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Chapter 1

Introduction

The purpose of this work is to provide an exposition of econometric methods for modelling
producer behaviour. The objective of econometric modeling is to determine the nature
of substitution among inputs, the character of differences in technology and the role of
economies of scale.

The empirical analysis of input demands and input substitution patterns provides an
example of the strong links between economic theory and econometric implementation.
In my example, while the underlying economic theory emphasizes the joint nature of
energy-inputs demand decisions for paper production, econometric implementations of
this interdependence involve simultaneous estimation of parameters in systems of factor
demand equations having cross-equation constraints. I also consider alternative procedures
for obtaining statistical inference on the empirical validity of hypotheses involving cross-
equation parameter restriction, the measurements of goodness of fit in equation system
and special properties of singular equation system.

Important innovations in specifying econometric models have arisen from the dual for-
mulation of the theory of production. The dual formulation of production theory has
made it possible to overcome the limitations of the traditional approach to econometric
modelling. The key features of the dual formulation are, first to characterize the pro-
duction function by means of a dual representation such as a price or cost function and,
second to generate explicit demand and supply function as derivatives of the price or cost
function. The dual approach has a crucial advantage in the development of econometric
methodology. Demands and supplies can be generated as explicit functions of relative
prices without imposing the arbitrary constraints on production patterns required by the
classic methodology. The econometric modelling of producer behaviour requires para-
metric forms for demand and supply functions. These functions can be parametrized by
treating measures of substitution, technical change and economies of scale as unknown
parameters to be estimated on the basis of empirical data.

Econometric implementations of cost and production functions differ in their assump-
tions concerning exogeneity. In the production function regression equation, output is
endogenous and input quantities are exogenous. By contrast, in the dual cost function,
production cost and input quantities are endogenous, while input prices and the level of
output are exogenous. It follows that in our case input prices are regressors and input
prices and the level of output can be moreover assumed as exogenous. Thus there exist
two good reasons to prefer cost function rather than production one. First, that we can
characterize the production function by means of a dual representation and, second, to
generate explicit demand and supply functions as derivatives of the price or cost fuction.
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4 ECONOMETRIC MODELS OF PRODUCER BEHAVIOUR

What will be showed later.
Econometric models of producer behaviour take the form of system of demand and

supply functions. The variables may enter these functions in a nonlinear manner as it
is in case of translog demand function which I have implemented in this work. Translog
formula belongs to linear-in-parameters forms. This work connects to some previous one
done in 1996 by Florian Haider [5], an Austrian student. My main aim is to provide some
extensions, or improvements of his model. There are many ways which are offered by
theory but as you will see reality is a very special case of the theory.

Perhaps nowhere else has the increased sophistication of statistical software made a
greater mark on econometric practise than in microeconomics applications. For modeling
of my example of paper production behaviour I have used two software packages Eviews
and Limdep7.0 as well.

This work begins with two chapters where is short overview of the theory, underlying
the applications which are presented in the 4th chapter. In the last chapter I conclude the
work by discussing the challenges for future research and outlining frontiers which gives
theory by modeling reality.



Chapter 2

Microeconomic Theory

In this chapter some elements of the microeconomic theory associated with my thesis
will be explained. Namely, the theory about production, cost function and relationship
between them. There are two main purposes of the following chapter. First, it is necessary
to understand the reasons for the existence of some special properties of the theoretical
model which are then transformed into restrictions imposed on the estimation process.
Second, some remarks on elasticities and measures of scale arising as unknown parameters
in regression will be made.

2.1 Technology and Production Function

The most common way to describe the technology of a firm is the production function.
A firm produces output y from various combination of inputs xT = (x1, x2, . . . , xm). For
us are important only outputs which are possible to produce from some given amount. So
equivalently we can say that firm is described by a set of feasible combinations of inputs
and outputs. All feasible combinations (y,x) ∈ Rm+1

+ form a set Y which is known as
production possibility set:

Y ⊂ Rm+1
+ .

Set Y has to fullfil following axioms to be production possibility set.

A1 : (0,x) ∈ Y ∀x ≥ 0

A2 : (y,0) ∈ Y ⇒ y = 0
A3 : ∀x ≥ 0 exists y ≥ 0 so that (y,x) 6∈ Y
A4 : (y,x) ∈ Y ∧ x′ ≥ x⇒ (y,x′) ∈ Y
A5 : Y is convex and closed

where xT = (x1, . . . , xm), xT
′

= (x′1, . . . , x
′
m) are two different input vectors and

x ≥ x′ ⇔ xi ≥ x′i ∀i; 0 is the m × 1 vector of zeroes. Production function f is then
defined as f : Rm+ → R

f(x) = max{y : (y,x) ∈ Y } (2.1)

Simply said it is the maximal output produced by some amount of input vector x. The
following theorem describes the production function.

5



6 ECONOMETRIC MODELS OF PRODUCER BEHAVIOUR

Theorem: If production function f is defined on Rm+ and has following properties

f is concave
∀x′ ≥ x is f(x′) ≥ f(x)

f(0) = 0; f(x) ≥ 0 for x ≥ 0 (2.2)

then Y = {(y,x) : y ≤ f(x)} is production possibility test. For proof see [10].
All input bundles which gives the same amount of output y determines isoquant curve:

y = f(x) = const (2.3)

Isoquant gives all input bundles that produce exactly const units of output. All such
bundles create a set

Ic : {x : f(x) = const}

Then f(x) − c = 0 is implicit given function. Assume now that we are producing at a
particular point x̂:

const = f(x̂1, . . . , x̂m) (2.4)

Suppose that we want to increase the amount of input i and decrease of input j. So as to
maintain a constant level of output.

f(x̂1, . . . , x̂i + dxi, x̂i+1, . . . , x̂j + dxj , x̂j+1, . . . , x̂m) = const

There exist a measure, which shows how one of the input must adjust in order to keep
output constant when another input changes. Such measure between ith and jth factor is
known as technical rate of substitution (TRS). It is determined by totally differenti-
ating the identity (2.4) with respect to xi(xj):

∂f
∂xi
dxi + ∂f

∂xj
dxj = 0

⇒ dxj
dxi

= − ∂f/∂xi
∂f/∂xj

(2.5)

TRS= −dxj/dxi > 0 because of concavity of the production function. The expression
(2.5) could be rewritten as

dxj
dxi

= −MPi
MPj

where MPi =
∂y

∂xi

MPi is known as marginal product and therefore dxj/dxi is often called marginal rate
of technical substitution.

Another point of view offers elasticity of substitution measure. It gives the percent-
age change in the factor ratio divided by the percentage change in the TRS. It is expressed
as

σ =
∆(xi/xj)
xi/xj
∆TRS
TRS

(2.6)

where ∆(xi/xj) is the change in the factor ratio and ∆TRS is the change in the technical
rate of substitution. In practise we think of the percent change as being very small and
we take limit of (2.6) as ∆→ 0. Thus σ becomes

σ = − TRS
xj/xi

d(xj/xi)
dTRS
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It is often convenient to calculate σ using the logaritmic derivative:

σ = −dxj/xj
dxi/xi

= −dxj
dxi

xi
xj

= −d(lnxi)
d(lnxj)

(2.7)

Graphically in xi, xj plane TRS (2.5) measures the slope of an isoquant and elasticity of
substitution (2.7) measures the curvature of an isoquant (2.3).

In the cases where we wanted only to scale output up by some amount we use the concept
of returns to scale (RTS). RTS reflect the degree to which a proportional increase in
all inputs, increases output. For const a which indicate the proportional increase we say,
that technology exhibits

constant RTS if f(ax) = af(x) ∧ ε = 1 ∧ a > 0
increasing RTS if f(ax) > af(x) ∧ ε > 1 ∧ a > 1
decreasing RTS if f(ax) < af(x) ∧ ε < 1 ∧ a > 1

where ε =
m∑
i=1

∂ ln y
∂ lnxi

is the sum of partial elasticities of production.

Last remark is about homogenous and homothetic technologies. A function f(x) is
homogenous of degree k if f(tx) = tkf(x) for all t > 0. From economic point of view are
two important degrees. A zero-degree homogenous function is one for which f(tx) = f(x)
and a first-degree homogenous function is one for which f(tx) = tf(x). Comparing the
previous with concept of RTS, production function has constant RTS if and only if is
homogenous of degree one. A homothetic function is a monotonic transformation of a
function that is homogenous of degree one. Simply said f(x) is homothetic if and only if
it can be written as f(x) = g(h(x)), where h(·) is homogenous of degree one and g(·) is a
monotonic function [10].

2.2 Cost Function

The rational behaviour of the firm can also be described, instead of maximizing of pro-
duction function (2.1), by cost minimizing.

Let us consider the problem of finding a cost minimizing input vector x̂ to produce a
given level of output. The total cost of the firm is determined by vector of input prices
pT = (p1, . . . , pm) multipied by values of input factors vector x.

min
x

pTx

s.t f(x) = y. (2.8)

By using the method of Lagrange multipliers

L(λ,x) = pTx− λ(f(x)− y)

and differentiate it with respect to each xi and the Lagrange multiplier, λ. The first-order
conditions are

pi − λ∂f(x̂)
∂xi

= 0 for i = 1, . . . ,m
f(x̂) = y (2.9)

The first equation can be rewritten into vector notation

p = λ[Df(x̂)] (2.10)
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where Df(x) is the gradient vector of function f . There are also a second order conditions
that must be satisfied at a cost-minimizing choice. Let us look on (2.9) and (2.10) from
the implicit function theorem (

D2f(x) [Df(x)]T

Df(x) 0

)

is the matrix of the partial derivatives of the system (2.9) and (2.10) and D2f(x) is the
corresponding m×m Hessian matrix of production function. Determinant of this matrix
(Df)(D2f)(Df)T 6= 0. If D2f is negative semidefinite then the second order conditions
are fulfiled and there exists an unique solution of cost-minimizing problem (2.8). For each
choice of p and y there will be some choice of x̂ that minimizes the cost of producing y
units of output. We will call the function that gives us this optimal choice the conditional
factor demand function and write it as x(p, y). If the firm produces its output from m
various inputs then we have whole system of factor demands. For each factor one demand
function. So in multi-input case x(p, y) is m× 1 vector.

In general the cost function can always be expressed simply as the value of the condi-
tional factor demands

C(p, y) ≡ pTx(p, y) (2.11)

and defines the minimum cost of producing particular output with given input prices. C
indicates the cost function. Expression (2.11) is in fact definition of the costs C = pTx,
where conditional factor demands are substituted. Let us look deeper into cost function.
Its properties will help to understand the restrictions which will be imposed by later
investigation. A cost function has following properties [10]:

(i) Nondecreasing in p: if p′ ≥ p, then C(p′, y) ≥ C(p, y)
(ii) Homogenous of degree one in p: C(tp, y) = tC(p, y); for t > 0
(iii) Concave in p, convex in y

Proof:

(i) Let x and x′ be cost-minimizing bundles associated with p and p′. Then pTx ≤ pTx′

by minimization and pTx′ ≤ pT
′
x′ since p ≤ p′. Putting this two inequalities

together gives pTx ≤ pT
′
x′.

(ii) This property is automatically clear, because if x is the cost-minimizing bundle at
prices p, then x also minimizes costs at prices tp.

(iii) Let (p,x) and (p′,x′) be two cost-minimizing price-factor combinations and let
p′′ = αp + (1− α)p′ for any 0 ≤ α ≤ 1. Now

C(p′′, y) = p′′Tx = αpTx′′ + (1− α)p′Tx′′.

Since x′′ is not necessarily the cheapest way to produce y at prices p′ and p we have

C(p′′, y) ≥ αC(p, y) + (1− α)C(p′, y).

In case of y, y′ and (C(y), C(y′)) as two different outputs and corresponding cost
functions

αC(y) + (1− α)C(y′) = αpTx(y) + (1− α)pTx(y′) =
= pT (αx(y) + (1− α)x(y′)) (2.12)
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and from concavity of the production function follows

f(αx(y) + (1− α)x(y′)) ≥ αf(x(y)) + (1− α)f(x(y′)) ≥ αy + (1− α)y′

Then substituting last inequality into (2.12) provides

αC(y) + (1− α)C(y′) ≥ pTx(αy + (1− α)y′) ≥ C(αy + (1− α)y′).

Very useful result is known as Shephard’s lemma. With help of this lemma factor de-
mand function x(p, y) are obtained, which play the main role in my applications. In fact,
it is a special property of the cost function (2.11).

Shephard’s lemma: Let xi(p, y) be the firms conditional factor demand for input i. If
the cost function is differentiable at (p, y) and pi > 0 for i = 1, . . . ,m then

xi(p, y) =
∂C(p, y)
∂pi

i = 1, . . . ,m (2.13)

Proof: Let x̂ be a cost-minimizing bundle that produces y at prices p̂. Then define the
function

g(p) = C(p, y)− pT x̂

Since C(p, y) is the cheapest way to produce y, this function is always nonpositive, at
p = p̂; g(p) = 0. Since this is a maximum value of g(p) and by deriving it gives

∂g(p̂)
∂pi

=
∂C(p̂, y)
∂pi

− x̂i = 0 i = 1, . . . ,m.

Hence, the cost-minimizing input vector is just given by the vector of derivatives of the
cost function with respect to the prices.

There are two reasons for investigating the problem in dimension of the cost function.
First, the cost function allows us to model the production behaviour of firms without
knowing of market price of output. Second, for modeling producer behaviour we use the
system of demand equations, derived with help of the Shephard’s lemma. Using the classic
approach, i.e. profit maximizing s.t. production function generates demands and supplies
as implicit function of the relative prices [7]. Using cost minimizing approach we avoid it.

2.3 Duality

In the previous section we have discussed the properties of the cost function. Given
any technology we can directly derive its cost function, by solving the cost-minimization
problem

C(p, y) ≡ min
x
{pTx : f(x) ≥ y}. (2.14)

In this section it will be showed that this process can be reversed. Through definition
(2.14) production function f determines a cost function C.

The production function can in general be obtained from a cost function satisfying the
appropriate regularity conditions as the solution to the following constrained maximization
problem:

f∗(x̂) ≡ max
y
{y : C(p, y) ≤ pT x̂ for every pi ≥ 0} (2.15)
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where x̂T = (x̂1, . . . , x̂m) is given vector of inputs and C is the given cost function. This
means that the production function contains essentially the same information that the
cost function. This general observation is known as the priciple of duality. Given one of
these functions under certain regularity conditions, the other can be uniquelly determined,
this result is summarized in the following theorem.

Samuelson-Shephard duality theorem:

(i) If the production function f satisfies the conditions (2.2) then for y > 0 and
pi > 0, for i = 1, . . . ,m, the cost function defined by (2.14) factors into the following
expressions:

C(p, y) = C(p)y,

where the unit cost function C(p) also satisfies (2.2).
(ii) If the unit cost function C(p) satisfies (2.2), then for x̂i > 0 for i = 1, . . . ,m the

function f∗ defined by (2.15) also satisfies (2.2). So f∗ can be interpreted as a
production function. Equivalent expression of (2.15) is

f∗(x̂) ≡ 1
max

p
{C(p) : pT x̂ = 1, pi > 0 ∀i}

. (2.16)

(iii) Let the unit cost function C(p) satisfy condition (2.2) and define the production
function f∗ by (2.16). Now define the unit cost function C∗ generated by f∗ for
pi > 0 as

C∗(p) ≡ min
x
{pTx : f∗x ≥ 1;xi ≥ 0 for i = 1, . . . ,m},

then for every p∗i > 0 we have C(p∗) = C∗(p∗), so the production function f∗ which
was defined by the original unit cost function C, has a unit cost function C∗ which
coincides with C.

For proof see [4]. This theoretical result has many modifications, together with the Shep-
hard’s lemma (see section 2.2) makes duality theory extremly useful for empirical appli-
cations.

