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1 Introduction

Transportation modelling is now a widely spread discipline in urban
planning. Its long history has its roots in social sciences and goes back into the
second half of the nineteenth century. It was primary used to explain the
phenomena of city growth, migration and other social problems concerning

urban development.

The first models were based on gravitational interaction, derived from its
similarity to the famous Newton's gravity law. A great "boom" of gravity models
was in the sixties years of the twentieth century. Many models were created to
explain traffic flows, urban systems, trade flows and other areas [18].

The development of urban models continued. Many spatial models have
been developed. We now divide these models into many categories. Two main
categories are spatial interaction models (represented by gravity model) and
spatial choice model (represented by logit models).

As the popularity of spatial models has grown, various areas of use have
been found for these models. The models are implemented not only in urban
planning (road planning, migration, commuting flows, etc.), but also in
international trade, marketing, production analysis and other socio-economic

disciplines.

This thesis deals with different models that are used in transportation
analysis. The aim of the thesis is to provide an overview over different types of
commuting models and then to apply selected models on real commuting flow

data.

Two types of models (gravity model and maximum entropy model) are used
for estimation of commuting flows among selected regions in Slovakia. The
models are estimated with different estimation techniques and then the results

are compared.

The thesis is divided into 9 chapters. Introduction is followed by overview of

models that have been invented for transportation analysis. Then the thesis



proceeds with chapter about gravity model. The gravity model is described in
detail and its variations and estimation techniques are introduced. Chapter 4
provides information on maximum entropy models and ways of their
estimations. In the chapter 5, we discuss different issues concerning data: its
source, problems in implementation and others. Chapter 6 is devoted to
application of selected models and estimation results. These results are then
compared in the following section. Bibliography overview is presented in the

part 8 and symbols used in the thesis are explained in the next part.

Source data sets and estimated data is enclosed in Annex A and B. All data
sets are enclosed in Excel data files and selected sets are printed at the end of
thesis in Annex. In Annex C and D source codes of programs used in the thesis

are enclosed.



2 Commuting Models - Overview

The aim of chapter two is to introduce basic concepts in commuting flow

estimation theory.

Commuting flow models can be divided into two groups of models: spatial
interaction models and spatial choice models.

First spatial interaction models were founded in the middle of 19™ century
and until now they remain widely used. Mostly used models are gravity model

and maximum entropy model. These models need macro-data for estimation.

Spatial choice models have gained on popularity within last years. Models
are based on the concept of utility maximisation in decision making process of
each individual. The most important models are random utility models and logit
models. Spatial choice models are formulated using microeconomic data (e.g.

data on individual preferences).

2.1 Spatial Interaction Models

Spatial interaction models estimate flows according to spatial characteristics
of commuting as for example distance between commuting cities and relative
attraction of origin and destination city. Estimation of these models is made on
the base of aggregate data (e.g. population of commuting regions’). We discuss

in this chapter, two models: gravity model and maximum entropy model.

2.1.1 Gravity Model

The gravity model was introduced as the first model for commuting flows. It
is a baseline for other commuting models. By now many other concepts have
been developed, but gravity model remains very important for commuting flow

theory and practice.

' In the thesis, the notions region, city, county and area are used as synonyms for origin /

destination commuting areas



Concept of gravity model is based on physical Newton's law. Newton's law
computes the gravity attraction between two objects. The force of attraction is
proportional to the product of the masses of the two objects and inversely
proportional to the square of their distance

m,m
F=k—1=. 21
) (2.1)

In the context of commuting flows we can interpret the force F as the
number of commuters commuting between two cities, m represents the mass of
attraction of the city (e.g. population), distance d between two objects as the
distance between the cities and constant k is a scaling constant. The measure
of exact square of distance is very limiting and therefore not appropriate for
reality. We introduce constant y as a frictional effect of distance. We get so-
called basic gravity model [12]

wW.W,

T =K——L, (2.2)

where volume of flows between each pair of cities | and J (Tj) is proportional
to the product of population of the two cities W;.W; and inversely proportional to

distance between the two cities dj,

There are many variations of the basic gravity model. The variations are
discussed in the chapter 3. These models take into consideration regional
specifics, inflow and outflow constraints, different distance functions and other

specific characteristics.

2.1.2 Maximum Entropy Model

Maximum entropy is used as a way of predicting traffic flows on the base of

commuting flow matrix?.

2 Also called O-D Matrix, Origin-destination matrix, or trip matrix



Because in practical estimation of commuting systems we often do not have
enough information for description of the O-D matrix, we try to estimate it with
help of probability theory. The number of trips from origin | to destination J is
estimated as the most probable state of the commuting system given by
observed total number of trips from origin J, on the total number of commuters
commuting to the destination J and total amount of cost that commuters

expense.

The probability of the system is represented by system's entropy (2.3)

n n

W=H(N)=-)>T,InT,. (2.3)

i=1 j=I
We maximise entropy function with unknown flows T; using additional
constraints: marginal origin and destination flows and total commuting costs.

And so we get estimated origin - destination commuting flow matrix.

The presented model represents classical form of maximum entropy
concept. Other variations can be introduced. These variations are further

explained in the chapter 4.

2.2 Spatial Choice Models

This section deals with concepts of spatial choice models. The spatial
choice models try to explain commuting flows on individual decision level. They
associate commuting with behavioural theory of decision making. Basic
concepts in this theory are utility function and probability of choice of commuting
to a given. Models are used for microeconomic data, which include factors
influencing decision making process of each individual (e.g. income level,
commuting distance, travel time, characteristics of individual (age, education,
gender). There are two types of models non-hierarchical and hierarchical
model. The latter describes decision-making process as staged process.

These models are difficult to implement because the utility function is not
easy to calculate. Utility function can be computed using different variables as

measures of utility: travel time, travel cost related to distance to work, wage and

10



non-monetary factors [4]. With development of computation techniques and
data surveys, these disadvantages can be overcome and modelling with spatial

choice models is more effective.

2.2.1 Random Utility Model

Random utility model is a baseline for spatial choice models. It is built on the
following assumption [12]. It tries to characterise decision choice of each

commuter:

1. each commuter is faced with discrete set of choice alternatives - choice is

made or not made (i.e. to travel to the city J or not to travel);

2. individual will decide for the option from all available options, which
maximises his/her utility (e.g. to which city to commute);

3. choices are made in probabilistic fashion - each individual has a likelihood of
making each decision (probability of each individual to choose a given city to

commute);
4. utility of decision has 2 components - strict utility and stochastic utility.

