s) = p′y1 − s
′y2 (IV.58)

subject to p′(E − A11)− r
′A21 5 v′1 (IV.59)

−p′A12 + r
′(E − A22) 5 v

′

2 (IV.60)

r′ − s′ 5 t′ (IV.61)

p′ = 0, r′ = 0, s′ = 0 (IV.62)

where s′ is a (1×k) vector of dual variables related to the environmental constraints
(IV.56).
For positive levels of gross industrial outputs x1 and of abatement activities x2

the constraints (IV.59) and (IV.60) are fulfilled as equalities (due to the comple-
mentary slackness theorem)

p′ = p′A11 + v
′

1 + r
′A21 (IV.63)

r′ = p′A12 + v
′

2 + r
′A22. (IV.64)

These equations correspond to the equations (IV.50a) - (IV.50b) and provide the
economic foundation to the ”polluter pays principle”.
A positive level of net pollution y2 > 0 implies an equality in expression (IV.61):

r′ − s′ = t′ or r′ = t′ + s′, where sg indicates the increase of GNP at factor costs,
by tightening the environmental standard ȳ2g (g = 1, 2, . . . , k) by a small unit. If
the amount of untreated pollutant g is below the tolerated level ȳ2g, then the corre-
sponding dual variable sg is equal zero and the price of pollutants g is determined by
the effluent tax tg levied on residual pollutant. When the environmental constraint
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(IV.56) is binding, the shadow price s′ can be positive, and the prices of pollutants
r′ and commodity prices p′ will rise to include the additional environmental costs s′

caused by the obligation to meet the standards. The higher environmental quality
is paid for by increasing commodity prices and prices for eliminating pollutants. As
shown already by LEONTIEF (1970), a tightening the environmental standard y2
implies higher industrial production (because of the inputs for the anti-pollution
activities) and higher GNP.
The modification of the model (IV.51) by imposing effluent taxes t′s per unit of

untreated pollution leads to the following optimization model, denoted in LUPTÁČIK
- BÖHM (1999) p.271 as Model II:

minimize Vs(x1,x2,y2) = v
′

1x1 + v
′

2x2 + t
′

sy2 (IV.65)

subject to (E − A11)x1 − A12x2 = y1 (IV.66)

−ŜA21x1 + (E − ŜA22)x2 = 0 (IV.67)

−(E − Ŝ)A21x1 − (E − Ŝ)A22x2 + y2 = 0 (IV.68)

x1 = 0, x2 = 0, y2 = 0. (IV.69)

Note that we use subscript ”s” to distinguish the variables or parameters of both
model. The objective function (IV.65), apart from the possible differences in the
level of effluent taxes t′s and t

′, respectively is the same as objective function (IV.53).
Furthermore, there is no difference in the constraints (IV.54) and (IV.66). Expres-
sion (IV.67) requires that the levels of abatement activities x2 must at least meet
the given proportions of gross pollution. Because of the objective function (IV.65)
in the optimal solution of Model II., condition (IV.68) will be fulfilled under equal-
ity. Thereupon, constraint (IV.68) describes the levels of untreated pollution y2 for
which the specific effluent taxes are levied.
Again, the subject of our analysis is the price model of Model II., i.e.

maximize Ws(p, r, s) = p
′

sy1 (IV.70)

subject to p′s(E − A11)− r
′

sŜA21 − s
′

s(E − Ŝ)A21 5 v′1
(IV.71)

−p′sA12 + r
′

s(E − ŜA22)− s
′

s(E − Ŝ)A22 5 v′2
(IV.72)

s′s 5 t′s
(IV.73)

p′s = 0, r′s = 0, s′s = 0.
(IV.74)

Assuming again positive levels of industrial production x1 and of abatement activ-
ities x2, constraints (IV.71) and (IV.72) can be written as equalities:

p′s = p
′

sA11 + v
′

1 + r
′ŜA21 + s

′

s(E − Ŝ)A21 (IV.75)

r′s = p
′

sA12 + v
′

2 + r
′ŜA22 + s

′

s(E − Ŝ)A22. (IV.76)

For positive levels of untreated pollution y2, the dual variables s
′

s are equal to the
effluent taxes t′s. Then, price equations (IV.75) and (IV.76) get a clear economic
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meaning. Compared with the price equation (IV.63) the price equation (IV.75)
takes into account not only the costs of intermediate inputs p′sA11 and the primary

inputs v′1 but the pollution abatement costs r
′ŜA21 and the charges for untreated

pollution, given by t′s(E − Ŝ)A22 too. The interpretation of the equation (IV.76)
for the pollutants prices r′s is similar.
The answer to the question how to avoid the differences in the prices for models

(IV.50) and (IV.52) is given in the following

Proposition 1 (LUPTÁČIK - BÖHM (1999) p. 272 including the proof) : If
t′s = t

′+ s′ for given levels of the effluent taxes t′, and if model (IV.53)-(IV.57) and
model (IV.65)-(IV.69) share the same optimal solution, then the commodity prices
and the prices for eliminating pollutants for both programmes, i.e. (IV.58)-(IV.62)
and (IV.70)-(IV.74), respectively, are equal.
In this way the prices are consistent with financial viability and can be inter-

preted as opportunity cost variables. The shadow prices s provide the appropriate
rates for the effluent taxes to be charged on untreated pollutions. If these charges
are lower than the shadow prices of environmental standards, then production and
abatement activities will exactly meet the standards. For the effluent taxes higher
than the shadow prices, the pollutants will be clean up completely. It is cheaper
to abate than to pay taxes. The switch between completely protected economy
(y2 = 0) and polluting up to the standards (y2 = y2) follows from the linearity of
the model.