2.4 Functional Forms

This section offers an historical overview of the functional forms beginning with the famous
Cobb-Douglas form, moving on the constant elasticity of substitution specification, and
concluding with flexible functional forms such as the generalized Leontief and logarithmic
translog representation.

2.4.1 Survey of the Linear-in-Parameters Forms

Untill now I have spoken just about technology and costs in general. This section offers
a survey of common linear-in-parameters functional forms. This forms can be used as a
production or cost function depending on which access, direct or dual, is being considered.

Probably the oldest form is known as Cobb-Douglas,given by

log y = a0 +
m∑
i=1

ai log xi
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where
∑m
i=1 ai = 1 is a restriction of homogeneity of degree one in inputs factors, respec-

tively in input prices. This form was developed by Charles Cobb and Paul Douglas in
1928. For our purposes this form is too restrictive because elasticity of substitution (2.7)
equals in this case always unity.

Economists who were interested in estimating σ rather then assuming that σ = 1 have
been searching for such form where σ is still constant but not necessary equal to one. This
form is called constant elasticity of substitution (CES) and is expressed by

Y = (a0 +
m∑
i=1

aix
ρ
i )

1/ρ

where a0 = 0 for homogeneity of degree one. Earl Heady and his colleagues at Iowa
State University wanted to model some agricultural experiments, but including input
combination that resulted in negative marginal product MPi = ∂y/∂xi, which is impossible
in the Cobb-Douglas concept. Thus Heady generalized that form [1].

The following two forms are used the most for the empirical implementations because of
the flexibility which they offer. First, the Generalized Leontief linear functional form
can be written as

y = a0 +
m∑
i=1

m∑
j=1

aij(xixj)1/2

where symmetric restriction aij = aji ∀i, j are added. The next form is probably most
used and will be deeply analysed because it builds the core of my empirical application.
In theoretical literature [7], [1] it is known as Translog functional form. This concept
can be expressed as

ln y = a0 +
m∑
i=1

ai lnxi +
m∑
i=1

m∑
j=1

aij(lnxi)(lnxj) (2.17)

where
∑m
i=1 ai = 1 and

∑m
i=1 aij = 0 ∀j are restriction for homogeneity of degree one.

This form can be envisaged as a second-order Taylor’s series approximation in logarithms
to any arbitrary cost or production function.

We can assume for simplicity that all forms exhibit constant returns to scale. Also
for all forms we can generalize xT = (x1, . . . , xm) to represent also a vector of inputs or
prices and y is output or cost depending on whether direct or dual approach is being
considered. As was said in the begining of this section this forms can be used in two
ways as cost or production function. So it seems not to matter which use is made of
these functional forms. However the dual formulation of production theory has crucial
advantage in the developement of econometric modelling: Demands and supplies can be
generated as explicit functions of relative prices x = x(p, y) (see section 2.2) without
imposing the constraints of production required in case of the direct approach [7].

2.4.2 Deriving the Translog Cost Function

In this part the translog cost function will be derived. Corresponding with (2.17) cost
function faces following form:

lnC(p, y) = ln γ0 +
m∑
i=1

γi ln pi +
1
2

m∑
i=1

m∑
j=1

γij ln pi ln pj

+γy ln y +
1
2
γyy(ln y)2 +

m∑
i=1

γiy ln pi ln y (2.18)
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where y is value of output pT = (p1, . . . , pm) is m× 1 vector of input factor prices. Note
that among exogenous variables of the formula belong the logarithms of input prices and
the level of output as well. Rewriting (2.18) into matrix form gives

lnC(p, y) = ln γ0 + γ ′p ln p +
1
2

ln p′Γpp ln p +

+γy ln y +
1
2
γyy(ln y)2 + γ ′py ln p ln y, (2.19)

where ln p is m × 1 column vector of logarithmus of input prices, Γpp is m ×m matrix
of corresponding parameters (γij) i, j = 1, . . . ,m and γp, resp. γpy are corresponding
m × 1 vectors of parameters γi, resp. γiy. Note that here the cost function depends
from the prices and the amount of output. We can refer to this form as the translog cost
function, indicating the role of the variables, or the constant share elasticity cost function,
indicating the role of the parameters [7]. The concept of the share elasticity will be later
explained. Corresponding restrictions are

m∑
i=1

γi = 1
m∑
i=1

γij =
m∑
j=1

γij =
m∑
i=1

γiy = 0. (2.20)

For the translog cost function to be homothetic there is an adding up restriction that
γiy = 0 ∀i. If we assume homogeneity of constant degree in output we have additionally
to impose the restriction γyy = 0 [1].

Now I have extracted from big number of formulas one which can fit to our model.
But the econometric approach (which will be explained in the next chapter)is parametric
approach, so the result of an empirical application is not only the statement about rejecting
or not rejecting of the theretical model, but result contains the value of parameters (in
case of 2.18, all γ’s) which tell us something about behaviour inside the model. Looking
deeper into the derivation of formula (2.18) and (2.20) will explain the meaning of the
parameters.

Let us turn back to the concept of cost function. First we start to define some more
concepts concerning costs and cost function:

cost shares: vj =
pjxj
c

j = 1, . . . ,m

where c =
∑m
j=1 pjxj are total cost. With output fixed, the necessary condition for

producer equilibrium when maximizing profit s.t. a production function f(x) are given by
equalities:

v =
∂ ln y/∂ ln x

ı′(∂ ln y/∂ ln x)
where ı is a vector of ones

where vT = (v1, . . . , vm). Given a definition of total cost and necessary condition for
producer equilibrium, we can express total cost c as a function of the input prices and the
level of output: (see 2.11). Cost shares of all inputs can be expressed as elasticities of the
cost function with respect to the input prices:

v =
∂ lnC
∂ ln p

(p, y).

Index of returns to scale or cost flexibility expressed as elasticity of the cost function
with respect to the level of output is like:

vy =
∂ lnC
∂ ln y

(p, y).
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The cost flexibility vy, as derived from the production function, is the reciprocal of the
degree of RTS.

vy =
1
ı′
∂ ln y
∂ ln x

.

Next measure is known as share elasticities, which are expressed as

Upp =
∂2 lnC
∂ ln p2

(p, y) =
∂v
∂ ln p

(p, y)

and obtained by differentiating the logarithm of the cost function twice with respect to
the logarithms of input prices. This measure gives the response of the cost shares of all
inputs to proportional changes in the input prices. Note that Upp is the m ×m vector.
By differentiating the logarithm of the cost function twice with respect to the logarithms
of the input prices and the level of output, biases of scale measures, are obtained:

upy =
∂2 lnC

∂ ln p∂ ln y
(p, y) =

∂v
∂ ln y

(p, y) =
∂vy
∂ ln p

(p, y).

This vector can be employed to derive the implications of economies of scale for the relative
distribution of total cost among inputs or to derive the implications of changes in input
prices for the cost flexibility. Derivative of the cost flexibility with respect to the logarithm
of output provide

uyy =
∂2 lnC
∂ ln y2

(p, y) =
∂vy
∂y

(p, y).

This measure gives the response of the cost flexibility to proportional changes in the level
of output.

Now we want to generate an econometric model of cost and production by assuming
that our parameters are the following constants:

Γpp = Upp γpy = upy γyy = uyy.

We can regard this system as a system of second-order partial differential equations. We
can integrate this system with respect to ln p, ln y to obtain a system of first-order partial
differential equations

v = γp + Γpp ln p + γpy ln y
vy = γy + γ ′py ln p + γyy ln y

where γp, γy are constants of integration and when p = 1, y = 1, then γp = v and
γy = vy. Now we can integrate this system again with respect to ln p, (ln y) to obtain the
cost function (2.19).

This derivations require imposing of some restrictions. All restrictions build up the set
of restrictions, that need to be considered in the regression model. The complete set of
conditions for integrability is as follows [7]:

Homogeneity: The cost shares and the cost flexibility are homogenous of degree zero in
the input prices, since the cost function is homogenous of degree one.

Γppı = 0 γ ′pyı = 0

For m inputs there are m+ 1 restrictions implied by homogeneity.
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Cost exhaustion: The sum of the cost shares is equal to unity. Cost exhaustion implies
that the value of m inputs is equal to total cost.

γ ′p = 1 Γppı = 0 γ ′pyı = 0

For m inputs there are m+ 2 restrictions implied by cost exhaustion.

Symmetry: The matrix of share elasticities, biases of scale and the derivative of the cost
flexibility with respect to the logarithm of output must be symmetric.(

Γpp γpy

γ ′py γyy

)
=

(
Γpp γpy

γ ′py γyy

)′

Nonnegativity: The cost shares and the cost flexibility must be nonnegative. Since the
translog cost function is quadratic in the logarithms of the input prices and the
level of output, we cannot impose this restriction, instead, we consider restrictions
on the parameters that imply monotonicity of the cost shares wherever they are
nonnegative.

Monotonicity: The matrix of share elasticities Γpp + vv′ is nonpositive definite.

Concavity: The cost function is concave, wherever the cost shares are nonnegative.

To summarize, if one logarithmically differentiates equation (2.18) with respect to in-
put prices and then employs Shephard’s Lemma (see section 2.2), one obtains cost share
equations of the form.

∂ lnC
∂ ln pi

=
pi
C

∂C

∂pi
=
pixi
c

= γi +
m∑
j=1

γij ln pj + γiy ln y (2.21)

for i = 1, . . . ,m. Defining the cost shares vi ≡ pixi/c, it follows that
∑n
i=1 vi = 1. This

condition of the share equation system (2.21) has important implication for econometric
estimation. I will illustrate this issues in chapter (4).



Chapter 3

Econometric Methods

3.1 Estimation Methods

The objective of econometric modeling is to find numerical values of relevant parameters
after an appropriate specification of the economic relations and the device of a suitable
estimation technology. An estimator is a formula, method, or recipe for estimating an
unknown population parameter, and an estimate is the numerical value obtained when
sample data are substituted in the formula.

Economic theory contains plenty of relationships between variables taken in pairs: quan-
tity and price, consumption and income, unemployment and the inflation rate and many
more. It suggest the opinion that economists believe that the world can be analyzed only
in terms of a collection of bivariate relationships. But nonetheless some bivariate rela-
tionships are significant for understanding the basis of statistical and mathematical tools,
which are reconstructed on more complicated situations.

The simplest version of the two variable model is:

yt = α+ βXt + ut

with ut being iid ∼ (0, σ2) and t = 1, . . . , n is number of observations. There are thus
three parameters to be estimated: α, β and σ2. The parameters α and β are taken as a
pair, since numerical values of both are required to fit a specific line. Once such a line has
been fitted, the residuals from that line may be used to form an estimate of σ2.

For our purpose it is unreasonable to discuss the bivariate relationships any further.
Our example gives sense for specifying and analyzing multivariate relations. While the
ultimative objective of my econometric research is a system of demand equations, solved
as a system of simultaneous equations, first I prefer to restrict the analysis to a single
equation including k exogenous variables, where k is in general a number larger than two.
The specification of such a relationship is

yt = β1 + β2X2t + β3X3t + . . .+ βkXkt + ut (3.1)

with the same assumptions like in the bivariate model.
Here it makes sense to mention that Translog cost function is an example of a multi-

variate relationship and the system of demand equations derived from the cost function
gives a typical example of a simultaneous equation system.

15
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3.1.1 Ordinary and Generalized Least Squares

Ordinary least squares (OLS) is one of the basic methods of econometric investigations.
Its principle is to find in equation (3.1) vector β′ = (β1, β2, . . . , βk) which minimizes the
inner product of the disturbance vector u. This approach will be explained as follows.

Let’s have k + 1 variables with n sample observations given: X1t, X2t, . . . , Xkt, yt,
t = 1, . . . , n. The aim is to explain y as linear function of x1, x2, . . . , xk, where
x′j = (Xj1, Xj2, . . . , Xjn) and j = 1, 2, . . . , k. Note that Xjt 6= xjt. It means y is in this
case an endogenous variable, explainable by the model and x1, x2, . . . , xk are independent,
or exogenous variables. We are looking for unknown parameters β1, β2, . . . , βk in the
equation system:

yt = β1 + β2X2t + . . .+ βkXkt, t = 1, . . . , n (3.2)

Rewriting in matrix form will simplify the notation (3.2)

y = Xβ (3.3)

where y =


y1

y2
...
yn

 X =


1 X21 . . . Xk1

1 X22 . . . Xk2
...

...
. . .

...
1 X2n . . . Xkn

 β =


β1

β2
...
βk


yt and Xjt, (j = 1, 2, . . . , k) represent observations in time t. But this observations do
not fulfil (3.3) exactly, there arise some deviation. We indicate them with ut. Notation in
matrix form looks as follows

y = Xβ + u (3.4)

where u′ = (u1, u2, . . . , un) is so called vector of random disturbances.
As I have said in the begining of this section, the principle of OLS is to find such vector

β that minimizes the square of sum

u′u = f(β) = (y −Xβ)′(y −Xβ) (3.5)

Therefore the title least squares. Proceeding in this way: f(β) = y′y−2y′Xβ+β′XXβ,
derivation with respect to β yields the necessary conditions for existence of the minimum.

df

dβ
= −2X ′y + 2X ′Xβ = 0

The solution is the least squares estimate (LSE) of β, denote by β̂:

β̂ = (X ′X)−1X ′y. (3.6)

Looking at the sufficient condition

d2f

dβ2
= 2X ′X > 0,

(X ′X) of full rank and positive definite will fulfil such condition. The following theorem
states the properties of β̂ under additional statistical assumptions.
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Gauss-Markoff theorem: Under assumptions

A1: E(u) = 0, expected value of ut is 0
A2: E(uu′) = Cov(u) = σ2I, ut, u′t for t 6= t′ are non-correlated, A1+A2 gives

u ∼ iid(0, σ2I)
A3: E(X ′u) = 0, respectively X-non stochastic
A4: r(X) = k, X-full column rank
A5: k < n, there are more observations then variables. (We have positive degree of freedom.)

β̂ = (X ′X)−1X ′y, the LSE of β has following properties:

(i) unbiased: E(β̂) = β
(ii) efficient: Var(β̂) = σ2(X ′X)−1 has minimum variance in the class of linear unbiased

estimators, resp. it is a best linear unbiased estimator (BLUE)
(iii) consistent: plim(β̂) = β

Proof:(ii) A linear estimator of β is β̃ =
∑
ciXi where ci are to be determined. Unbiased-

ness requires E(β̃) = β. Now

β̃ =
∑

ci(βXi + ui) = β
(∑

ciXi

)
+
∑

ciui

Thus β̃∗ will be a linear unbiased estimator if and only if
∑
ci = 0 and

∑
ciXi = 1 When

these conditions are satisfied β̃ = β +
∑
ciui and

V ar(β̃) = E

[(∑
ciui

)2
]

= σ2
∑

c2
i

To compare this variance with that of the OLS β̂, write

ci = wi + (ci − wi)

Thus,
∑
c2
i =

∑
w2
i +

∑
(ci − wi)2 + 2

∑
wi(ci − wi) The properties of the wi and the

conditions on the ci ensure that ∑
wi(ci − wi) = 0

and so Var(β̃∗) = Var(β̂) + σ2∑(ci − ui)2 which proves the theorem.

There is one more parameter to be estimated: σ2. Let e = y −Xβ̂ is so called residual
vector. From it follows e′e = (y − Xβ̂)′(y − Xβ̂). Expected value of e′e is E(e′e) =
E(u′Mu) = E(trMuu′) = trE(Muu′) = trMσ2I = σ2(n− k) where
M = (I −X(X ′X)−1X ′) is the idempotent n× n matrix. Therefore

s2 =
e′e

n− k
(3.7)

is unbiased estimate for variance matrix of estimated parameters. The LS equation is now

yt = β̂1 + β̂2X2t + . . .+ β̂kXkt + et t = 1, . . . , n

averaging over the sample observations gives

ȳ = β̂1 + β̂2X̄2 + . . .+ β̂kX̄k
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since ē = 0. Subctracting the second equation from the first gives so called deviation form
of the observations.