Random utility model formula is based on utility maximisation® (U;), where

utility function (2.4b) is composed of deterministic part Vj and stochastic term E;;
Py=PtlV, +E, >V, +E,Vk#j,j=1,..,n, (2.4a)
Uy =V, +E;. (2.4D)

Vjj represent strict utility components, which are represented by relevant

observed variables and Ej are stochastic components of the utility function.

3 Utility maximisation: an individual chooses that option which brings him/her maximum

utility from all possibilities: U 4> U;; for each j different from k, and for each i.

11



2.2.2 Non-hierarchical Logit Models (Multinomial Logit Model)

Logit models are derived from random utility model. Logit model uses
decision choice as a function of utility of choosing one alternative over another.

Logit model assumes that E; term in (2.4a) follows Weibull distribution.
Using this assumption we get McFadden's logit model [12]:

P, = exp[V, (X, S,)] , (2.5)

2 explV, (X, 5)]
Jj=1

where X represents set of choice specific attributes (e.g. time, cost,

distance) and S; individual-specific attributes (income, car ownership).

McFadden's model computes probability of choosing an alternative k over
other alternatives as a function of all alternatives and commuter's individual

preferences.

Andersen [1] estimates function Vj as linear function of selected

characteristics of choice, e.g. travelling cost, wage difference, tax, etc.
1 11 4
Vij = Zﬂkaj/i +Zﬂkaj - (2-6)
k=1 k=1

2.2.3 Hierarchical Models - Nested Logit Models

Nested logit model is a hierarchical logit model, where each commuter
chooses his/her travelling destination upon a hierarchy of choices. Probability of

each decision is than a conditional probability.

4 Constants can be added to extent the model, see Berglund, Lundqvist: Barrier in Travel

models

12



Travel choice stages are [12]:

1. whether or not to make a trip (commuter commutes or not);
2. where to go (into which city to commute);

3. by what mode (which vehicle to use for transportation).

The estimation process begins with the last step in hierarchy follows to the
start in order to ensure that the strict utilities are preserved throughout the

process

exp(V, )Y exp(V, )"
P i (2.8)

Y exp(r )Y exp(V, )"

kes

where Pjs is probability that decision maker will select a particular spatial
cluster s to focus its decision in, o represents the extent to which decision

makers process their information hierarchically and ranges from 0 to 1,

Zexp(V,.k) represents attractiveness of a cluster as a function of individual

kes

alternatives available within a cluster [12].

Likelihood of selecting particular alternative k within selected cluster s is:

P = 200u) 2.9)
2 exp(Vy)
kes
and probability of deciding for k from all alternatives:
Pik = PisPikes - (210)

13



3 Gravity Models and Their Estimation

Basics of gravity models were introduced in the chapter 2. In this chapter we
present modifications of original gravity model concept, its extensions and ways

of estimation.

3.1 Classical Model - Constrained and Unconstrained

In general commuting flow between origin | and destination J can be
represented as function of origin and destination characteristics and distance

between them (3.1)
Ty =F(fi.f-¢:,) (3.1)

where T; represents commuting flow from origin | to destination, f;, f;
represent attraction functions of origin / destination and c; is distance
deterrence between them. It is expected that the number of commuters

depends proportionally on f;, f; and adverse proportionally on c;.

The most widely spread approach to this basic concept is Gravity function
(3.2) annalogical to (2.2). In this function, number of commuters depends on
mass of origin and destination regions (Wi, W;), function of region distance

(F(cj)) and a constant term (k)
wWw.

T, =k—2~ . 3.2
y F(CU-) ( )

The deterrence function F(cj) can have different forms. The form of
deterrence function should be adjusted according to the data type, structure of

commuting regions and commuting behaviour.

Mostly two types of deterrence function are used:

1. Power function: F(c,;)=c}, (3.3)

where vy represents parameter of distance deterrence;

14



2. Exponential function:  F(c;) =exp(ic;), (3.4)

where vy represents parameter of distance deterrence.

Apart from the previous deterrence functions, Glen, Thorsen and Uboe [11]

propose also logistic specification of deterrence function®.

3.1.1 Gravity Model with Power Function

The classical unconstrained gravity equation with deterrence function in

form of power function is given by the following formula (3.5)

T.=K—_ . (3.5)

V4
Cjj

We often set additional constraints to the gravity model. These constraints
force the model to leave the number of commuters commuting from a origin |
and/or commuting to destination J pre-set. This number is computed from

original data in the following way:

1. origin constraint DT, =0,; (3.6)

2. destination constraint T.=D.. (3.7)

If only one of the constraints is met we call the model origin/destination
constrained. If both constraints are set we call the model doubly constrained.

According to type of constraint the model to meet the constraints [12].

1. origin constrained

T, =A40Wc,, where 4, =[> W,c;”1™; (3.8a, 3.8b)
=

® Thorsen J and col.: A network approach to commuting, Journal of regional science, Vol.
39,. No. 1, p. 73-101

15



2. destination constrained

iy

T, =B,DWc,” where B, =[ZW,-07]_1 ; (3.9a, 3.9b)
i=1
3. doubly constrained
T; = 4,0,B,D;c;” (3.10)
where A; and B;j are set in (3.8b), (3.9b).

3.1.2 Gravity Model with Exponential Function

Analogically to (3.5) we can formulate gravity model with exponential
function in the following way:

T, =k——. (3.11)

The unconstrained model can be extended with origin and/or destination
constraints (3.6), (3.7). Analogically to the constrained gravity models with

power function we get following models [12]:

1. origin constrained

T, = 4,0, exp(—yc, ), where 4, = [lzl; Woexp—e,)";  (3.12a, 3.12b)
2. destination constrained

T, = B,DW,exp(-ic,) , where B, =[ii1Wl. exp(-c,)]";  (3.13a, 3.13b)

3. doubly constrained
T, = 4,0,B,D; exp(-yc;), (3.14)

where A and B; are set in (3.12b), (3.13b).

16



3.2 Extensions of Gravity Model

Classical model with power of W; and W; equal to 1 does not explain real
commuting flows or other estimated flows satisfactorily. It is not realistic that
attraction of origin and destination area is explained simply by their mass®.
Therefore we estimate gravity model with the following formula:

wew/
T - K (3.15)
Y F(c,)

where a and B represent parameters for attraction of origin/destination area

and F(c;j) is a chosen deterrence function.

Different effects influence commuting flows and if these effects are
observed and data is available, it is useful to add more variables to the model in
the same way as W; and W; are used. For example, commuting flow depending
on number of employees in origin / destination and relative wage in
origin/destination can form following gravity model formula [1]:

W W] R

3.2.1 The Model Constant

In special cases the constancy of constant K is not reasonable. This
appears when there is an unbalance between flows between two areas. This
phenomenon appears mostly in clusters or very attractive areas. For example

Bratislava forms such cluster of working possibilities with other positive effects.

According to Howard [18], adding non-constant constant term k allows

control of omitted variables, which cannot be observed or data is not available.

Another possible reason for giving up the constancy of constant k is border.

Areas on both sides of borders often have different approach to commuting

® Mass measure depends on context used, e.g. population of area, ...

17



(because of language, culture and economic barriers or problems with working
allowances). Commuting behaviour is different from the expected behaviour on
base of distance and destination/origin masses. This can be seen for example
in Bratislava region, where there is greater tendency to commute to Vienna then
the other way.

3.2.2 Dummies

One of possible ways of model improvement, is addition of dummy
variables. Dummies can be used to control heterogeneous or asymmetry
effects. Depending on commuting flows data it is often useful to use dummies to

control

e intercounty flows (dummies used for intercounty flows as addition to

distance deterrence function);

e asymmetric commuting flows (this can be controlled also by non-constant

constant term k);

e intervening opportunities (to control direct and indirect connections of

origin/destination);
e border effects’ :
e clusters;

e other unexplained but existing effects, which cannot be explained by

observed data variables.

3.3 Estimation of Gravity Models

The choice of model, which is to be estimated, and evaluated is very
important as well. In previous section we have discussed many different types

" Further reading on different types of border dummies can be found in Wall [3]

18



of gravity models, which can be combined and therefore the choice of final best

model is not easy.

Finding of proper model form and its estimation technique is the most
difficult part of estimation process. Methods of estimation differ widely and no

best technique can be found.

The chosen type of econometric estimator depends on data structure and
data characteristics. In this section we mention several methods of estimation
and their characteristics. We try to estimate gravity model (3.2) and its
extensions by different estimation techniques. OLS, NLS (non-linear least
squares) and Poisson estimation theory together with spatial econometrics
approach are discussed. All these estimations can be performed by standard

statistic software (e.g. Splus, Eviews, SPSS, SAS or other).

3.3.1 OLS Estimation

Mainly used estimation with OLS (ordinary least squares) draws back.
Although OLS preserves its place as the most common estimator, other

estimation techniques gain on popularity.

Because of its easy implementation and good results, OLS estimation is

normally first choice from available estimation techniques.

Estimation by OLS supposes distribution of error term (p;) in (3.2) in the

following way:

W
T, = K= (3.16)

This model supposes also, that stochastic term in (3.2) is not linear but
multiple. By logarithmic transformation we get linear model, which is to be

estimated:

In7ij =In(K) +aInW, + BInW, -y, In(F(c;)) +In(y;). (3.17)

19



By linearization of model, we get additive stochastic term. This can be not
realistic and can lead to biases in estimation. Another problem by OLS
estimation is that it expects heterogeneity of stochastic term, this cannot be
always the case and so GLS estimation is better, where wages are used to deal
with heteroscedasticity. Other problems by OLS estimation (e.g. multicolinearity,
autocorrelation) are to be handled, when they occur depending on chosen data

set.

If the estimated data contains zeros (in our case it makes about 20% of
observed flows), simple logarithmic transformation can not be used. Berkvist
and Westin [17] propose use of Poisson model instead of OLS. Other possible
solution to this problem is aggregation of data into larger areas, where zero
flows do not occur, or omit these observations from estimation. Both
approaches lead to lost of data and therefore are not very suitable. Wall [18]
solves the zero flows by adding constant 1 to each flow, which leaves zero

flows after logarithmisation unchanged to zero.

Two main types of gravity model have been presented: Model with power
function (3.3) and model with exponential function (3.4). By logarithmising the

classical model we get following terms in estimation function.

1. Power function: In(F(c;)) =y.In(c;); (3.18)
2. Exponential function: In(F(c;)=yc; . (3.19)

According to model specification additional variables can be added®. The
choice of model variables depends on data availability and their estimation
significance. Variables explaining commuting flows are mainly socio-economic
variables e.g. county population, average wage rate, unemployment rate, the

number of employees, and other.

As already mentioned in chapter 3.2.1 constant term K, In (K) respectively
can be extended to reflect omitted or unobserved variables. Then constant term

® See chapter 3.2
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In (K1) for each origin and In (Ky) for each destination is added [15, 16].
Multicolinearity then must be avoided by leaving term In (K) omitted or one
leaving In (K) term in estimation formula but removing one term In (K;;) and
In(Kz) from constant set. By omitting In (K) and setting In (K4) = k4 and
In(K2)=kz we get following estimation formula (3.20). Capital letters of variables
are replaced by small letters, meaning logarithms of corresponding variables

and stochastic term In (u;) = vj. Estimation formula follows:

ty=aw, +Bw, —y.f(c;)+k, +k,, +v,, (3.20)

where k4; and ky; are estimated as parameters, in form of dummy variables,

where 1 is for each pair of corresponding constants to flows and zero otherwise.

Other types of dummies can be used. Then dummy terms are added to

model (3.20) analogically to the mentioned constant terms.

3.3.2 Other Estimation Techniques

OLS estimation is easy to implement but has its disadvantages in form of
pre-conditions set on data and on the estimated model form. Therefore we

present other estimation methods.

3.3.2.1 NLS Estimation

In OLS estimation stochastic term was multiplicative (3.16), NLS estimation
uses additive stochastic term (3.21) in (3.2)
a W/J’

T.=K——L +u_. 3.21
g F(C) ’uél ( )

The main advantage to the OLS model is, that this representation allows
commuting flows T; to take on zero values. Analogically to OLS estimation,
adding additional explanatory variables and/or dummy variables can extend
simple model (3.21). Multiplicative dummy variables take on value 1 for no

effect and non-zero non-unity value for effect explanation.