ỹt = β̂2X̃2t + . . .+ β̂kX̃kt + et

where ỹt = yt − ȳ and X̃it = Xit − X̄i, i = 1, . . . , k denote deviations from sample means.
Collecting all n observations, the deviation form of the equation may be written compactly
using a transformation matrix

A = In −
(

1
n

)
ii′ (3.8)

where i is a column vector of n ones. It can be shown that A is symmetric, idempotent
matrix, which by multiplication transform a vector of n observations into deviation form.
Thus Ae = e and Ai = 0

y = Xβ̂ + e = (i X2)

(
β̂1

b2

)
+ e

where X2 is the n × k − 1 matrix of observations on the regressors and b2 is the k − 1
element vector containing the coefficients β̂2, β̂3, . . . , β̂k. Premultiplying by A gives

Ay = (0 AX2)

(
β̂1

b2

)
+Ae = (AX2)b2 + e

⇒ y∗ = X∗b2 + e (3.9)

where y∗ = Ay and X∗ = AX2. By using (3.9), the decomposition of the sum of squares
may be expressed as

y′∗y∗ = b2X
′
∗X∗b2 + e′e

TSS = ESS + RSS (3.10)

where TSS,ESS, resp. RSS idicate total, estimated, resp. residual sum of squares. The
coefficient of multiple correlation R is defined

R2 =
ESS
TSS

= 1− RSS
TSS

(3.11)

R2 measures the proportion of the total variation in Y explained by the linear combination
of the regressors. R2 value is used to measure the fit of the estimated model. For this
purpose is often used also adjusted R2, denoted by R̄2.

R̄2 = 1− RSS/(n− k)
TSS/(n− 1)

(3.12)

This statistic takes explicit into account the number of regressors used in the equation.
Many assumptions from A1-A5 are very strong ones and real data does not fulfil them.

Therefore theorist search for some more general ways, which gives similar results like OLS.
Very typical example is when ut is not independently distributed. The LSE is still unbiased
(i) but not efficient (ii) any more. With respect to this changes OLS is substituted by a
so called general least squares (GLS) method.

GLS provide estimation of the linear model

yt =
k∑
i=1

Xitβi + ut t = 1, . . . , n

uses the following assumptions:
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(i) X is nonstochastic matrix, nonsingular, k < n
(ii) u is random variable with zero mean and variance-covariance matrix

E[ee′] = σ2Ω 6= σ2I, Ω is a known symmetric and positive definite matrix.

The linear unbiased, efficient estimate is obtained from corrected square of sum fω(β),
see (3.5)

fΩ(β) = (y −Xβ)′Ω−1(y −Xβ) (3.13)

differentiating (3.13) with respect to β yield necessary conditions. GLS estimate of β is
then

β̂Ω = (X ′Ω−1X)−1X ′Ω−1y (3.14)

(compare with 3.6). The variance-covariance matrix in this case looks as follows:

E[(βΩ − β)(βΩ − β)′] = σ2(X ′Ω−1X)−1

and an unbiased consistent estimate for σ2 is:

σ̂2 =
eΩ−1e′

n− k
, e = y −XβΩ

In application of GLS arise a crucial problem how to determine Ω. Namely the task is
to find estimator for Ω. One possibility arise from parametrisation of Ω with some finite
numbers of parameters Ω = Ω(θ1, . . . , θN ) [6].

3.1.2 Maximum Likelihood Estimation

If the distribution of the disturbance vector is known e.g.

u ∼ N(0, σ2I) (3.15)

we can estimate the parameter with help of likelihood function. The formal definition
of likelyhood function is

L(θ, y) = f(y, θ) (3.16)

where θ is some k vector of unknown parameters, θ′ = (θ1, θ2, . . . , θk) and f(y, θ) is the
joint density, which indicates the dependence on θ and it may be interpreted as a function
of θ, conditional on a set of sample outcomes. Reversing the order of the symbols in (3.16)
emphasize the new focus of interest. Maximizing the likelihood function with respect to
θ amounts to finding a value θ̂ that maximizes the probability of obtaining the sample
values that have actually been observed. θ̂ is called maximum likelihood estimator (MLE)
of the unknown parameter vector θ. Often used simplification is to take logarithms of
likelihood function, it is denote with l = lnL, because of monotonic transformation, there
is any problem in maximizing

max
θ

(l) = max
θ

(lnL) =
∂l

∂θ
=

1
L

∂L

∂θ
= s(θ, y) (3.17)

The derivative of l with respect to θ is known as the score. The MLE, θ̂ is derived by
setting the score to zero.

The widespread use of MLE is due to a couple of desirable properties [6]

(i) Consistency: plim(θ̂) = θ
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(ii) Asymptotic normality: θ̂ ∼a N(θ, I−1(θ)). This states, that the asymptotic distribu-
tion of θ̂ is normal with mean θ and variance given by inverse of information matrix
I(θ), which is defined by

I(θ) = E

[(
∂l

∂θ

)(
∂l

∂θ

)′]
= −E

[
∂2l

∂θ∂θ′

]
(3.18)

where result is a square, symmetric matrix of second order derivatives or so called
Hessian matrix.

(iii) Assymptotic efficiency: If θ̂ is the maximum likelihood estimator of a θ, the previous
property means that √

n(θ̂ − θ)→d N(0, σ2)

for some finite constant σ2. If θ̃ denotes any other consisitent, asymptotically nor-
mal estimator of θ, then

√
nθ̃ has a normal limiting distribution whose variance is

greater than or equal to σ2. The ML estimate has minimum variance in the class of
consistent, asymptotically normal estimators.

(iv) Invariance: If θ̂ is the ML estimate of θ and g(θ) is a continuous function of θ, then
g(θ̂) is the ML estimate of g(θ).

(v) The score has zero mean and variance I(θ). To prove zero mean note following
property ∫

. . .

∫
f(y1, y2, . . . , yn, θ)dy1dy2 . . . dyn =

∫
. . .

∫
Ldy = 1

Differentiating both sides with respect to θ yields∫
. . .

∫
∂L

∂θ
dy = 0

but E(S) =
∫
. . .

∫
∂l

∂θ
Ldy =

∫
. . .

∫
∂L

∂θ
dy

⇒ V ar(S) = E(SS′) = E

[(
∂l

∂θ

)(
∂l

∂θ

)′]
= I(θ)

In the case of the linear model the vector of unknown parameters θ is θ′ = (β′, σ2) and
the multivariate density for u is

f(u) =
1

(2πσ2)n/2
e(− 1

2σ2 )(u′u)

the multivariate density for y conditional on X is then

f(y | X) = f(u)
∣∣∣∣∂u∂y

∣∣∣∣
in this case

∣∣∣∂u∂y ∣∣∣ = 1. Thus the log-likelihood function is

l = lnf(y | X) = lnf(u) = −n
2
ln2π − n

2
lnσ2 − 1

2σ2
u′u =

−n
2
ln2π − n

2
lnσ2 − 1

2σ2
(y −Xβ)′(y −Xβ) (3.19)
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from (3.17) we have
∂l

∂β
=

∂l

∂σ2
= 0

it determines ML estimate of β

β̂ = (X ′X)−1X ′y (3.20)
and σ̂2 = (y −Xβ̂)′(y −Xβ̂)/n (3.21)

where X, β and y are as in previous section matrix and vectors.
ML estimator of β is seemed to be the OLS estimator β̂ (see 3.4) and σ̂2 is e′e/n where

e = y − Xβ̂, where e is the vector of OLS residuals. From OLS theory we know that
E[e′e/(n − k)] = σ̂2. Thus E(σ̂2) = σ2(n − k)/n, so that σ̂2 is biased for σ2, while β̂ is
unbiased for β. By computing the second-order derivatives with respect to parameters we
obtain information matrix (see 3.18)

I(θ) = I

(
β
σ2

)
=

[
1
σ2 (X ′X) 0

0 n
2σ4

]
(3.22)

and its inverse is

I−1

(
β
σ2

)
=

[
σ2(X ′X)−1 0

0 2σ4

n

]

The zero off-diagonal terms indicate that β̂ and σ̂2 are distributed independently of one
another. Substituting the ML estimator values (3.15) and (3.21) in the log-likelihood
function and exponentiating gives the maximum value of likelihood function

L(β̂, σ̂2) =
(

2πe
n

)−n
2

(e′e)−
n
2 (3.23)

3.1.3 Seemingly Unrelated Regression

Many econometric applications involve the question of the solution the system of equa-
tions, which are somehow related to each other. My investigation presented below utilizes
a system of the demand equations and thus I need additional techniques for single equa-
tion estimators. Very popular approach is called seemingly unrelated regression (SUR),
respectively Zellner estimator after its inventor. Simply said it is an extension of GLS
estimator on a multi-equation system.

Suppose that ith equation in a set of m equations is

yi = Xiβi + ui i = 1, . . . ,m (3.24)

the set of equations can be written also in matrix form
y1

y2
...
ym

 =


X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . Xm




β1

β2
...
βm

+


u1

u2
...
um

 (3.25)

where yi is an n × 1 vector of observations on the ith endogenous variable, Xi an n × ki
matrix of observations of exogenous variables, βi a ki × 1 vector of coefficients and ui



22 ECONOMETRIC MODELS OF PRODUCER BEHAVIOUR

an n × 1 vector of disturbances. Note, that in the previous sections βi was the unique
parameter, here it is held as vector of parameters.

In our case y variables are cost shares of individual energy inputs and X’s are prices for
energy goods and value of output. The main question is whether the equations should be
treated separately or as a set. The explanation of this problem lies in the assumptions of
the Gauss-Markoff theorem (GMT) (see section 3.1.1). In fact they are not absolut and
sufficient for system of equation, because correlation among disturbances of various equa-
tions are missing. Second assumption of the GMT looks E(uiu′i) = σ2

iiI, (i = 1, . . . ,m) but
by considering the system is assumed that there exists some between-equation relations,
that the equations are only seemingly unrelated. Summarizing this considerations we
use the assumptions of the GMT

E(ui) = 0
E(uiu′j) = σ2

ijI (3.26)
E(Xiui) = 0

First assumption is clear, second is consequence of the previous paragraph and the last
says that the disturbance and explanatory variables in each equation are assumed to be
uncorrelated.

By definition, the variance-covariance matrix for u is

Σ = E(uu′) = E


u1u

′
1 u1u

′
2 . . . u1u

′
m

u2u
′
1 u2u

′
2 . . . u2u

′
m

...
...

. . .
...

umu
′
1 umu

′
2 . . . umu

′
m

 (3.27)

Each term in the principal diagonal of Σ is an n × n variance-covariance matrix. Thus
E(uiu′i) is the variance-covariance matrix for the disturbances in the ith equation. Each
off-diagonal term in Σ represent an n× n matrix whose elements are covariances between
disturbances from a pair of equations. Substituting (3.26) into (3.27) gives:

Σ =


σ11I σ12I . . . σ1mI
σ21I σ22I . . . σ2mI

...
...

. . .
...

σm1I σm2I . . . σmmI

 =


σ11 σ12 . . . σ1m

σ21 σ22 . . . σ2m
...

...
. . .

...
σm1 σm2 . . . σmm

⊗ I = Σc ⊗ I

(3.28)

where I is the identity n×n matrix and ⊗ denotes Kronecker multiplication that is, each
element in Σc is multiplied by I. The GLS estimator of β is then unbiased and looks:
(compare with 3.14).

β̂GLS = (X ′Σ−1X)−1X ′Σ−1y

where

Σ−1 = Σ−1
c ⊗ I =


σ11I σ12I . . . σ1mI
σ21I σ22I . . . σ2mI

...
...

. . .
...

σm1I σm2I . . . σmmI


The variance-covariance matrix for the GLS estimator is

Var(β̂GLS) = (X ′Σ−1X)−1
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In general Σ is unknown and the question is how to construct an estimator for Σ̂ while
estimate for β stay consistent. One possibility is to use the estimate: Σ̂ = Σ̂c ⊗ I,
respectively provide an inverse. The Σ depends only on m(m+ 1)/2 different elements of
Σc, however Σ is mn × mn matrix, it is possible by estimating each of the m equation
by OLS and using residuals to estimate σij . The residuals computed from OLS-single
equation are:

ũi = yi −Xiβ̃i = (I −Xi(X ′iXi)−1X ′i)ui i = 1, . . . ,m

Substituting into ũ′iũj
n we have

u′iuj
n
−u
′
iXj

n

(X ′jXj)−1

n−1

X ′juj

n
−u
′
iXi

n

(X ′iXi)−1

n−1

X ′iuj
n

+
u′iXi

n

(X ′iXi)−1

n−1

X ′iXj

n

(X ′jXj)−1

n−1

X ′juj

n

Denote sij = ũ′iũj/n then (sij) indicate matrix S and Σ̂ = S ⊗ I is a consistent estimator
for Σ. It can be shown that SUR estimate of β

β̂ = (X ′Σ̂−1X)−1X ′Σ̂−1y

as OLS estimate of β, β̃ = (X ′X)−1X ′y is efficient too.
It is noteworthy, that if σij = 0, i 6= j, the SUR estimator (SURE) reduces to the

application of OLS to each equation separately. If the disturbances are also normally
distributed the OLS estimate is also ML estimate.

3.1.4 Estimation under Restrictions

Economic theory offers many attractive results, however for their consideration we often
have to resort to restrictive conditions. It brings to econometric models a new dimension.
In my model estimation methods, without the possibility of including restriction are com-
pletely useless, because a well behaved cost function has to be homogenous of degree one
in input prices and the system of demand equations has to fulfil some kind of symmetry
restrictions. Reformulating the conditions in mathematical notation can provide an ex-
tension of the methods mentioned so far, which can be covered by estimation under
restriction.

From econometric point of view restrictions mean that there exists some prior informa-
tion about parameters. Therefore by minimizing (3.5), restrictions have to be taken into
the consideration. Besides further assumptions, GLS estimator is valid. Let us assume m
additional restrictions for β:

k∑
j=1

Rijβj = ri i = 1, . . . ,m (3.29)

or Rβ = r in matrix form, where R is a nonstochastic m×k matrix and r is m× 1 vector.
The idea of this aproach is to derive a GLS restricted estimate from the unrestricted
one [6]. A GLS estimator under restrictions (3.29) is derived with help of the Lagrange
function, where restriction are implemented as

fR(β) = f(β)− (β′R′ − r′)λ = (y −Xβ)′Ω−1(y −Xβ)− (β′R′ − r′)λ (3.30)

where R is the restriction matrix and λ is vector of the Lagrange multiplicator associated
with restrictions. Extract β from (3.30), is obtain βR. Proceeding in this way gives

βR = β̂ + (X ′Ω−1X)−1R′[R(X ′Ω−1X)−1R′]−1(r −Rβ̂) (3.31)
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where β̂ is unrestricted GLS estimate of β.
βR always fulfils the restrictions (3.29) also when the unrestricted parameter vector does

not. When the latter fits to the restriction equation (3.29) then E(Rβ̂) = r. It means
that GLS estimate β̂ is compatibile with the restriction.

3.2 Statistical Inference

Statistical inference on the validity of parameter restriction can be undertaken in a number
of alternative ways. The first part of this section introduce you with the most common
ones. The second one analyses the problem of autocorrelated disturbances and simultane-
ously explains the test statistic specific to this issue.