21



3.3.2.2 Count Models: Poisson Estimation

Count models are used when explained variable expresses non-negative
whole number data. Both OLS and NLS estimation do not consider this main
characteristic of commuting flows. They also suppose normal distribution of
stochastic term. The mostly used count model is Poisson model, which uses

Poisson distribution as basis for regression. Formula for count model regression

follows:
wew?
E(T, |W..W,. F(c,)=K—. 3.22
T, 1 W,, Fleg) = K= (322)

If Poisson regression is better than OLS or NLS estimation, it is to be tested

on real data.

3.3.2.3 Spatial Econometrics

A relatively new discipline in econometrics is spatial econometrics. It uses
standard econometric techniques for regression but this type of regression
takes into account spatial distribution of evaluated data (spatial interaction -
spatial autocorrelation and spatial structure - spatial heterogeneity of the
surveyed data). Its implementations are in various spheres of economic
research (e.g. demand analysis, international economics, transportation
systems, regional economic...) and in other areas, which work with

geographically dependent data sets.

This chapter does not explain the theory of spatial econometrics, because
this area of research is very broad, It would like to explain its basic principles®.

Spatial distribution effects mainly covariance matrix of stochastic terms.
The matrix is no more diagonal (autocorrelation) and diagonal values are not
constant (heteroskedasticity). Both effects appear often simultaneously. Spatial

dependence of data can be implemented into linear models either by adding

® Sources of the chapter 3.3.2.3 are in Anselin [6]
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additional regressor - spatial lagged dependent variable Wy, where W is so
called weight matrix and y is explained variable or can be represented in the

error term structure (E[w;,1]#0).

Spatial lag model:

Autocorrelation of error terms due to spatial distribution of surveyed objects

is solved by concept of weight matrix. This is seen in the formula (3.23):
y=pWy+Xp+¢, (3.23)

where y is a explained variable vector, W is a weight matrix, p is a spatial
autoregressive coefficient, B is a parameter vector, X is a matrix of explaining

variables and ¢ is a error term vector.

Weight matrix is a very important term in this formula. It includes information
on spatial distribution of explained variable and is exogenous. Weights w; are
non-zero when two locations are "neighbouring". Concept of "neighbours" is
general and its implementation states its values. For example two counties are
"neighbouring”, if e.g. two counties share a common border, two counties lie

within a given distance, etc. Usually weights are normalised (i.e.

Zwij =1,Vi=1,.,n).
j=1

Spatial error model:

This model deals with spatial autocorrelation, which means that error term

covariance is not diagonal, i.e.  E[eg'] = Q..
The estimated model then takes the following form:

y=Xp+¢, eE=AWe+u, (3.24)

where W is weight matrix, A is autoregressive coefficient and p is stochastic

term.

23



Model (3.24) is equivalent to the model (3.25), which is spatial lag model
with an additional term

y =AWy + XB-AWXB+eé. (3.25)

Spatial models are estimated with maximum likelihood estimation, or
general method of moments or other estimation techniques [6]. We do not

implement this method in the thesis.
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4 Maximum Entropy Models and their Estimation

Maximum entropy model belongs to the same model family as the gravity

model but has very different characteristics and estimation techniques.

The method sees the commuting system (Origin - Destination matrix) as a
probabilistic system of flows, where each state occurs with a certain probability
(entropy). Maximum entropy concept computes degree (entropy) of likelihood of
a selected state of surveyed system. The estimated flows are flows in the

system with maximum entropy.

There are two main approaches to the same problem. The first approach is
non-stochastic, which tries to estimate number of commuters Tij on aggregate
level with omitting stochastic terms. The second model sees flows as random
numbers and estimates probability distribution of commuter flows and then can

computes expected flows.

4.1 Classical Maximum Entropy Model

The first model - classical maximum entropy model tries to describe
commuting system on aggregated deterministic level. We now present the

model and it's possible way of computation.

4.1.1 Model

The commuting system can be described in two different states: micro and
macrostate. Macrostate gives information on the number of commuters between
cities. Each macrostate comprises many microstates - commuting trips of each

individual.
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The number of microstates (N) that forms a given macrostate is represented
by the following equation with T;;> 0 [5, 13, 12]:

T!

n 3
[,

N =

4.1)

where T is total number of individuals in system, T; represents number of

individuals commuting from city | to J.

Entropy (W) of the system can be then computed by the formula (4.2)

W=H(N)=-3 T, InT, . (4.2)

i=l j=I

In order to compute the model, we introduce cost constraint (4.3)

331, = (4.3)

i=l j=1

where C represents overall expenditure available for trips and ¢; is cost of
commuting between two cities | and J. Further we can use origin and
destination constraints (equation 4.4 represents origin and equation 4.5

destination constraint):

T =0, (4.4)

(4.5)

where O; res. D; is the total number of commuters leaving the city | or

arriving to the city J respectively.

We estimate the system by maximizing entropy function under given

constraints [13,5].
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4.1.2 Model Estimation

Concept of maximising entropy uses Lagrange function for maximisation of

function under constraints:

n

L=W+2,a/(0, =2 T,)+) B;(D; =2 T)+/(C-2.> Tyc;), (4.6)
=l = = i=t

i=l j=I

where L is Lagrange function, W is entropy of Tj distribution, o, Bj, and y are

Lagrange multipliers associated with the appropriate constraints.

By solving the maximisation of Lagrange function L (4.6) we get the

following solution for the number of commuters T; between any given two cities:

Ti/' = eXp(_ai _ﬂj _7/04'/) ) (47)

where o; and B; can be computed from origin / destination constraints

37, =0,=> exp(-a,) = O[Yexp(-, ~ e, )", (4.8)
37, =D, => exp(-4,) = D,[Y expl-a, e, )T (4.9)

i=1
By substituting to the equation (4.7) we get
T, = 4,0,B,D, exp(-jc;) , (4.10)

where A;, Bj are so called scaling constants that need to be found by solving

the system. y represents parameter of distance deterrence, which is calibrated.

Formula (4.10) - solution of classical maximum entropy model resembles
doubly constrained gravity model with exponential function. This means
consistency of both approaches to the same problem from aggregate point of

view.
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Parameters of the model, which are needed for trip matrix computation can
not be found by simple solving of the system. There are different approaches

used to compute the maximisation problem.

One of them is iterative two step method [5]. Parameters oy and Bj, are
estimated with use of origin and destinations constraints and y is calibrated

according to cost constraint.

In the first step o; and B; are computed using so called row-column-

balancing method usually "Bregman method".