3.2.1 Test of Linear Restrictions

In section (3.1.1) we have established the properties of the LS estimator of β. It remains
to show how to use this estimator to test various hypotheses about β. Suppose that in
the model (3.1) are assumed some more informations about β and we test the reliability
of this assumptions. Most common hypotheses are

(i) H0 : βi = 0. This sets up the hypothesis that the regressor Xi has no influence on
y. This type of test is known as the significance test.

(ii) H0 : βi = βi0. Here βi0 is some specified value. If, for instance, βi denotes a price
elasticity one might wish to test that the elasticity is −1.

(iii) H0 : β′ = (β2, β3, . . . , βk) = (0, . . . , 0). This sets up the hypotheses that the complete
set of regressors has no effect on y. It tests the significance of regression as a whole.
The constant parameter does not enter into the hypothesis, since interest centers of
the variation of y around its mean and the level of the series is usually of no specific
relevance.

All examples fit into the general linear framework

Rβ = r

Where R is a q × k matrix of known constants, with q < k, and r is a q-vector of known
constants. Each null hypothesis determine the relevant elements in R and r. For the
foregoing examples we have

(i) R = (0 . . . 0 1 0 . . . 0) r = 0 q = 1
with 1 in the ith position

(ii) R = (0 . . . 0 1 0 . . . 0) r = βi0 q = 1
with the 1 in ith position

(iii) R = (0 Ik−1) r = 0 q = k − 1
where 0 is a vector of k − 1 zeroes

The efficient way to proceed is to derive a testing procedure for the general linear hypoth-
esis

H0 : Rβ − r = 0 (3.32)

This general test is applicable to any hypothetic specification. Given the LS estimator
β̂ (see 3.6) an obvious step is to compute the vector Rβ̂ − r. This vector measures the
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discrepancy between expectation and observation. If this vector is relative large it tends
to forget the existence of the null hypothesis and conversely, if it is relative small it
tends not to contradict the H0. To distinguish between small and large relevant sampling
distribution help. In this case it is the distribution of Rβ̂ when Rβ = r. From E(β̂) = β
(see Gauss-Markoff Theorem, section 3.1.1) it follows directly

E(Rβ̂) = Rβ.

Therefore from Var(β̂) = σ2(X ′X)−1 we have

V ar(Rβ̂) = RV ar(β̂)R′ = σ2R(X ′X)−1R′

We thus know the mean and variance of the Rβ̂ vector. Since β̂ is a function of the vector
u see (3.5) the distribution of Rβ̂ will be determined by the distribution of u. First two
assumption of the GMT (see section 3.1.1) plus assumption that the uis are normally
distributed can be combined in the (3.15) statement. Since linear combinations of normal
variables are also normally distributed, it follows directly that

β̂ ∼ N [β, σ2(X ′X)−1]

then Rβ ∼ N [Rβ, σ2R(X ′X)−1R′]

and so R(β̂ − β) ∼ N [0, σ2R(X ′X)−1R′] (3.33)

If the null hypothesis Rβ = r is true then

Rβ̂ − r ∼ N [0, σ2R(X ′X)−1R
′]

This relation gives us the distribution of Rβ̂.
Suppose now that X ∼ N(0, σ2I), where X = (X1, X2, . . . , Xk) and each Xi is still

independent and has zero means. Thus

X2
1

σ2
+
X2

2

σ2
+ . . .+

X2
k

σ2
∼ χ2(k) (3.34)

has χ2-distribution with k degrees of freedom. (3.34) can be written in matrix form

1
σ2
X ′X ∼ χ2(k) (3.35)

rewriting in quadratic form gives X ′(σ2I)−1X. This allows us to write

(Rβ̂ − r)′[σ2R(X ′X)−1R′]−1(Rβ̂ − r) ∼ χ2(q) (3.36)

it is easy to show from (3.35) that

e′e

σ2
∼ χ2(n− k) (3.37)

(3.36) and (3.37) may be combined to form a computable statistic, which has an F distri-
bution under the null hypothesis

(Rβ̂ − r)′[R(X ′X)−1R′](Rβ̂ − r)/q
e′e/(n− k)

∼ F (q, n− k) (3.38)
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The test procedure is then to reject the hypothesis Rβ = r if the computed F value exceed
a preselected critical value. Now it will be shown what this test procedure amounts to the
three specific applications indicated previously.

First, we rewrite (3.36) as

(Rβ̂ − r)′[s2R(X ′X)−1R′]−1(Rβ̂ − r)/q ∼ F (q, n− k) (3.39)

because s2 = e′e/(n−k), see (3.7). Thus, s2(X ′X)−1 is the estimated variance-covariance
matrix β̂, indicating i, jth element of the (X ′X)−1 by cij then

s2cii = Var(β̂i) and s2cij = cov(β̂i, β̂j) i, j = 1, 2, . . . , k

In each applications are specific forms of R, which are then substituted in (3.38) and (3.39)

(i) H0 : βi = 0 Equation (3.39) looks

F =
β̂2
i

s2cii
=

β̂2
i

Var(β̂i)
∼ F (1, n− k)

because Rβ̂ picks out β̂i and R(X ′X)−1R′ picks out cii. Taking the square root of
previous one

t =
β̂i

s
√
cii

=
β̂i

s.e(β̂i)
∼ t(n− k) (3.40)

where s.e is standard error, s.e =
√

Var(β̂i). Thus the null hypothesis that Xi has no
assotiation with y is tested by dividing the ith estimated coefficient by its estimated
standard error and referring the ratio to the t distribution.

(ii) H0 : βi = βi0, t-distribution in this case looks

t =
β̂i − βi0
s.e(β̂i)

∼ t(n− k)

Instead of testing specific hypothesis about βi one may compute, say, a 95% confi-
dence interval for βi. It is given by

si ± t0,025 s.e(β̂i)

(iii) H0 : β2 = β3 = . . . = βk = 0 The first two examples have each involved just a
single hypothesis, therefore F and t procedures were equivalent in this cases. Now
R(X ′X)−1R′ picks out the square submatrix of order k−n in the bottom right-hand
corner of (X ′X)−1. To evaluate this submatrix, we divide X as (ı X2) where X2

is the matrix of observations on all k − 1 regressors. Then

X ′X =

(
ı′

X ′2

)
(ı X2) =

(
n ı′X2

X ′2ı X ′2X2

)
inverse of such matrix

(X ′2X2 −X ′2ın−1ı′X2)−1 = (X ′2AX2)−1 = (X ′∗X∗)
−1

where A is transformation matrix (3.8), A transforms observations into deviation
form (see 3.9). With help of the (3.10) the F statistic for testing the complete set
of regressors is

F =
ESS/(k − 1)
RSS/(n− k)

∼ F (k − 1, n− k)
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By using (3.11), this statistic may be expressed as

F =
R2/(k − 1)

(1−R2)/(n− k)
∼ F (k − 1, n− k) (3.41)

3.2.2 Likelihood Ratio, Wald and Lagrange Multiplier
Test Statistics

In this part three basic tests for validity of the linear restriction will be assumed. Every
test has common context of linear hypotheses about β. Null hypothesis of linear relation
of β take the form (3.32).

Likelihood ratio test statistics is derived from ML estimator. The resultant value of
likelihood function L(β̂, σ̂2), see section 3.1.2, is the unrestricted maximum likelihood and
is expressible as a function of the unrestricted residual sum of squares e′e (see 3.23). The
model may also be estimated in restricted form by maximizing the likelihood subject to the
restriction (3.32). Let the resultant estimators be denoted by β̃ and σ̃2. Then maximum
likelihood estimator is L(β̃, σ̃2). The restricted maximum cannot exceed the unrestricted
maximum, but if the restrictions are valid, we would expect the restricted maximum to
be relative close to the unrestricted maximum. According to this consideration likelihood
ratio is defined as

λ =
L(β̃, σ̃2)
L(β̂, σ̂2)

(3.42)

and intuitively we expect to reject the null hypothesis of binding restriction if λ is relative
small. A large-sample test of general applicability is available for (3.42) in this form

LR = −2 lnλ = 2[lnL(β̂, σ̂2)− lnL(β̃, σ̃2)] ∼a χ2(q)

The restricted ML is derived by maximizing

lR = l − µ′(Rβ − r)

where µ is an q× 1 vector of Lagrange multipliers and l = lnL. It can be shown that β̃ is
simply the restricted β already derived in (3.31). If we denote the corresponding residuals
by

eR = y −XβR
the restricted ML estimator of σ2 is σ̃2 = e′ReR/n and so

L(β̃, σ̃2) = const(e′ReR)−n/2 (3.43)

Substituting (3.43) into (3.42) gives LR test statistic as

LR = n(ln e′ReR − ln e′e)

The calculation of the LR statistics thus requires both models, restricted and unrestricted.
The next test statistic requires fitting only one of the restricted model. By Wald pro-

cedure the vector (Rβ̂ − r) indicates the extent to which the unrestricted ML estimate
fits the null hypothesis. From asymptotic normality follows β̂ ∼a N(β, I−1(β)) (see sec-
tion 3.1.2). Therefore for hypothesis (3.32), R(β̂ − β) is asymptotically distributed as
multivariate normal with zero mean vector and variance-covariance matrix RI−1(β)R′,
where I−1(β) = σ2(X ′X)−1, compare with (3.33). As shown in (3.22) the information
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matrix I(θ) for the linear regression model is block diagonal, so we can concentrate on the
submatrix relating to β. It gives

(Rβ − r)′[RI−1(β)R′]−1(Rβ̂ − r) ∼a χ2(q)

The assymptotic distribution still holds when the unknown σ2 in I−1(β) is replaced by
consistent estimator σ̂2 = e′e/n. It gives

W =
(Rβ − r)′[R(X ′X)−1R′]−1(Rβ̂ − r)

σ̂2
∼a χ2(q)

where W indicate the Wald statistics.
The last test from this trinity is based on the score vector (3.17). The unrestricted

estimator, θ̂ is found by solving s(θ̂) = 0. When the score vector is evaluated at θ̃-the
restricted estimator, it will in general not be zero. However, if the restrictions are valid l(θ̃)
will be close to the l(θ̂). As shown earlier, the score vector has zero mean and variance-
covariance matrix given by I(θ) (see section 3.1.2). The quadratic form s′(θ̂)I−1(θ̂)s(θ̂),
will then have a χ2-distribution. Evaluating this form for θ = θ̃ provides a test of the null
hypothesis. Therefore under the null hypothesis

LM = s′(θ̃)I−1(θ̃)s(θ̃) ∼a χ2(q)

where LM is the Lagrange multiplier test statistic. In comparison with the Wald test,
it is necessary to calculate only the restricted estimator rather then the unrestricted one,
which is much easier in many cases.

There also exists some comparison of this three tests. It looks as

W ≥ LR ≥ LM.

It is possible to derive this inequality with help of some analytical tools, see [6]. The tests
are assymptotically equivalent, but in finite samples give different numerical results.

3.2.3 Durbin-Watson test

Suppose that in the model y = Xβ+u (see 3.4) it is assumed that disturbance terms fulfil
following pattern

ut = ϕut−1 + εt (3.44)

where εt is white noise process: εt ∼ N(0, σ2
t I), this process is known as first-order

autoregressive proces, (AR(1)). Simply speaking it means that disturbance in time point
t depends on previous disturbance term. The task is to provide some test for the hypothesis
about relation (3.44). The null hypothesis of zero autocorrelation is then

H0 : ϕ = 0

against the alternative hypothesis
H1 : ϕ 6= 0

One of the many who have investigated this issue are Durbin and Watson [6].
The Durbin-Watson (DW) test statistic is computed from the vector of OLS residuals

e = y −Xβ̂. It is denoted like d or DW and is defined as:

d =
∑n
t=2(et − et−1)2∑n

t=1 e
2
t

(3.45)
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The mean residual is zero, so the residuals will be scattered around the zero line which
represents E(e) = 0. If the e’s are positively autocorrelated, succesive values will tend to
be close to each other, runs above and below the expected values and the first differences
will tend to be numerically smaller than the residuals themselves. Alternatively, if the e’s
have a first-order negative autocorrelation, there is a tendency for the next observation
to be on opposite side of E(e) = 0 axis, therefore first differences tend to be numerically
larger than the residuals. Thus d will tend to be relative small for positive autocorrelated
e’s and for negative is then relative large. If the e’s are really random, or non correlated,
there is no tendency for runs above and below or for alternate jumps across horizontal
axis and d will have an intermediate value. Expanding (3.45) we have

d =
∑n
t=2 e

2
t +

∑n
t=2 e

2
t−1 − 2

∑n
t=2 etet−1∑n

t=1 e
2
t

For large n the different ranges of summation in numerator and denominator have a
negligible effect and

d ' 2(1− ϕ̂) (3.46)

where

ϕ̂ =
∑
etet−1∑
e2
t

is the coefficient in the OLS regression of et on et−1. Thus (3.46) gives various states of d:

0 < d < 2 for positive autocorrelation of the e’s
4 > d > 2 for negative autocorrelation of the e’s
d ' 2 for zero autocorrelation of the e’s

However the hypothesis under test is about the properties of the unobservable u’s. For a
random u series the expected value of d is

E(d) = 2 +
2(k − 1)
n− k

(3.47)

where k is the number of coefficients in the regression. From (3.47) is clear, that any
computed d is associated with the matrix X and therefore particular d’s are not tabulated.
Durbin-Watson established upper (dU ) and lower (dL) frontiers for the critical values.
These frontiers depend only on the sample size n and the number of regressors k.
dU and dL are used to test the hypothesis of zero autocorrelation against the alternative

of positive first-order autocorrelation. The testing recipe is

(i) If d < dL, reject the hypothesis of nonautocorrelated u in favor of the hypothesis of
positive first-order autocorrelation.

(ii) If d > dU , do not reject the null hypothesis.
(iii) If dL < d < dU , the test is inconclusive.

If one wishes to test the null hypothesis against the alternative of negative first-order
autocorrelation, this test provides a 4 − d value. There are two important qualifications
to the use of the DW test. First, it is necessary to compute with a constant term. And
second, it is strictly valid for a nonstochastic X matrix. Thus, DW test is not useful for
the model where lagged dependent variables are employed as regressors [6].
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3.3 Problem of Vector Autocorrelation

Now we will discuss an extension of the model (3.25). This part is of my special interest,
because estimation with autocorrelated disturbances brings many practical complications
and I don’t know if there exist in each case a satisfactory solution.

Consider the multivariate regression model (3.25). A comprehensive expression is given
in simple matrix form

yt = Bxt + ut t = 2, . . . , n (3.48)

where yt is an m × 1 vector of dependent variables, B is an m × k matrix of unknown
parameters, xt is a k × 1 vector of exogenous variables ut is an m × 1 vector of random
disturbances. We assume that (u2, . . . , un) is a sample from a stationary vector stochastic
process which satisfies the stochastic difference equation

ut = Qut−1 + εt t = 2, . . . , n (3.49)

where εt ∼ iidN [0,Ω] and Q = (Qij) is an m × m matrix of unknown parameters. It
is noteworthy that the first observation is lost owing to the presence of lagged variables
ut−1. We assume here the adding up condition (because this still be the relevant case in
the application further below).

ı′yt = 1 t = 1, . . . , n (3.50)

where ı is an n× 1 vector of ones. From (3.48),(3.50)

⇒ ı′B = (1 0 ... 0)
and ı′ut = 0 t = 1, . . . , n (3.51)

Since ut−1 and εt are statistically independent then from (3.49) and (3.51) follows that

ı′Q = a′ (3.52)
and ı′εt = 0 t = 1, . . . , n,

where a is an arbitrary constant.
Hence in the context of an autoregressive model the adding up condition (3.50) implies

that each column of Q must sum to the same unknown constant a and that Ω = 0, which
means that Ω is singular. This restriction is a strong one, because in the case of diagonal
matrix it imposes all diagonal elements to be equal.