From origin constraint (4.4) we get balancing factor for oy (4.8) and from
destination constraint (4.5) we get balancing factor for B; (4.9). Computation
consists of iterative balancing using (4.8) and (4.8) until origin (4.4) and
destination (4.5) constraints are met.

In the second step factor B is computed. This is usually made with use of

cost constraint (4.3) by Newton method.

Another method uses dual system of the model. It computes unconstrained
minimum of the new model and then transforms results to get parameters of the
primary model. This method detailly explained and practically used on real data
in the section 6.2.

4.2 Disaggregated Maximum Entropy Model

Unlike the classical approach, where commuting flows are expected to be
non-stochastic elements, the disaggregated model supposes that flows
underlay stochastic processes. This is reasonable, as the number of

commuters, mainly from large counties, is not constant over time.

4.2.1 Model

Adding entropy term to each Tij represents the randomness of commuting

flows. T, ~ p,. , Where Xj is stochastic variable, which takes non-negative

whole number values and x; < min{O;, D} and p, = P(X; =x,) [5].
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Analogically to classical maximum entropy problem for commuting flows we

need to solve following maximisation problem:

maxH{py.}:—Zpl_jxﬁ lnpi/xi/ , (4.11)
ijx;;
under constraints:
lejpijxﬁ =0,, (4.12)
JXij
2Py, =D, (4.13)

ZZ%‘Z%P% =C, (4.14)

i=1 j=l

Py, 20, D py =1. (4.15a, 4.15Db)

4.2.2 Model Parameter Estimation

Solution of the maximization gives following formula for probability [5]:

b= exp{(z, + 6, — dc;)x; }
v Zexp{(ri +0, —Ac;)x;} '

7

(4.16)

Formula (4.16) resembles formula of non-hierarchical logit model (2.5) in
chapter 2. This means that disaggregated model is analogy to logit model. Both

models are thereby consistent on disaggregated level.

The parameters 1, § and A resemble parameters o, pB; and y from the

classical concept.
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Parameters from (4.16) need to be estimated according to model
constraints. Computed probabilities (4.16) with estimated parameters have to
meet constraints (4.12)-(4.15b). Calibration process is more complicated than in
classical case, because there is no exact solution like "Bergman method" to
iteration process. The system has to be solved numerically. There are different
numerical methods developed for maximising function with constraints, which

can be used for system solving [5].
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5 Data and its Specifics for Slovakia

The first step in estimation of commuting flows is search for correct and
complete source data. The data forms the background for estimation. The data

in the thesis comprises commuting flows among selected Slovak counties.

Slovakia is divided into 8 Slovak regions and 81 counties. Region division of
Slovakia is depicted at the Figure 5.1. We have selected 27 counties in the
Western Slovakia for estimation’®. These counties belong to four western
regions - Bratislava, Nitra, Trnava and Trencin regions (Table 5.1 and Figures
5.1 and 5.2). Each region comprises more counties (Table 5.1). Each county is
a possible origin and destination of commuting flows.

Table 5.1 Selected counties for estimation

County Slovak region |County Slovak region
Bratislava (city) Bratislava Nové Mesto nad Vahom |Trencin
Malacky Bratislava Partizanske Trencin
Pezinok Bratislava Povazska Bystrica Trencin
Senec Bratislava Prievidza Trencin
Dunajskéa Streda Trnava Puachov Trencin
Galanta Trnava Trencin Trencin
Hlohovec Trnava Komarno Nitra
Piestany Trnava Levice Nitra
Senica Trnava Nitra Nitra
Skalica Trnava Nové Zamky Nitra
Trnava Trnava Sala Nitra
Banovce nad Bebravou |Trencin Topol¢any Nitra
llava Trencin Zlaté Moravce Nitra
Myjava Trencin

"% In further text, selected region, or Western Slovakia region, or Western Slovakia are used as

synonyms
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Figure 5. 1 Slovakia and its regions

@ MAFA Slovakia Bratislava

Figure 5. 2 Selected region of Western Slovakia

Byatrica
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5.1 Commuting Flow and Socio-economic Data

Commuting flow data is provided by Statisticky Urad Slovenskej republiky
every 5 or 10 years. The most recent data is from the year 1999 [7]. The data
set represents the number of commuters between any two counties in Slovakia
and between each county and foreign countries (aggregate). We have not taken
into consideration flows between foreign countries and counties, because this
would make the estimation very complicated. Although many counties border
with Hungary, Austria or Czech Republic and these regions are exposed to a
significantly high stream of commuters to foreign countries, we have omitted
these observations.

Commuting flows for the region of Western Slovakia in the year 1999 can be
found in the table 5.2 in the Annex A and is also printed at the end of the thesis
in Annex. This table represents a 27x27 square matrix composed of nhumber of

commuters commuting from origin | to the destination J.

Economic and social information needed for estimation was provided by
Statisticky urad Slovenskej republiky [8]. The data is from the year 1999'"". The
data for each region comprise population, average monthly wage,
unemployment rate, number of employees, number of unemployed. Overview

on the socio-economic situation in Western Slovakia is in the Table 5.3.

Table 5.3 Basic socio-economic data on Western Slovakia regions
(Year 1999)

Region Population [Economic |Number of (Unempoy- |[Gross Average
active employed |mentrate |production |wage
population |persons
in thousand in % in mil. SKK in SKK

Slovakia 5,393.40 2,573.00 2,132.10 16.20 1,839,200 10 961

Bratislava |617.60 335.80 309.20 7.40 654 220 14 611

Trenéin 550.70 266.50 229.80 12.30 152 318 10 556

Trnava 609.70 288.40 252.40 11.40 154 987 10 134

Nitra 716.60 328.20 266.90 17.80 166 123 9 968

" When data from year 1999 was not available, we used data from 31.12.1999
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Detailed information on selected Slovak counties can be found in the Table
5.4 in Annex A.

As it can be seen in the table 5.3, Bratislava region and its counties are the
most prosperous parts in Western Slovakia. Average monthly wage reaches 1.3
times the Slovak average and is the highest among the surveyed regions. The
unemployment rate is the lowest among the regions where the number of
employees is the highest. On the other hand the region of Nitra has the highest
population and is the least developed concerning employment situation. The
average monthly wage in the region reaches less then 10 000 SKK whereby
Slovak average is almost 11 000 SKK, here it can be seen a very high level of
unemployment which is 2.4 times the level in Bratislava and higher then Slovak

average.