Since εt ∼ iidN(0,Ω) we consider the ML estimation of the model defined by speci-
fications (3.48),(3.49),(3.50). Since the covariance matrix Ω is singular εt cannot have a
density. We assume that Ω has only one zero root so that when one component of εt is
deleted the resulting vector has a nonsingular distribution. Let us denote by εmt the vector
εt with the last element deleted. The density of this vector can be written as

f(εmt ) = 2π−
1
2

(m−1)|Ωm|−
1
2 exp

{
−1

2
εm
′

t Ω−1
m εmt

}
where Ωm is the covariance matrix with the last row and column deleted.
εm2 , . . . , ε

m
n ∼ N [0,Ωm] Therefore the likelihood function is:

L = (2π)−
1
2

(n−1)(m−1)|Ωm|−(n−1)/2 exp

{
−1

2

n∑
t=2

εm
′

t Ω−1
m εmt

}
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Now consider ML estimation of a system of m − 1 equations. Deleting the last equation
from (3.48) and (3.49) gives:

ymt = Bmxt + umt t = 2, . . . , n (3.53)
umt = Qmu

m
t−1 + εmt t = 2, . . . , n (3.54)

Where ymt and umt are the vectors yt and ut with the last element deleted and Bm and
Qm are the parameter matrices B, Q with the last row deleted. Since Qm is not a square
matrix (it has order m− 1× m), the ML estimation procedure is not applicable to (3.53)
and (3.54). However, this difficulty can easily be remedied. Since ı′ut = 0, we can rewrite
the stochastic difference equation (3.49) as: u1t

...
umt

 =

 Q11 −Q1m · · · Q1,m−1 −Q1m
...

. . .
...

Qm1 −Qmm · · · Qm,m−1 −Qmm


 u1,t−1

...
um−1,t−1

+

 ε1t
...
εmt


or more compactly:

ut = Q̄umt−1 + εt t = 2, . . . , n (3.55)

where Q̄ij = Qij − Qim i = 1, . . . , n, j = 1, . . . , n − 1. From (3.52) and (3.55)
⇒ Q̄1j + Q̄2j + . . .+ Q̄mj = 0 and the computable system is then

ymt = Bmxt + umt t = 2, . . . , n
umt = Q̄mu

m
t−1 + εmt t = 2, . . . , n.

where Q̄m is the Q̄ with last row deleted can be estimated by ML procedure. Hence the
parameter matrices Bn,Q̄m and Ωm have a unique ML estimate and using these estimates
we can obtain ML estimates of the full parameter matrices B, Q̄ and Ω. Two issues arise
to discuss:

(i) Invariance: Is the ML estimate of the parameter matrices, B, Q̄ and Ω the same
regardless of which equation is deleted?

(ii) Identification: Can an ML estimate of Q be derived from that of Q̄?

Invariance: For the case Q and B unrestricted Barten?? has shown that the ML estimate
of B is invariant to the equation deleted. Barten’s result also holds for the case where
Q = 0 and B is restricted and more when B and Q are suitably restricted then the
estimation result is also invariant.
Identification: As was said before the matrix Q̄m always has a unique ML estimate.
Hence if there exist a unique nonsingular linear transformation of Q̄m into Q, then Q
has a unique ML estimate, too. To derive Q given knowledge of Q̄m we require prior
information. For example it is very often that certain elements of Q are assumed to be
zero. For a matrix 3× 3 it can be as Q11 0 Q13

0 Q22 Q23

Q31 0 0


We order the prior informations into linear restrictions associated with the elements of Q.

c = MQv (3.56)
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where c is J × 1 known vector, M is J ×m2 matrix and Qv is the m2 × 1 vector obtained
by stacking the columns of Q. Vector c represent the knowledge of prior information. In
addition to the prior restriction (3.56) the model recquires the restriction (3.52). This is
expressed by m− 1 linearly independent equations

0 = KQv (3.57)

where (0) is a m− 1× 1 column of zeroes, K is known (m− 1)×m2 matrix of rank m− 1.
Finaly, from (3.55) the elements of Q̄m generate m− 1 linearly independent equations.

Qvm = LQv (3.58)

where Q̄vm is the vector obtained by stacking the columns of Q̄m and L is known (m −
1)2 ×m2 matrix of rank (n − 1)2. Putting (3.56), (3.57) and (3.58) together we see that
the matrix Q is identified if and only if the system

d

 0
Q̄vm
M

 =

 K
L
M

Qv = DQv

can be uniquely solved for Qv. Thus the rank of D is m2. Since the matrix(
K
L

)

has full row rank, the rank of M must be at least m2− [(m− 1) + (m− 1)2] = m. Simply
said the number of linearly independent prior restriction J has to be greater or equal to
the number of equations in the full model -m. The matrix Q is said to be underdefined
when J < m, just identified when J = m and overidentified when J > m [2].



Chapter 4

Applications

This chapter provides an application of the theory surveyed. I have divided it into three
parts. In the first part I will solve the basic model, which means that all details will
be explained in this chapter. Then, on the basis of various tests I will outline possible
misspecification of the basic model. In the last part I will solve a corrected model, where
the assumption of autocorrelated disturbances will be added. The aim of each model of
producer behavior is the computation of elasticities and their discussion. Therefore, this
will be done for both models and their intercomparison as well.

4.1 Translog Cost Function for the Paper Industry

In this section we will employ a nonhomothetic translog cost function (2.18) for modeling
the data of the Austrian paper industry. The classic cost function expresses the relation-
ship between prices of all inputs and total input costs. Nonhomothetic cost functions allow
the influence of the level of output. Our model of the paper industry states the hypothesis
that energy costs can be determined envisaged just by the prices of energy inputs and the
aggregated level of output [5].

Let me start with a brief introduction about the data. The observations describe the
development of the Austrian paper industry over the years 1972-1996. For our purposes
we need the price developement of energy inputs mostly used in paper industry. They
are: coal, oil, gas and electricity. On the other side we need energy inputs levels entering
the production process. They reflect the answer of producers on changes in prices. Since
we are involving the nonhomothetic cost function we also need the quantity of paper
produced. To ilustrate the observations for one given year are
where Y indicates quantity of paper produced, measured in 1000t; Xc, Xo, Xg, Xe are

Y ear Y Xc Xo Xg Xe pc po pg pe
1990 2932 4079, 7 5203, 26 16765, 3 5039, 52 154, 0 144, 0 159, 0 240, 0

observations of the energy inputs, given in TJ (initials c, o, g, e indicate energy inputs
as follow: coal, oil, gas, electricity) and pc, po, pg, pe are prices for corresponding energy
inputs, given in Austrian Shillings/Mwh. Note that observations of quantities are in
aggregated form, i.e. the quantity of paper produced is amount of paper produced by all
Austrian producers of paper. Related to the energy input quantities, aggregated means
the sum of the particular energy input over all Austrian producers. Due to this issue we

33
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state the next hypothesis, that the cost function describes not only the behavior of the
particular producer, but could be generalized to the whole industry branch. Simply said,
the response of all producers on price development is more or less the same. The whole
data set is available in the appendix, where energy inputs prices are recalculated to the
Austrian Shillings/TJ as they are used in this thesis.

The nonhomothetic translog cost function of the paper industry corresponding with
(2.18) is written as

lnC(p, y) = γ0 + γy ln y +
4∑
i=1

γi ln pi +
1
2

4∑
i=1

4∑
j=1

γij ln pi ln pj +

+
4∑
i=1

γiy ln pi ln y +
1
2
γyy ln y ln y (4.1)

where symmetry restrictions are imposed (γij = γji), for all i, j = 1, . . . , 4. For simplicity
we state that numbers 1, 2, 3, 4 indicate the four energy inputs c, o, g, e, in the same order.
One could of course estimate the translog cost function (4.1) directly, but gains in efficiency
can be realized by estimating the optimal, cost-minimizing input demand equations [1].
Employing Shephard’s lemma (2.13), i.e. deriving the cost function (4.1) with respect to
ln p = (ln pc, ln po, ln pg, ln pe)′

∂ lnC
∂ ln pi

=
pi
C

∂C

∂pi
=
piXi

C
= Si i = 1, 2, 3, 4 = c, o, g, e

we derive the corresponding system of four input cost shares equations

Sc = γc + γcc ln pc + γco ln po + γcg ln pg + γce ln pe + γcy ln y
So = γo + γoc ln pc + γoo ln po + γog ln pg + γoe ln pe + γoy ln y
Sg = γg + γgc ln pc + γgo ln po + γgg ln pg + γge ln pe + γgy ln y
Se = γe + γec ln pc + γeo ln po + γeg ln pg + γee ln pe + γey ln y.

(4.2)

In language of econometric methods S’s are endogenous variables, i.e explainable by the
model and the logarithm of input prices and of output are exogenous variables. γ’s are
parameters to be estimated. Since the cost function is assumed to be well behaved, we
have to impose the restrictions (2.20). Rewriting for our example, homogeneity of degree
zero in prices and cost exhaustion restrictions (compare with section 2.4.2) are as

γc + γo + γg + γe = 1
γcc + γco + γcg + γce = 0
γoc + γoo + γog + γoe = 0
γgc + γgo + γgg + γge = 0
γec + γeo + γeg + γee = 0
γcy + γoy + γgy + γey = 0.

(4.3)

This model will be the main object of the following investigation. To provide an accom-
plished model means searching for the levels of parameters, optimal values of the statistical
inference measures and measures of fit. There does not exist any prescription for obtaing
such perfect model and you can never say that some model is the best one. Nonetheless,
the rest of my thesis is dealing with this, say basic model and afterwards with a respecified
model, or say, corrected model.
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4.1.1 Methods

In this section the methods for estimating the basic model will be described. To implement
the share equation system (4.2) empirically, it is necessary to specify a stochastic frame-
work. We add to each equation a random disturbance term, to express theoretical error
of regression. We indicate it by ui where (i = c, o, g, e) depending on equation. Here it is
assumed that the random disturbance vector u′ = (uc, uo, ug, ue) is multivariate normally
distributed with mean vector zero and constant covariance matrix Σ (3.28). Rationale for
stochastic specification could be that there exist some informations, which are known to
producers, but are unobservable for econometricians [1].

Since the sum of the cost shares is equal to one,
∑4
i=1 Si = 1, the system (4.2) is singular.

Thus one equation could be expressed as linear combination of remaining ones. With help
of the homogeneity restriction (4.3) and symmetry we can delete one arbitrary equation
from the system (4.2) without loss of any parameter of the deleted equation. For instance,
we consider to delete the electricity equation, thus parameters associated with electricity
equation could be calculated like

γe = 1− γc − γo − γg
γce = −γcc − γco − γcg
γoe = −γoc − γoo − γog
γge = −γgc − γgo − γgg
γey = −γcy − γoy − γgy
γee = γcc + γoo + γgg + 2(γco + γcg + γog),

and the model with one equation deleted is then

Sc = γc + γcc ln(pc/pe) + γco ln(po/pe) + γcg ln(pg/pe) + γcy ln y
So = γo + γoc ln(pc/pe) + γoo ln(po/pe) + γog ln(pg/pe) + γoy ln y
Sg = γg + γgc ln(pc/pe) + γgo ln(po/pe) + γgg ln(pg/pe) + γgy ln y

(4.4)

The stacked system (4.4) consists of the 15 parameters to be estimated but imposing
the 3 symmetry restrictions (γij = γji) we reduce the number of unknown parameters to
12.

The discussion about singularity of the system (4.2) we have to extend into stochastic
specification as well. For each observation the sum of the disturbances across equations
must always equal to zero. This implies that the disturbance covariance matrix Σ is
nondiagonal and singular [1]. To avoid this complication we will search for a methodology
where singular Σ could be replaced with Σi. Subscript i means that original covariance
matrix has ith row and ith column deleted. The indicator i is corresponding with deleted
equation in stacked system (in this case - e).

Finally, there remains the question of possible estimation methods, which cover the
above to the considerations. We will refer to the section 3.1.3, where seemingly unrelated
regression is explained. First, we have to decide about the technique and define the system
for software packages. One could apply the restrictions (symmetry and homogeneity ones)
directly to the model. Then there exist two approaches usually applied to such restricted
singular systems (4.2) and (4.3). They are in principle the same and under some specific
conditions they yield the same results, and both allow for the possibility of cross correlation
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among the disturbances in different equations of the stacked system. The first is known
as feasible GLS, which uses the seemingly unrelated regression technique. The identified
structural equations are first estimated by two-stage least squares (2SLS), what is a single
equation estimator, i.e each equation in system is estimated as single equation. The
resultant residuals are then used to estimate the disturbance covariance matrix, which
is then used to estimate all identified structural parameters jointly [6]. The second is
the maximum likelihood (ML) technique, see section 3.1.2, which is suitable for direct
constrained, singular system, such as the translog demand system. The ML estimator,
when a constrained system is being considered, is known as full information maximum
likelihood estimator (FIML). If the estimation process of 3SLS is iterated rather then
stopped at the third stage, the estimates converge on the FIML estimates of the structural
model. The first of these techniques is used by Limdep7.0 and Eviews as well. The second,
FIML technique is available only in Limdep. However, the results are more or less the
same, thus we will indicate it like ML/SURE.

The second possibility is, first to define our system nonrestricted, with restrictions added
afterwards. For system (4.4) it gives following specification

Sc = γc + γcc ln pc + γco ln po + γcg ln pg + γce ln pe + γcy ln y
So = γo + γoc ln pc + γoo ln po + γog ln pg + γoe ln pe + γoy ln y
Sg = γg + γgc ln pc + γgo ln po + γgg ln pg + γge ln pe + γgy ln y

(4.5)

where symmetry restriction imposed are γog = γgo, γoe = γeo, γge = γeg and homogeneity
of degree zero in input prices are

γce = −γcc − γco − γcg
γoe = −γoc − γoo − γog
γge = −γgc − γgo − γgg

The methodology used is restricted GLS, which utilizes the seemingly unrelated regression
too. We will indicate it RGLS/SURE. This procedure is computed using the restricted
least squares formula (see 3.31), after the unrestricted estimates are obtained. Therefore,
the RGLS estimator is a function of the unrestricted estimator, not an iterative estimator
in its own right. Thus we do not regard it as ML estimator even it is allowed to iterate to
convergence [8].

One interesting issue arises, whether the parameter estimates are invariant to the choice
of which equation is deleted. If such invariance were lacking, it would be a trouble fea-
ture, since it is imposible to estimate without deleting. Fortunately, if ML/SURE or
RGLS/SURE is implemented to the arbitrarily stacked system, all parameter estimates,
log-likehood values and standard errors will be invariant to the choice of which 3 equations
of the system (4.2) is being considered [1]. The proof of this statement is based first on the
linearity of imposed restrictions and second on the linear dependency of the whole system
(4.2). With respect to this I will present in the next section estimation results. Note, that
the stacked system could be obtained by deleting an arbitrary equation, just rearranging
depends on the equation deleted.

4.1.2 Results

This section offers an overview of the estimation results and discussion about them. Table
4.1 gives the estimated values of the parameters of model (4.4) estimated by iterative
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SURE in Eviews-software, but as was noted before, gives the same results as ML/SURE.
What I present is provided by Limdep 7.0-software.
Note, that the number of degrees of freedom is observations minus regressors (parameters

Coefficient Sdt.Error t-Statistic Prob.
γ̂c 0.129645 0.090399 1.434140 0.1565
γ̂o 1.732435 0.165644 10.45876 0.0000
γ̂g 0.187264 0.253560 0.138539 0.4629
γ̂e −1.049222 0.274023 −3.828957 0.0003
γ̂cc 0.115533 0.029479 3.919155 0.0002
γ̂co 0.010204 0.017169 0.594315 0.5544
γ̂cg −0.073470 0.014696 −4.999410 0.0000
γ̂ce −0.052232 0.019708 −2.650242 0.0102
γ̂oo 0.182044 0.036426 4.997685 0.0000
γ̂og −0.105669 0.028741 −3.676557 0.0005
γ̂oe −0.086588 0.017584 −4.924207 0.0000
γ̂gg 0.202601 0.036703 5.0519981 0.0000
γ̂ge −0.023497 0.033188 −0.707996 0.4816
γ̂ee 0.162270 0.039231 4.136263 0.0001
γ̂cy 0.004329 0.010239 0.422799 0.6739
γ̂oy −0.181200 0.022003 −8.235187 0.0000
γ̂gy 0.029515 0.033701 0.875790 0.3845
γ̂ey 0.147351 0.036599 4.026040 0.0002

Table 4.1: Estimated parameters with ML/SURE, 13 degrees of freedom

to be estimated). Let us discuss the results. The intercepts are positive, in the case of
electricity negative. This terms stay in the cost function attached the logarithms of prices.
Coefficients γii are all positive, it reflects that increasing in prices means increasing in the
respective cost share. The influence of an increase of production on energy cost shares are
shown by the γiy’s. Corresponding to this, the only cost share of oil inputs is decreasing
when output grows, at constant prices. The values of γij reflect the response of energy
input cost share i to a proportional changes in price of the jth input.

Visual inspection of the next table, table 4.2 we can compare ML/SURE with the
RGLS/SURE method. This estimation was provided by Limdep 7.0. The small difference
is given by different internal process, as was noted before. The degrees of freedom are now
observations minus number of parameters in particular equation, i.e. 6. Note, that the
changes are only in decimal places, not in the number sign.

The important statistics of the estimated parameter is the value of t-statistics (see 3.40)
and the corresponding probability. The large values of the test statistics will reject the
hypothesis that parameter is equal to zero. We can state the hypothesis for all parameters
to be simultan equal to zero. To this hypothesis underline the F-statistics (3.41) and was
rejected for both models, on the 5% significance level.

Table 4.3 reports about the quality of the fitted model. Expressions for R2, respectively
R̄2, see expression (3.11), resp.(3.12). The measure R̃2 is a generalized R2 measure and
indicates the proportion of the generalized variance in left-hand-side variables explained
by variation in the right-hand-side variables in the system of equations, and is computed
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Coefficient Sdt.Error t-Statistic Prob.
γ̂c 0.1596597132 0.082824752 1.928 0.0539
γ̂o 1.730680812 0.16355457 10.582 0.0000
γ̂g 0.1783862552 0.19501522 0.915 0.3603
γ̂e −1.068726781 0.21833495 −4.895 0.0000
γ̂cc 0.1371074717 0.025720977 5.331 0.0000
γ̂co 0.009691637783 0.015915150 0.609 0.5426
γ̂cg −0.08051970762 0.013382888 −6.017 0.0000
γ̂ce −0.06627940187 0.017298199 −3.832 0.0001
γ̂oo 0.1823785448 0.035475528 5.141 0.0000
γ̂og −0.1058429481 0.027286504 −3.879 0.0001
γ̂oe −0.08622723448 0.017054971 −5.056 0.0000
γ̂gg 0.2043803673 0.02933551 6.967 0.0000
γ̂ge −0.01801771162 0.025122724 −0.717 0.4733
γ̂ee 0.1705243480 0.03198216 5.332 0.0000
γ̂cy 0.003446080603 0.0094966465 0.363 0.7167
γ̂oy −0.1810461684 0.021715289 −8.337 0.0000
γ̂gy 0.02951683889 0.025858540 1.141 0.2537
γ̂ey 0.1480832489 0.029295766 5.055 0.0000

Table 4.2: Estimated parameters with restricted GLS/SURE, 19 degrees of freedom, for
every particular equation

as follows [1]:

R̃2 = 1− |E′E|
|(S − S̄)′(S − S̄)|

(4.6)

where E is the n × 3 matrix of residuals of the stacked system, S is the n × 3 matrix of
observations of corresponding energy cost shares and S̄ is the n×3 matrix, where columns
are corresponding sample means.

Restricted GLS/SURE Iterative SURE or ML/SURE
Sc So Sg Se Sc So Sg Se

R2 0.521305 0.943594 0.449028 0.621635 0.547901 0.943591 0.443095 0.628363
R̄2 0.39533 0.92875 0.30403 0.52206 0.457481 0.932309 0.331714 0.554036
R̃2 0.981954643 0.9822

Table 4.3: Measures of goodness of fit

The reason, why also R̃2 is reported, is because R2 of particular equations are not
appropriate for estimating a system. In single equation we try to minimize the e′e and thus
maximize the value R2, resp. R̄2. But system estimation does not necessarily minimize the
RSS. For example ML estimator minimizes the determinant of the residual cross-product
matrix |E′E|. Notice that since ML estimator minimizes |E′E|, then also maximizes R̃2,
(4.6) [1].

As I have said before, the main purpose of the econometric modelling is to provide some
model of producer behaviour and report about parameters and measures like substitution
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elasticities, technical changes and economics of scales in translog cost function.
The Hicks-Allen partial elasticities of substitution between inputs i and j for a general

dual cost function C having n inputs are computed as

σij =
C.Cij
Ci.Cj

(4.7)

where the i, j subscripts refer to first and second partial derivatives of the cost function C
with respect to inputs prices pi, pj [1]. It is possible to show that expression (4.7) is in fact
substitution elasticity (2.7) applied to the cost function. For our translog cost function
(4.1) these elasticities turn out to be

σij =
γij + SiSj
SiSj

, i, j = 1, . . . , n, but i 6= j

σii =
γii + S2

i − Si
S2
i

, i = 1, . . . , n (4.8)

If one wants to express price relationship ∂ lnXi/∂ ln pi, when output quantity and all
other input prices are fixed, i.e price elasticity could be done by calculating εij = Sjσij .
As in the substitution elasticity case, this concept for the translog cost function appears
as

εij =
γij + SiSj

Si
, i, j = 1, . . . , n, but i 6= j

εii =
γii + S2

i − Si
Si

, i = 1, . . . , n. (4.9)

Several important comments should be made concerning these elasticities. Parameter
estimates and fitted shares can replace the theoretical γ’s and real observations S’s when
computing estimates of the σij and εij . This implies that the estimated elasticities will
vary across obsevations and that estimated elasticities have thus stochastic distribution.
In praxis we can calculate some unique elasticity value, which is representative over time.
Therefore we substitute for the fitted Si the average value of this fitted column. The tables
4.4 and 4.5 offers the overview of the computed substitution, resp. price elasticities based
on the ML/SURE translog parameter estimates. On the basis of these outputs we can

σcc σco σcg σce σoo
10.031409 1.654772 −1.662019 −1.334088 0.204367

σog σoe σgg σge σee
−0.223291 −0.236287 −0.232355 0.810567 −0.539801

Table 4.4: Survey of the estimated substitution elasticities

say that pairs coal and oil, and gas and electricity are substitutable energy inputs (where
the values of σ are positive) and other pairs are complements (i.e. since the share of oil
increase, the share of electricity decrease). The value of γcc is inappropriatelly high. I could
be caused by the very low level of coal cost share in general. Concerning price elasticities,
let us discuss the value of εge. It seems that if the price of electricity increases then the
value of gas cost shares increase. Price elasticities give the response of the cost shares to
the changes in prices of energy comodities. Note, that even they are not symmetric the
signs stay the same. Thus we can say that the response of the ith, resp. jth inputs to the
price change of jth, resp. ith energy input is qualitatively the same.
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εij coal oil gas electricity
coal 0.707852 0.365458 −0.650061 −0.423081
oil 0.116767 0.045135 −0.087335 −0.074934
gas −0.117278 −0.049314 −0.090880 0.257056

electricity −0.094138 −0.052184 0.317035 −0.171188

Table 4.5: Survey of the estimated price elasticities

4.1.3 Estimating the Cost Function

The original cost function (4.1) is in general nonhomothetic cost form. This formula
implies that returns to scale, represented by γy and γyy are not constrained a priory. See
section 2.1, where concept of RTS is explained. As has been shown by Giora Hanoch [1],
returns to scale µ are computed as the inverse of the elasticity of costs with respect to
output.

µ =
1
εCy

εCy ≡
∂ lnC
∂ ln y

Involving this into our translog cost function context we write

εCy = γy + γcy ln pc + γoy ln po + γgy ln pg + γey ln pe + γyy ln y

By estimating the stacked system (4.4), rather than directly the translog cost function
(4.1) we loose γy and γyy, because they disappear by the derivation process. But previous
formula requires them. One possible way could be estimating the stacked system together
with the general cost specification, of course appropriately restricted. As in the case of the
stacked system (4.4), the ML estimator even as iterative SURE procedure are invariant to
the equation deleted, since the translog cost function is linear in paramenters as well as
the restrictions. Note that involving the symmetry, homogeneity of degree one and cost
exhaustion restrictions (4.3) the original cost function (4.1) has to be rearranged as

ln(C/pe) = γ0 + γc ln(pc/pe) + γo ln(po/pe) + γg ln(pg/pe) + γy ln y
+γco ln(pc/pe) ln(po/pe) + γcg ln(pc/pe) ln(pg/pe) + γog ln(po/pe) ln(pg/pe)

+
1
2
γcc[ln(pc/pe)]2 +

1
2
γoo[ln(po/pe)]2 +

1
2
γgg[ln(pg/pe)]2

+γcy ln(pc/pe) ln y + γoy ln(po/pe) ln y + γgy ln(pg/pe) ln y +
1
2
γyy(ln y)2.

in practise we deal with the stacked system, where the electricity equation is deleted. The
results of this system are very close to those which have been provided before with the
singular system. A reason could be that the system is relatively well estimated already
by the share system alone. Thus for saving the paper and energy, it is enough to write
down the three remaining paramters γ0 = 35.80502103, γy = −6.820591605 and γyy =
0.909030075. The γyy gives the response of the cost flexibility to the proportional changes
in the level of output. Since the number positive is the cost function is convex in the level
of output. The γ0 is the constant of integration. The computed values of the return to
scale and εCy are as follows

µ = 2.914539 and εCy = 0.343107.

There was not enough time to discuss this result with my supervisor, but in my opinion
and corresponding with the RTS concept by production function, the µ reflects the degree
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to which a proportional incerase in output increase costs. Since the value is positive, our
cost function refer to the increasing RTS.

4.2 Testing

In this section the possible misspecifications of the well behaved basic model, estimated
with the ML/SURE, will be investigated and tested. In modelling of producer behaviour
we meet two different concepts. The imaginations of economists about producer behaviour
are on one side, and the underlying theoretical statements of econometricians about fitting
the model on the other side. Thus the researchers, who are modelling microeconomic data,
are looking for possible explanation of non rational behaviour or to develop such analytical
tools which better describe the real behaviour.

4.2.1 Testing the Constraints

Microeconomic theory imposes that the well behaved cost function has to be homogenous
fo degree one in input prices and has to fulfil symmetry restrictions, (compare with the
section 2.4.2). This assumptions are converted in our energy-cost function case into well
known restrictions (4.3). The question which has to be answered in this section is whether
the restrictions describe the real situation among paper producers.

The rejection of the hypothesis of existing restrictions, means for econometricians that
we can proceed by rearranging the model and fitting it again, till we obtain the best
results as possible. But from microeconomic point of view it means that the producers
do not behave rational and rearranging is not a possible way because it is not any more
explainable by tools of microeconomic theory.

We will test the relevance of restrictions in the obvious way, with help of the section
(3.2.2), where basic tests for restrictions are described. The basic methodology is to
provide the estimation of unrestricted system and then test the restrictions in unrestricted
system. Testing the homogeneity restrictions and symmetry restrictions at the same time,
we will obtain Wald statistic (W) value and likelihood ratio (LR), both statistics are
naturally invariant with equation deleted. The values are:

W = 30.6624 LR = 22.763 > 12.582 = χ2
crit(6)

Both values have χ2(q) distribution, where q is the number of restrictions, in our case 6.
Three symmetry restrictions and three for homogeneity restrictions. The values give an
answer to our question. The restrictions in the model are rejected by the data. Contrary
to earlier studies, rationality does not seem to dominate in the paper industry.

4.2.2 Recursive Estimates

Recursive estimation is a comfort procedure utilizing proceeding time, since time gives
an unique ordering of the data [6]. The aim of this acces is to give a statements about
parameter constancy or its reverse across the time. Our model in time schedule may be
written

Sct = γc + γcc ln(pct/pet) + γco ln(pot/pet) + γcg ln(pgt/pet) + γcy ln yt + uct

Sot = γo + γoc ln(pct/pet) + γoo ln(pot/pet) + γog ln(pgt/pet) + γoy ln yt + uot

Sgt = γg + γgc ln(pct/pet) + γgo ln(pot/pet) + γgg ln(pgt/pet) + γgy ln yt + ugt,
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where t = 1, . . . , n. Subscript t indicate the tth observation of the variables. The idea
behind recursive estimates is very simple: Fit the model to the first r observations. Next
use the first r + 1 data points and compute all coefficients again and then again till the
endpoint of the sample. This process generate in our case row vectors of γ’s. First possible
estimation I have provided with observations till year 1986, thus in this case r = 14. The
standard errors of the various coefficients may be computed at each stage of the recursion,
exept the case when r = k, where k is number of regressors since the fit is in this case
perfect (RSS = 0). However most computer programs doing this estimation in some
time point t > k. Graphs showing the evolution of each coefficient plus and minus two
standards errors can be prepared. Visual inspection of this graphs could give the incentive
of possible inconstancy of parameters. As data are added, graph may sometimes display
some vertical movements. Such movements reflect the instability of parameters.

Since in our system appear 18 various parameters and more or less they reflect some
instabilities, but gain in such investigation can give also recursive shares values, where
recursive estimated parameters are gradually substituted. Graphs of recursive cost shares
are available in appendix. Visual inspection of them show that cost shares of coal and oil
are relative stable in proceeding time, and a narrow, nonchanging band of statistical error
assure that the parameters estimated there are stable too. Another consideration gives the
view of the last two energy inputs shares. In both cases we can see that around year 1993
the standard error band became wider. This can have several explanation. What is most
plausible is that the last four observations, were added to the previous data set ex post and
were taken from another source, than the previous 21 observations. Therefore the new
data probably do not fit to the microeconomic framework and create a distortion, which
is also reflected in relative small values of R2 of this equations. Nonetheless the cutting
out of the last four observations means less observations and less degrees of freedom in a
model as a whole.

4.2.3 One-Step Ahead Prediction Errors

The next approach works on the basis of recursive estimation. By using all data up to
and including period t− 1, the one step ahead prediction of yt, i.e endogenous variable, is
x′tβ̂t−1. The one step ahead prediction error is thus [6]

vt = yt − x′tβ̂t−1

The only difference in comparing with residuals is that the difference between observed
and estimated value is computed with parameters obtained in previous step of regression.
Since the vector is obtained in recursive way, it is also referred to as recursive residuals.

Again we have to implement it into our system frame. Since we have four equations,
we will obtain four vectors of one-step ahead prediction errors. In practical examples it is
obvious to plot this vector together with plus or minus twice with recursively estimated
standard errors. This estimated standard errors are obtained from first t−1 observations.
We will start this procedure in year 1987, thus starting vector β will be estimated with
1972-1986 sample. Residuals lying outside the standard error bands are suggestive of
parameter inconstancy [6]. Looking on our four plots (available in the appendix) is clear
that again the last two equations, i.e. gas and electricity, do not fulfil our expectations
and stress that the observations after 1993 are not in conformity with the rest of the
estimation, at least.