From the given information, it can be assumed that the Bratislava region will
attract a lot of commuters and Nitra region will distribute a lot of commuters into

other regions and its attractiveness as a possible employment region is low.

5.2 Transportation Distance, Time and Cost Approximation

In the gravity model and maximum entropy model, information on distances,
time and costs of transportation is needed. Distance detterence (which can be
based on information on distances, time or cost of transportation) lessens the
commuting flows between regions, because it builds a natural barrier between

them.

5.2.1 Computation of Transportation Distance, Time and Cost

Distances in this thesis are calculated as distances between each pair of
capital cities of counties on roads using the Autoroute software. Time and cost
estimates are computed using this program as well. Time and costs are those of
automobile transportation needed for travelling from the capital of one region to
the capital of another region. Costs are computed in SKK using approximate
fuel consumption and per litre fuel costs.
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Distance is computed as the fastest route on road between cities with
motorway usage. However, not all commuters use motorways as they are paid.
Problematic areas are some border regions where the fastest and / or shortest
distances are on roads which cross state borders (e.g. Komarno county, Skalica
county). Where the fastest route could not be replaced by the shortest route not
crossing state borders, the route was computed as the fastest route using only

Slovak roads. Travelling costs and time were computed in the same way.

These calculations are not exact and not satisfactory as many commuters
commute by public transport (rail or bus) and in Slovakia the rate of car
transportation is relatively low comparing to Western Europe or USA. Car
transportation and associated "road" costs, time and distances serve as an
easy approximation because these are available between each pair of surveyed
cities (counties) and rail /bus transportation is limited to railways or bus lines
and do not connect cities equaly in the sence of equal possibitily to travel to

each city.

Cross city distances, times and costs of transportation are shown in the
tables 5.5, 5.6 and 5.7 in the Annex A. They are symmetric 27x27 matrices.

We have chosen not to consider intercounty commuting as "real"
commuting. Intercounty distances, time and costs of transportation are set to
zero'. The reason is, that commuters mostly do not consider time, costs and

distances travelled to work within an area as "real" costs of commuting to work.

In this thesis used system of distance measuring between two cities as
distance between two city centers is valid only when cities are seen as very
small and distances traveled within cities are small as well. This is reasonable
as we take city distances as measure for distances between counties and this
measure is very approximate and we can abandon for intercity distances. But
when talking about commuting distances between larger cities we should

consider travelling in the cities as well. When intercity transportation is

"2 For the purpose of OLS estimation, zeros are set to 1, then In(1)=0
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calculated, the "Euclidean” distance can be used. This concept is introduced in

the paper [11].

5.2.2 Intervening Opportunities

Not only distance is a measure for geographical deterrence of two cities.
There is a difference of commuting behavior when two cities are situated next to
each other or when there is another city situated between them or in a shorter
distance from one city to this city then the distance between the cities

themselves. This city is an intervening opportunity of commuting between cities.

This situation can be seen at Figure 5.4 a), b) and c). At 5.4a) two cities A
and B lie next to each other and at b) and c) there is a city C which is the an

intervening opportunity for commuting between cities A and B.

a) b) c)
A A A
° ° °
C
[ )
C
B E B o
(] [ ]

Figure 5.3: Intervening opportunities

Willingness to commute from city A to city B is greater when there is no city
situated between them in the sense of previous paragraph. This third city C
forms intervening opportunities. For a commuter it is more convenient and less

costly to commute from city A to the city C then to the city B.

In our measure of distance we do not take into consideration the notion of
intervening opportunities. This concept has to be implemented in the model
itself.
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5.3 Regional Specifics

Commuting behaviour can be influenced also by regional specifics. Different
characteristics of regions cause different volume of commuting in similar
regions. Regional characteristics need to be taken into consideration when

trying to estimate trip matrix.

5.3.1 Bratislava Region

A specific region for commuting is Bratislava region. This region according
to political division is divided into 8 counties. 5 counties (Bratislava |, Il, ... V)
are situated within the city of Bratislava. These 5 counties are in this thesis
aggregated to form a single unit - Bratislava. In this unit, commuting flows within
the city (i.e. among counties Bratislava | to V) are considered as interregional
flows and only flows from or to counties outside Bratislava city are considered

for estimation.

Bratislava city has other specific characteristics. Bratislava is the capital of
Slovakia with high level of industry and employment possibilities, the highest
population in Slovakia. A very low unemployment rate and the highest wage
rate in Slovakia are other positive factors for commuting. These factors make
Bratislava a very attractive city for in-commuting. On the other side, Bratislava
lies close to Austrian, Czech and Hungarian borders. Therefore there exist a
relative high level of commuting outside Slovak borders.

5.3.2 Bordering Regions

Problematic areas are all counties situated next to either state or selected
region borders. Here we can observe a high level of commuting to regions not
included in survey. State borders form a different type of "commuting borders"

then borders of our selected area with other Slovak counties.

State borders often lead to diminution of commuting flows, which would be
higher when not existence of state borders. These borders are mainly a political
obstacle for commuters as they need to cross state borders (time costs of

commuting) and often need a special allowance to work in a foreign country.
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Borders of the selected area (Western Slovakia) with the rest of Slovakia
form only a formal border. They may cause greater errors in the results of our
survey because commuters from counties bordering the selected area do not
have a preference to work in Western Slovakia to other parts of Slovakia. This
can be not included in our estimation and can lead to biased results for the

bordering regions.

In the thesis we do not cope with this problem systematically and we simply

omit these effects.

5.3.3 Zero and Low Level Flows

Slovak data is not very suitable for estimation, because there are many zero
flows. Almost 20% of data are zeros, this means that commuting flow between

two counties does not exist.

Slovak commuting behavior can be described as commuting averse. Only
14.2% workers commute to work to a county different from their home county.
Number of destinations with commuting level less then 1% of working power in
a county is 85% of all destinations and only 7% of destination has more then
5% commuters. Almost 84% of all data has commuting flow less then 100
persons. Compared to average intercounty commuting (average intercounty
commuting is 20 549) this makes a great disproportion between commuting to

different county and intercounty commuting.

Reasons for commuting aversion can be found in different socio-economic
factors. Low wage rate compared to relatively high level of unemployment
benefits and high travel costs are main reasons that lower commuting flows. A
common statement explains willingness to commute: "Commuting will be the
preferred choice of a worker whenever he can obtain an increase in wages
greater than cost of commuting - workers apply for jobs according to a strategy

that maximizes their expected payoffs (wages minus commuting costs) " [11].
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5.3.4 Clustering and Attractiveness

Not equal distribution of labour force and labour opportunities in counties
causes clustering effects. They have to be surveyed separately.

Cluster is characterised by commuting behaviour, where a region is seen
either as a source of employment possibilities or as a source of working power.
In the first case the region attracts commuters. The latter type of cluster
provides labour force commuting to different locations. These clusters cannot
be found only on geographic base. Commuting behaviour has to be surveyed to
find such clusters. Clusters change commuting patterns and distances lose their

deterrence function.

An example of cluster is Bratislava, where 98.3% of all commuters
commuting from Bratislava commute to Bratislava but only 77.4% of all
commuters commuting to Bratislava come from Bratislava. Clustering effect
causes this difference. Bratislava is a large city with a great concentration of
industry and other kinds of job opportunities. This makes Bratislava very

attractive for commuting.

On the other hand Malacky, Pezinok and Senec, for example, attract only
about 50% of their out commuters, whereby about 85% of their incommuters
commute intercounty. These regions can be characterised as out-commuting.
Interesting is that these regions are close to Bratislava, which is a very

attractive commuting destination.

Attractiveness of a county for commuting can be characterized by ratio of
outgoing and incoming commuters. If this ratio is significantly greater then 1 this
county can be characterized as very attractive and on the other side if this ratio
is very low (less than 0.7%) it means that the county has a great ratio of
outgoing commuters to incoming commuters. For example, Puchov, Prievidza
and Trencin have a very balanced percentage of intercounty commuters coming
to and departing from this region. In both directions ratio of intercounty out and

in flows is close to 1. This makes these regions relatively neutral to commuting.
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6 Commuting Models Estimation

We have described different models, which have been invented for
commuting flow estimation. We have introduced their idea, fields of
implementation, type of data needed for their estimation and their estimation

techniques.

We now practically implement the estimation techniques of two model types,
namely gravity model and maximum entropy. The models were explained in the
chapters 3 and 4. We try to estimate commuting on base of data obtained from
the Slovak Statistical Institute. The data covers commuting flows within the area
of Western Slovakia in the year 1999.

Gravity model in the thesis is estimated with help of EVIEWS (EVIEWSv3.0)
statistical software. For the purpose of maximum entropy model estimation, we
have created a program in GAMS software. The program is enclosed in Annex
C.

Firstly we introduce results from OLS, Poisson and NLS regressions of
gravity model and then we compare these results with maximum entropy model

estimation.

6.1 Gravity Model Estimation

Gravity model assumes that commuting flows between two areas depend
on different variables that should be included in the model. The basic model is
following:

wew?

T.=K— Ll 6.1

where the terms in the equation 6.1 are the same as in the chapter 3
(equation 3.2). Additional variables can be added to this equation and distance
deterrence function is to be set as well. The choice of relevant model variables
is a question of estimation process. We use different estimation techniques to
estimate the model on base of real observed commuting flows.
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6.1.1 Model Variables

Into the gravity model, different variables come as explanatory variables.
These variables may vary on the concept in which the model is used and on the
data availability. The explained variable is in our case the number of commuters

from region | to the region J (commuter) ™.

We have chosen different variables, which could be used as explanatory
variables in the model. These variables are set into sets depending on their

explanatory function.

Area's attraction can be measured by the following statistics:

e population of the area - population is the basic and mostly used
characteristic, but does not take into consideration the age structure of
the population and unemployment in the area (pop_from, pop_to);

e the number of employed persons in the area - this variable is an
extension of population variable which includes age structure and
employment in the area (emp_from, emp_to);

e the number of employed persons, which work in a given area and
commute from and to an area within the selected Slovak region
(Western Slovakia) - this statistic is the most suitable for explanation of
mass of the area. It takes into consideration only the selected Slovak

region (sum_from, sum_to).
Distance deterrence can be represented by
e travelling distance (dist): distance between capitals of counties;
e travelling time (time): variable based on distance, but takes into

consideration different transportation speed on highways, local roads

etc. ;

®n parentheses, the names of the variables are given, suffices _from defines that this
variable is connected to the origin area, _to defines destination area variable and _rate defines
ratio of _to and _from variables)
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e travelling costs (cost): based on time and distance, takes into

consideration economic costs of transportation.

Distance deterrence function is chosen from exponential and power function

forms.

Potential additional variables:

e the number of companies in the area - it explains the working attraction
of the area (nc_from, nc_to);

e the number of unemployed persons - this variable gives the perspective
labour market in the area (un_from, un_to);

e the unemployment rate - this variable is very similar to the number of
unemployed persons, but this measure stands for relative term which
explains relative labour market situation (un_rate from, un_rate to,
un_rate_rate);

e average wage - wage is very important for commuting habits, because
wage is the "compensation" for commuting to work (av_wage from,

av_wage_to, av_wage_rate).

Dummy variables stand for unexplained characteristic, that cannot be
explained by an observable variable. Potential dummy variables:

e border regions - in border regions, many people commute to regions that
are not included in the survey (border, 1 when region lays on border of
the selected region, 0 respectively);

e neighbouring regions: people tend to commute more to regions that are
next to their origin region or to the same region (destination = origin)
than to other regions, this phenomena can be explained by intervening
opportunities approach (NBR, 1 when origin/destination regions are
neighbouring or are the same, 0 respectively);

e inter-area commuting: commuters prefer commuting within their origin
area mostly because of very good transportation conditions (IAC, 1 when
origin region = destination region, 0 respectively);

e Bratislava - Bratislava is a special commuting region, which is very
attractive for commuting as destination (BA, 1 when destination region is
Bratislava, O respectively).
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From all possible variables we have chosen set of these relevant
variables, which are used in regression models (OLS, Poisson and NLS).

The choice was made upon econometric research of the variables:

e sum_from - attraction variable of origin;

e sum_to - attraction variable of destination;

e time - distance deterrence function variable (deterrence function is used
in power form);

e av_wage_rate - additional variable;

e BA - dummy for Bratislava region;

e NBR - Dummy for neighbouring regions.