One question of interest arises, we deal here with the system, not with the particular
equation, thus we cannot neglect whatever happens in one equation without disturbing
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another ones. Therefore we have to consider about a measure which will generalize this
procedure to a system specification.

4.2.4 Chow Test for Constancy of Parameters

The following test belongs to the class of tests which search for statement about constancy
of parameters outside of the sample set, i.e if it is possible to generalize the validity of the
model. In this chapter we have had many possibilities to affirm the statement that our
basic model (4.2) and corresponding restrictions (4.3) are not appropriate in each case.

The Chow test for constancy of parameters is also referred as test for predictive
accuracy. This test is based on calculating of the vector of prediction errors d and can
be decomposed into several steps.

(i) Divide the sample set into two parts, where first n1 observations will provide the
estimation and last n2 observations will be after estimation utilized for testing. In
our case the ratio n1/n2 is 21/4. The reason is quite simple, as was noted before,
the last four observations were added later and we will monitor the constancy of
parameters in these ex post observations. I suppose you probably guess the result.
Subscripts 1,resp. 2 we will use corresponding with n1, or n2 sample set.

(ii) Estimate the OLS vector from the first n1 observations, obtaining

β̂1 = (X′1X1)−1X′1y1

is the primary estimation.
(iii) Use β̂1 to obtain a prediction of the y2 vector, namely,

ŷ2 = X2β̂1

(iv) Obtain the vector of prediction errors and analyze its sampling distribution under
the null hypothesis of parameter constancy. The vector of prediction errors is

d = y2 − ŷ2 = y2 −X2β̂
1

In search for the sampling distribution, we assume that E(uu′) = σ2I, holds for both data
sets. Thus E(d) = 0 and it may be shown, see [6] that the variance-covariance matrix for
d is

var(d) = σ2[In2 + X2(X′1X1)−1X′2]

Therefore, under the hypothesis of parameter constancy we use following test statistic

F =
d′[In2 + X2(X′1X1)−1X′2]−1d/n2

e′1e1/(n1 − k)
∼ F (n2, n1 − k)

Large values of this F statistic would reject the hypothesis that the same β vector applies
within and outside the the estimation data (compare with [6]).

Note, that this test is defined for single equation specification, thus we will compute
the upper F test for each equation. The estimated β̂1 will be obtained from ML/SURE
estimation of our system. The table 4.6 gives the values of Chow F -test in each share
equation. Since the values of test statictic are rather big in case of the gas and electricity
equation, we reject the hypothesis, that paramters in this equations are constant outside
the sample. As obvious we encounter the problem of system estimation. In system of
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Sc So Sg Se
F-test 0.465531 0.516173 8.419764 36.99304

Table 4.6: Values of the Chow F test

demand equations all elements have the unique irrecoverable place which is given by the
underlying microeconomic theory. Thus, we can not remove some elements without dis-
turbing other ones. Concerned with this test we can say that parameters estimated have
general validity for coal and oil equations, but for the remaining two not. It does not
mean, that we can throw out gas and electricity equation. Doing it we would loose our
starting hypothesis, that energy costs are explainable by all energy inputs and the level
of output. Simply said, the failure of constancy of the models, does not mean that the
model is notappropriate in general.

This methodology, and also some of the previous ones challenge the exploration of tests,
which are applicable to system specification.

4.3 Estimating with Vector Autocorrelation

The purpose of econometric modelling of producer behaviour is not to support the under-
lying theory by the real situation in production sphere, but to show with the analytical or
econometric tools the comparison with actual behaviour of real producers. In this section
we will solve the basic model (4.2) by adding the assumption of autocorrrelated distur-
bances. First, we will search for a possible method, which allows to compute the system of
factor demands with vector of autocorrelated disturbances. Second, we will introduce the
results and the last task will be providing a comparison with previous results. Since the
basic model has been changed, one important question arises, if respecifying better reflects
the real situation of paper producers. Hopefully, this part gives a reasonable answer.

4.3.1 Methods

We turn now our attention to empirical implementation of the autocorrelated disturbances
assumption (3.49) into basic model (4.2). First, note that we have reason to assume its
relevance. For testing the hypothesis of zero autocorrelation against the alternative of
positive first-order autocorrelation (see paragraph 3.2.3) we use lover dL and upper dU
bounds of the Durbin-Watson test statistic tabulated. The table 4.7 gives the values of dL
and dU for 25 numbers of observation and 4 regressors in the case of ML/SURE regression
and for 25 observations and 5 regressors what is the case of restricted GLS/SURE, where
the parameters are ex-post restricted. Note that the number of regressors is excluding
intercept. The number of regressors is after excluding the intercepts. Comparing the

observations dL dU
25, 4 regressors 1.038 1.767
25, 5 regressors 0.953 1.886

Table 4.7: Critical bounds of the Durbin-Watson test statistic

critical bounds of the DW test statistic for a particular share equation, 4.8,
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equation DW in ML/SURE DW in RGLS/SURE
Sc 1.932 1.9031
So 1.575 1.5754
Sg 0.422 0.4252
Se 0.298 0.2978

Table 4.8: Survey of the DW values for particular equations

we can say that at least in two cases (Sg and Se) the value of DW statistic is much
smaller than dL not rejecting the existence of positive autocorrelation in disturbance terms.
This statement might us affirm the residual graphs of So, Sg and Se, which are available in
appendix. Comparing the graphs of electricity and gas equation with oil equation we can
observe the difference. The rational for such behavior can be explained by small flexibility
of producers when there happen unexpected changes in prices or technologies. They are
not prepared to respond immediately, they need time to decide. DW of coal share equation
rejects the hypothesis about AR(1) and by oil equation the test is inconclusive, because
the value is between dL and dU .

Supported by this investigation we can say that the basic model does not cover the
whole problem because we neglect that disturbances follow an AR(1) process. We will
proceed in the same way like in paragraph (3.3). Suppose that our model

Sct = γc + γcc ln pct + γco ln pot + γcg ln pgt + γce ln pet + γcy ln pyt + uct

Sot = γo + γoc ln pct + γoo ln pot + γog ln pgt + γoe ln pet + γoy ln pyt + uot

Sgt = γc + γgc ln pct + γgo ln pot + γgg ln pgt + γge ln pet + γgy ln pyt + ugt

Set = γc + γec ln pct + γeo ln pot + γeg ln pgt + γee ln pet + γey ln pyt + uet,

(4.10)

has autocorrelated vector of disturbances ut

uct = Qccuct−1 + εct

uot = Qoouot−1 + εct

ugt = Qggugt−1 + εct

uet = Qeeuet−1 + εct

(4.11)

where t = 2, . . . , 25. Note that Q is assumed to be diagonal

Q =


Qcc 0 0 0
0 Qoo 0 0
0 0 Qgg 0
0 0 0 Qee


and cross correlation relationships do not occur as they do not have any practical expla-
nation. As was discussed before Qcc is zero too. The sum of the cost shares has to be
one, that is in fact adding up condition (3.50). This condition says that the system (4.10,
4.11) is singular and with constraints for parameters

γc + γo + γg + γe = 1
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γcc + γoc + γgc + γec = 0
γco + γoo + γgo + γeo = 0
γcg + γog + γgg + γeg = 0
γce + γoe + γge + γee = 0
γcy + γoy + γgy + γey = 0

and for ut
ı′ut = 0 ı′εt = 0 and ı′Q = k′,

where ut and εt are corresponding vectors of the system (4.11). The last condition is very
strong and for our assumption (4.11) it gives

Qcc = Qoo = Qgg = Qee = k,

where k is an unknown constant. This constraint is too restrictive because of various
values of DW in particular equations. Therefore it could create greater distortion than
neglecting the autocorrelated disturbances at all. But estimation of the model (4.10, 4.11)
where diagonal elements of Q are not equal, is not invariant to the equation deleted. So
we will have four different results, one for each deleted equation. We wonder whether such
result can improve our basic model.

We will attempt to estimate the autocorrelated model. In fact there are two possibilities.
First is to let the ML procedure run without deleting any equation. Since the diagonal
elements are assumed not to be equal, system is not singular any more. But problematic
issue is that computer packages do not recognize such small “nonsingularity” and there
does not exist any tool to force,to compute with near singular matrix.

One interesting idea, introduced by Cochrane-Orcutt as iterative estimation pro-
cedure could be employed to our estimation. First, let us reformulate our system to
clarify Cochrane-Orcutt procedure. We will take the stacked system where coal equation
is deleted, since in this equation the existence of autocorrelated disturbances could be
neglected. The system may be written in unrestricted form

So = γo + γoc ln pc + γoo ln po + γog ln pg + γoe ln pe + γoy ln y
Sg = γg + γgc ln pc + γgo ln po + γgg ln pg + γge ln pe + γgy ln y
Se = γe + γec ln pc + γeo ln po + γeg ln pg + γee ln pe + γcy ln y

(4.12)

where symmetry restriction imposed are γog = γgo, γoe = γeo, γge = γeg and homogeneity
of degree zero in input prices are

γoc = −γoo − γog − γoe
γgc = −γog − γgg − γge
γec = −γoe − γge − γee

This notation will help us to understand, how the iterative estimation procedure works.
Now, taking the arbitrary equation from the stacked system (4.12) with assumed autocor-
related disturbances we have

Sit = γi + γic ln pct + γio ln pot + γig ln pgt + γie ln pet + γiy ln yt + uit

and uit = Qiiuit−1 + εit
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The nature of this restriction may be seen by rewriting in following form

Sit = γi(1−Qii) + γic ln pct + . . .+ γie ln pet + γiy ln yt
−Qii(γic ln pct−1 + . . .+ γie ln pet−1 + γiy ln yt−1) +QiiSit−1 + εit

where t = 2, . . . , 25, in both expressions. However, this expression is nonlinear in param-
eters, therefore nonlinear least squares is required. But in order to stay in the same, say
dimension or compatibility with previous estimations, we will proceed not in this direction.
Rearranging the previous formulation as

(Sit −QiiSit−1) = γi(1−Qii) + γic(ln pct −Qii ln pct−1) + . . .+ γie(ln pet −Qii ln pet−1)
+γiy(ln yt −Qii ln yt−1) + εit (4.13)

or equivalently

(Sit − γi − γic ln pct − . . .− γie ln pet + γiy ln yt) =
Qii(Sit−1 − γic ln pct−1 − . . .− γie ln pet−1 − γiy ln yt−1) + εit (4.14)

where again t = 2, . . . , 25 and i could be arbitrary subscript of a (o, g, e) set. Cochran-
Orcutt procedure is based on a simple consideration. If Qii were known in equation (4.13),
the γ’s could be estimated by an OLS regression and conversely, if the γ’s were known
in equation (4.14), the Qii could be estimated by an OLS procedure. Therefore we need
just a start guess of Q̂1

ii and iterative procedure can start. The iterations continue until a
satisfactory degree of convergence is reached. Note that we will loose the first observation
due to a lagged expression. We will use this procedure, to estimate parameter system
(4.12) where the homogeneity and symmetry restrictions are imposed. Results, obtained
with help of Limdep 7.0 software are presented in the next section.

4.3.2 Results

Before I outline some smart tables with estimation results, I would like to discuss my ideas
concerning the autocorrelation in equation system of paper producers. The autocorrelation
coefficients have sense just in three equations (oil, gas, electricity). Thus, I decided to
estimate just this system, with the adding up assumption of autocorrelated disturbances.
The econometric tool was, as just explained, iterative (Cochran-Orcutt) procedure applied
to a system specification. After it, γ’s for deleted coal equation have been computed from
homogeneity restriction patterns (4.3). This could be done under the strict assumption,
that homogeneity is valid over the whole sample. The values of Wald and Likelihood
ratio tests (see section 4.2.1) are not encouraging though. However, the main reason
was, that in coal equation we can freely neglect the autocorrelation assumption, because
the equation does not require it. And the second reason, as was noted before, various
values of autocorrelated coefficients make the system not invariant to the equation deleted.
The restricted model (4.12) with the appropriate equations of autocorrelated disturbances
(4.11) we will refer to as corrected model.

After this introduction we can turn our attention to the discussion of the results. Note
that the iterative procedure could be stopped after first iteration of Cochrane-Orcutt
procedure. Naturally the results with converged procedure are even better, thus I will
state just them. Limdep-software use as the first guess of autocorrelated coefficient the
value

Q̂1
ii = 1− DWi

2



48 ECONOMETRIC MODELS OF PRODUCER BEHAVIOUR

where DWi is the Durbin-Watson statistic computed using the single equation OLS resid-
uals [8]. Table 4.9 offers the starting values of the autocorrelation coefficients.

So Sg Se
Q̂1
ii 0.2105 0.4317 0.6195

Table 4.9: Starting values of autocorrelation coefficients

Finally, we can view the estimated parameters. In the table 4.10 some statistical in-
formations are missing. They are associated with the parameters of the deleted equation
and thus they have no underlying statistical results.

I think the first question is eliminating the problem of autocorrelation. The table 4.11

Coefficient Sdt.Error t-Statistic Prob.
γ̂c 0.027298361
γ̂o 1.835653728 0.17696322 10.373 0.0000
γ̂g 0.195866252 0.25349267 0.773 0.4397
γ̂e −1.058818341 0.31208749 −3.393 0.0007
γ̂cc 0.11430377
γ̂co 0.006303849 0.021640664 0.291 0.7708
γ̂cg −0.072555607 0.018123459 −4.003 0.0001
γ̂ce −0.048052012 0.031278163 −1.536 0.1245
γ̂oo 0.16917057 0.034989005 4.835 0.0000
γ̂og −0.094996688 0.027251599 −3.486 0.0005
γ̂oe −0.080477731 0.016844121 −4.778 0.0000
γ̂gg 0.217922624 0.035588989 6.123 0.0000
γ̂ge −0.050370329 0.029450453 −1.710 0.0872
γ̂ee 0.178900071 0.047090075 3.799 0.0001
γ̂cy 0.018365257
γ̂oy −0.195577821 0.022915802 −8.535 0.0000
γ̂gy 0.034781759 0.033549551 1.037 0.2999
γ̂ey 0.142430805 0.041415883 3.439 0.0006

Table 4.10: Estimation results of corrected model

provide a survey of DW test statistic, R2 and R̄2 in the corrected model. The values of

So Sg Se
DW 1.9134 0.7969 0.6457
R2 0.944272 0.671346 0.851033
R̄2 0.92961 0.58486 0.81183

Table 4.11: Survey of the DW, R2, R̄2 measures in corrected model

DW reflect that AR(1) process of the residual has improved the oil equation, but the re-
maining two equations in spite of the small improvement (compare with the table 4.8) are
still suspicious with respect to autocorrelated disturbances. The goodness of fit measures
may be compared with the basic model values given in the table 4.3 in columns restricted
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GLS/SURE. From the first view we see that the corrected model has a better fit. As
conclusion we can say that for oil, gas and electricity equations the corrected model reflect
more the behaviour of producers than the basic model. Additionally the gas equation is
appropriately explained with autocorrelated disturbances.

One could object against such ”nonscience” approach, which has been introduced. I
can not say that it is really the best and most correct solution of the described problem.
However, let us look who, in fact, is interested in substitution and price elasticities and
measures of scale? In my opinion, mostly economists. They would like to know the
producers response on changing prices or changing technologies. For them the best possible
result is more worthy than any perfect theoretical result.

4.3.3 Comparing with the Basic Model

This section has the aim to compare the basic and the corrected model from the point of
view of elasticities. The elasticity measure gives us two kind of informations, first to make
some statement about relationships between components in the cost function, second, to
tell us the power of influence. The first is represented by the plus, or minus sign and the
second by the value of the measure. Corresponding to this we will make a comparison
with basic model. Table 4.12 shows that for the substitution elasticities values, there
does not appear any change in the signs, unless in decimal places. This holds for the
price elasticities as well. The only change in sign is happen. σoo and afterwards εoo

Basic model Corrected model
σcc 10.031409 5.914313
σco 1.654772 1.345061
σcg −1.662019 −1.216653
σce −1.334088 −1.007855
σoo 0.204367 −0.091829
σog −0.223291 −0.057539
σoe −0.236287 −0.225343
σgg −0.232355 −0.138630
σge 0.810567 0.571951
σee −0.539801 −0.329901

Table 4.12: Comparing table of the estimated substitution elasticities

Basic model Corrected model Basic model Corrected model
εcc 0.707852 0.482547 εgc −0.117278 −0.099266
εco 0.365458 0.301173 εgo −0.049314 −0.012884
εcg −0.650061 −0.488095 εgg −0.090880 −0.055615
εce −0.423081 −0.295625 εge 0.257056 0.167765
εoc 0.116767 0.109743 εec −0.094138 −0.082231
εoo 0.045135 −0.020562 εeo −0.052184 −0.050457
εog −0.087335 −0.023084 εeg 0.317035 0.229454
εoe −0.074934 −0.066098 εee −0.171188 −0.096767

Table 4.13: Comparing table of the estimated price elasticities
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became negative in the corrected model. The reason is that probably with assumption of
autocorrelated disturbances, the oil cost share response conversely when the oil share and
oil price proportional increase. Since the oil equation was the only, where autocorrelated
disturbances have had success, this change might be concerned with this issue.

Here I stop with my investigation of paper producer behaviour. The corrected model
does not substantially improve the problematic results in gas and electricity equation.
For correcting the model we would need either more knowledge about the market with
energy input commodities, or to investigate alternative models. Probably the missing
information on better data could help us to explain the non-smart behaviour of recursive
residual curve, mainly in the last years. I believe there could exist other possible and more
involved model variants but that I want to leave for others to do.



Chapter 5

Summary

This chapter concludes my thesis. Since econometric modelling is a methodolody where
one can never stop improving, some remarks about the possible ways to proceed will be
in order. Finally, I will present my personal view on the topic I have investigated.

5.1 Challenges for Future Research

Among the useful econometric tools to improve the model specification one might consider
lagged variables in the model. Lagged means in terms of time point t one of the previous
observations, i.e. t− 1, t− 2, . . ., of some variable. The rationale for such behaviour could
be, for example, that the previous prices influence also current decisions of producers or
consumer.

Let us implement this concept into the basic model (4.2). We will consider only a simple
case, where besides original regressors also the t− 1 values of the endogenous input shares
are included. The renewed model is then

Sc = γc + γcc ln pc + γco ln po + γcg ln pg + γce ln pe + γcy ln y + ρccSc−1

So = γo + γoc ln pc + γoo ln po + γog ln pg + γoe ln pe + γoy ln y + ρooSo−1

Sg = γg + γgc ln pc + γgo ln po + γgg ln pg + γge ln pe + γgy ln y + ρggSg−1

Se = γe + γec ln pc + γeo ln po + γeg ln pg + γee ln pe + γey ln y + ρeeSe−1.

(5.1)

The sign −1 means t−1th observation of Si. We loose one observation with the imposition
of the t− 1 term and thus have t = 2, 3, . . . , 25. Since the sum of input shares is equal to
one, the upper expression states that ρ’s have to be zero too. To overcome this, we can
implement also cross-equation lagged variables. Thus rewriting (5.1) we have

Sc = . . .+ ρccSc−1 + ρcoSo−1 + ρcgSg−1 + ρceSe−1

So = . . .+ ρocSc−1 + ρooSo−1 + ρogSg−1 + ρoeSe−1

Sg = . . .+ ρgcSc−1 + ρgoSo−1 + ρggSg−1 + ρgeSe−1

Se = . . .+ ρecSc−1 + ρeoSo−1 + ρegSg−1 + ρeeSe−1,

(5.2)

where dots indicate the original regressors from basic model (4.2). Taking into the con-
sideration that the sum of input cost shares is one, following restrictions to the ρ’s have
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to hold

ρcc + ρoc + ρgc + ρec = 0
ρco + ρoo + ρgo + ρeo = 0
ρcg + ρog + ρgg + ρeg = 0
ρce + ρoe + ρge + ρee = 0.

Proceeding with deleting an arbitrary (for instance electricity) equation from the singular
system (5.3) we obtain

Sc = . . .+ (ρcc − ρce)Sc−1 + (ρco − ρce)So−1 + (ρcg − ρce)Sg−1 + ρce

So = . . .+ (ρoc − ρoe)Sc−1 + (ρoo − ρoe)So−1 + (ρcg − ρce)Sg−1 + ρoe

Sg = . . .+ (ρgc − ρge)Sc−1 + (ρgo − ρge)So−1 + (ρgg − ρge)Sg−1 + ρge

(5.3)

where again dots indicate the part of the model (4.4).The next problem of this system
arises from the unsuitable large number of unknown parameters. Summing the original
number of 12 from (4.4) plus 12 new parameters of the lagged variables we have 24 unknown
parameters to estimate. Comparing it with the 25 observations, we have encountered the
frontier of econometric investigation.

Inspite of this, there are still things which are worthy to consider. We have added to
the basic system (4.2) lagged variables as regressors. Note, that the basic system is in fact
a product of the derivation from translog cost function (4.1). The next task is therefore
to investigate the reverse process to derive such a cost function, which after employing
Shephard’s lemma would yield system (5.2).

Here we are encountering to the limitations of the microeconomic analysis. This prob-
lems has several possible directions. Either the cost function has to be respecified into
the dynamic framework and then by integrating the system (5.2) it has to be appropriate
involved. Or, to assume that Si−1 is simply independent from the ln pi and to hold it as
constant by integration process.

5.2 Concluding Remarks

Arriving at the end of my thesis I briefly want to summarize. My aim at the start was to
provide, test and improve an empirical model of producer behaviour. In three core chapters
(Microeconomic analysis, Econometric methods and Applications) I have introduced you
to the issue of econometric modelling in the field of microeconomic theory and have shown
how it can be applied to data of the Austrian paper industry. The following story might
help you to find out how succesfull I was from my point of view.

When I was a small child as well as during my teen-ager time I wanted to help people.
On some occasions, my parents have reminded me that I was a social subject. After this
time, getting older I have lost some of my enthusiasm, however I wanted to be useful
at least. Later when my university studies began I have recognized that to be useful is
much harder than to be wise, so I wanted to know as much as possible. And in this state
the question of finding a topic of my master thesis has come up. I did not know, what
was a good topic or a bad one, but more or less by accident I have met my supervisor
and afterwards settled on my topic. And here again I encountered a similar story. In
the beginnig (i.e. aproximately one year ago) I wanted to invent something quite new
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and possibly monumental. It was the time when I had to introduce myself into my topic.
Since then I have recognized that to find out some new idea is not so simple. I have
turned my attention to modelling the data, with the hope that I will manage to provide
an accomplished model at least. It has taken some time, but again I have experienced
that to find out a perfect model is not really a simple task and, in fact, you cannot say
that in any point of your investigation that you have provided a really good model. Thus
my last strategy was to provide at least some reasonable model which can be established
and examined according to available approaches and which helps nevertheless to learn as
much as possible about the relation between mathematical economics and the reality. I
think that this last aim was fulfilled and that makes my thesis successful.

Now I will outline some comments associated with the problems which I had to confront
during the process of working on my thesis. The problems could be divided into two areas.

The first category consists of problems with data. For econometric modelling we need
the biggest sample which is available. To satisfy this condition in the microeconomic field
is not so easy. In most cases you have data available for the last decade, especially in the
case of post-comunistic countries. Ten observations could not explain such a broad system
as the theory of the cost function offers. This problem could be avoided by using more
producers or countries, say units, over the same time period. This builds up a panel data
set. Such set consists of many small sets where the same behaviour (in sense of parameters)
is assumed. I belive that panel data models are the future for modeling producer behaviour.
The next problem is concerned with the information about the concrete data set. If we do
not see irrational movements behind actual observation, we equally cannot explain some
irrational response as may be reflected in estimated parameters, derived elasticities, the
resulting disturbances and anything else which is connected with the estimation output.

The second area of problems could be specified as the conflict of interest between mi-
croeconomic theory and econometric methods. The microeconomic visions are cast into
functions, systems and restrictions, which cannot be neglected. Estimation results, from
the econometric point of view, are strictly categorized. Either the parameters, test or
restriction are significant - and then they are recommended to enter the model - or not,
and then they have to be excluded from the model. The recipe used to solve this conflict
is the give-and-take methodology. Since the microeconomic theory is a normative theory,
neglecting some of their restrictions or assumptions generates a new theoretical aspect or
component, we usually have to explain the failure of the econometric result to comply
with theory in all aspects by apologising for the inadequacy of data on the one hand, or
by the inadequacy of the theory to explain the real world on the other.

Finally, I would like to state my personal attitude to the presented topic. I think that
econometric modelling is a challenging and quick developing methodology. The reason is
that it finds possible applications in various branches of the modern world. Everywhere
around we can observe the relationships between issues concerning our life. The econo-
metric models can give an answer about the approximative extent of the real dependency,
can reject or not-reject our hypothesis, can measure the strength of relations and helps to
gain probably much more insight into the issues.

I am very pleased that I could be introduced to this topic. I have to say, that my gain
was much bigger. As a by product of preparing my thesis I have come to know a new
counry and the people there. More or less I can speak their language. In this way, I would
like to thank to all people, who enabled me to spend one semester in Austria. I have
learned to work with two appropriate econometric software packages and there is surely
much more to mention, but here is not the adequate place to write it down.
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Returning to the considerations at the beginning, now I think that first of all, you have
to know as much as possible, then you have a higher probability to be useful and further,
if you are useful and appropriately wise you have not such a small chance that you might
really be able to help people. But this speculations require the strict assumption to be
convinced that the wish to help people is your starting incentive to become wise and useful.



Chapter 6

Resume

Ekonometrické metódy zohravajú dôležitú úlohu pri modelovańı skutočnosti. Ich úlohou
je vyjadrǐt pomocou známych premenných kvalitat́ıvne a kvantitat́ıvne vzťahy medzi nimi.
Svoje uplatnenie ekonometria našla aj v mikroekonómii. Mikroekonómia skúma a popisuje
racionálnu podstatu správania sa ekonomických subjektov ako sú napŕıklad výrobcovia
alebo spotrebitelia. Proces výroby je poṕısaný produkčnou funkciou, ktorá odzrkaďluje
vzájomný vzťah medzi vstupmi výrobného procesu a jeho výstupmi. Racionalita výrobcu
je založená na maximalizácii zisku vzȟladom k produkčnej funkcii. Dá sa však poṕısať
aj ako snaha o minimálne náklady na výrobu. Tento proces popisuje nákladová funk-
cia. Keďže tieto vzťahy sú ekvivalentné, čo sa týka racionality výrobcu, môžme použit
ľubovolný postup a dosiahneme tie isté výsledky. Tento záver však dokazuje istý vzťah dua-
lity medzi nákladovou a produkčnou funkciou. Pre ekonómov to znamená, že stač́ı vedieť
jednu z týchto dvoch funkcíı a tá už nesie informáciu aj o druhej.

V ekonometrii sa tento poznatok vělmi využ́ıva. Je ověla výhodneǰsie využit nákladovú
funkciu, pri ktorej dopytové a ponukové funkcie sa dajú vyjadrǐt explicitne derivovańım
nákladovej funkcie poďla vektoru cien. V pŕıpade maximalizácie zisku vzȟladom k pro-
dukčnej funkcii, by takýto systém bol iba implicitne závislý od cien, čo je pre ekonome-
trické modelovanie nevýhodné.

Ekonometrický model správania sa výrobcu, ktorý je poṕısaný a aplikovaný v tejto
práci, má formu systému dopytových rovńıc, resp. systém rovńıc nákladových podie-
lov (cost shares), odvodených z nákladovej funkcie. Oṕısaný model je trochu špecifický.
Zakladá sa na predpoklade, že energetické náklady na výrobu sú závislé iba od cien ener-
getických komod́ıt a vělkosti výroby. Dáta obsahujú informácie o množstvách štyroch
energetických vstupov, ktoré vstupujú do výrobného procesu, vývoj ich cien a vělkost
výroby papierenského priemyslu ako takého, počas rokov 1972 - 1996. Ďaľśım špecifikom
modelu je, že budeme modelovať systém dopytových funkcíı pre celé priemyselné odvetvie
a nie pre konkrétneho výrobcu. Predpokladáme teda, že správanie výrobcu papiera sa
dá zovšeobecnǐt. Štyri energetické vstupy, ktoré budeme uvažovat sú: uhlie, ropa, plyn
a elektrina. Pod vělkosťou výroby rozumieme celkové množstvo vyrobeného papiera bez
oȟladu na jeho typ.

Ekonometrickým nástrojom na modelovanie súvisiacich systémov je seemingly unrela-
ted regression, resp. Zellnerov odhad. Je to vlastne zovšeobecnená metóda najmenš́ıch
štvorcov, kde predpokládame, že vektory rezidúı jednotlivých rovńıc môžu byť závislé od
rezidúı ďaľśıch rovńıc v systéme. Takéto uvažovanie je opodstatnené, pretože dopytové
rovnice navzájom súvisia. Sú odvodené z rovnakej nákladovej funkcie a majú rovnaké
endogénne premenné. Najdôležiteš́ım argumentom je skutočnosť, že nákladová funkcia
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muśı byť homogénna prvého stupňa a jej prvá derivácia poďla vektora cien muśı byť
homogénna stupňa nula. Dopytové funkcie sú ešte navyše uvalené touto reštrikciou.

Ako som už spomı́nala nákladová funkcia, teda aj produkčná spolu súvisia a môžu na-
dobúdať rozličnú funkcionálnu formu. V predkladanej práci sú dáta modelované pomocou
Translogovanej nákladovej funkcie, ktorá je považovaná za najflexibilneǰsiu funkcionálnu
formu. Avšak pre niektoré jej paramtre plat́ı , že musia byť symetrické. Pre odvodený
systém dopytových funkcíı pravidlá symetrie tiež platiǎ. Sú však umiestnené medzi rovni-
cami systému (cross restrictions), čo tiež podporuje myšlienku odhadu systému ako celku.

Predkladaná práca je rozčlenená na úvodnú kapitolu, 3 jadrové kapitoly a záverečnú
kapitolu. Druhá a tretia kapitola obsahujú niektoré teoretické poznatky z mikroekonómie
a ekonometrických metód. V kapitole o mikroekonomickej analýze som sa zamerala
hlavne na poznatky o produkčnej a nákladovej funkcii, dualitnom vzťahu medzi nimi
a na záver je odvodená translogovaná nákladová funkcia, lebo je hlavným predmetom
tejto práce. Kapitola o ekonometrických metódach poskytuje základné informácie o od-
hadoch, testoch a iných javoch bohato využ́ıvaných vo štvrtej kapitole, kde je aplikácia
tohoto pŕistupu ukázaná na konkrétnych dátach. Dáta sú modelované dvoma rozličnými
spôsobmi. Prvý spôsob predpokladá ideálne správanie sa výrobcu, t.j. že model presne
odzrkaďluje výrobcov papiera. V druhom navyše predpokládame, že vektor chýb opisuje
AR(1) proces. Na záver je porovnanie týchto dvoch modelov. Odhady týchto modelov
boli urobené pomocou dvoch ekonometrických softvérov: Eviews a Limdep 7.0. Záverečná
kapitola uzatvára celú prácu a naznačuje ďaľsie možné smery v modelovańı správania
výrobcu.
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Appendix A

1. Complete Data Set

2. Residual Graphs

3. Recursive Estimates of the Share Equations

4. Recursive Residuals of the Share Equations
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