The final choice of models is set upon the regression results, which are
presented in tables in each section. In the tables we present estimated
parameters for each variable with standard deviation in parentheses. *
represents significance at 5% level and ** significance at 1% level in all tables
of results. We expect in all final models (OLS, NLS and POISSON) coefficients
sum_from, sum_to, av_wage rate, NBR and BA to be positive and time

negative. Further we expect lower sum_from coefficient than sum_to.

6.1.2 OLS Model Estimation

OLS estimation supposes linear form of regressors in regression equation
and therefore by logarithmic transformation of (6.1) we get linear model (with

power function deterrence), which is to be estimated:
In(7;) =In(K) +aInW, + fInW, -y Inc,. (6.2)

The model is then fitted with use of OLS estimation, additional significant

variables are added and the best model is chosen.
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Because of the logarithmic form of OLS estimation equation and zero level
of commuting flows (commuter) in many cases, we have used the

transformation introduced in the chapter 3™
commuter1 = commuter +1. (6.3)

This transformation solves the problem of zero flows but on the other hand
has many disadvantages (causes greater estimation errors by small flows) but
on the other hand after logarithmic transformation, zero flows are set again to
zero. Results of OLS estimation of different model variations are presented in
the table 6.1. In all tables, shadowed models are the most suitable ones.

Table 6.1: OLS estimation results

Dependent Variable: LCOMMUTER1

Method: Least Squares (OLS)

Included observations: 729

White Heteroskedasticity-Consistent Standard Errors & Covariance

Variables Model 1 |Model 2 |Model 3 |Model 4 |Model 5 |Model 6 |Model 7 |Model 8

-9.629 -10.147 -10.91 -5.995 -11.367 |-7.064 -7.454 -8.344

c (1.02)** (0.92)** [(0.94)** |(1.16)** |(0.86)** [(1.03)** [(1.05)** |(0.99)**

0.693 1.049 0.633 0.698 0.971 0.636 0.985 0.896

LSUM_from 1 570x |0.08)*  [0.06)* |(0.07)** [(0.07y* [0.07y** |(0.08)** [(0.07)**

1384 [1.076 1335 [0.995 [1.045  [0.917  |0.857  |0.795
LSUM_to 1 08)%* [(0.08)** [(0.07)** [(0.09)** [(0.07)** |(0.09)** |(0.09)** |(0.08)**

-2.027 -2.025 -1.512 -2.021 -1.526 -1.491 -2.021 -1.506

LTIME (0.05)%* [(0.05)*  |(0.06)** [(0.05)** [(0.05)** [(0.06)** [(0.05)** |(0.05)**
LAV_WAGE 2911 2753 2358 [2.120
RATE (0.34)%* (0.33)%* (0.36)%* |(0.35)**
1.780 1727 |1.835 1.781
NER (0.15)%* (0.14)%* |(0.14)** (0. 14y**
2241 2400  [1.600  |1.81
BA (0.31)%* (0.30)**  [(0.31)** [(0.30)**

R-squared 0.764 0.786 0.804 0.781 0.823 0.823 0.794 0.833

Adjusted R- ]0.764 0.785 0.803 0.780 0.822 0.821 0.793 0.832
squared

Akaike info |3.186 3.091 3.007 3.116 2.905 2.909 3.058 2.851
criterion
Schwarz 3.212 3.123 3.039 3.148 2.943 2.947 3.096 2.895
criterion

Log likelihood|-1157.41 (-1121.84 |-1091.11 |-1130.96 |-1052.87 [-1054.30 |[-1108.61 |-1032.08

% All variables have prefix "I" after logarithmic transformation e.g. Itime = In(time)
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We can see that the best fit is achieved in the Model 8, in which all relevant
variables are included. This model has the best estimation statistics. The basic
model (Model 1) is not satisfactory because of its relatively low fit and because
of residuals, which are shifted from zero. This phenomenon is removed by
adding dummy variable NBR. The dummy BA which is included in the Model 8
but excluded in model 5 contribute to the model not very much and therefore
the Model 5 can be used as the result model. The dummy BA stands for
commuting flows to Bratislava, which are underestimated in few cases. When
we look at the resulting coefficients we can see that in the model 8 the
coefficient for sum_to is less then the coefficient for sum_from, which does not
resemble the theory, that home region is less attractive than the destination
region. This is not the case in the model 5. Other coefficients in both models

have similar form and correct signs.

The final Model 8, then estimates commuting flows in the following form:

0.89 0.795 2.12
WS W ORI,

T, =0.000238 —

1.78 NBR+1.81BA4
- e -1. (6.4)

Cjj

The final Model 5, then estimates commuting flows in the following form:

0.97 1.045 2.75
W W R,

T, =0.000016 — e TNER 1, (6.5)

1.52

Cjj

In equations (6.4) and (6.5): Tj is the fitted commuting flow from region |
to the region J, ¢; is the time of travelling between regions | and J, W;, W;
are attractions of origin/destination regions, RWj; is relative average wage of
regions J and | and NBR and BA are dummies used to explain different

commuting habits (with values 0 or 1 respectively).

Disadvantage in this approach is that fitted commuting flows may be
negative (as result of estimated logarithmic form and transformation 6.3).
The second disadvantage is that results are not whole numbers. These
results need either to be rounded to get whole numbers or left in their not
whole number form. But none of the estimation methods gives whole

number results and therefore this disadvantage is not relevant in the
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comparison of methods. In our case, negative fitted values are very small

and can be rounded up to zero. The estimation results can be found in

Annex B.

6.1.3 Poisson Regression Estimation

We proceed gravitation model fitting by using Poisson regression. This

estimation technique supposes regressed variable (commuter flows) in form of

non-negative whole numbers and does not need logarithmic transformation for

estimation. These are the main advantages in comparison to OLS estimation.

We have chosen the same relevant variables as in OLS and estimation

results can be seen in the Table 6.2

Table 6.2: Poisson estimation results

Dependent Variable: COMMUTER

Method: ML/QML - Poisson Count

Included observations: 729

QML (Huber/White) standard errors & covariance

(Pseudo-R2)

Variables Model1 |Model 2 |Model 3 |[Model 4 |Model 5
c 0.991 0.151 0.969 |-0513 |-1.562
0.42)* |(0.21)  |(0.36)** |(0.36)  |(0.48)*
) 0.398 [0.171 0204 [0.172  |0.206
LSUM_from | gy |0.06)* [(0.08)* [(0.07)* |(0.08)*
1289  |0.800  |0.777 |0.867  |0.836
LSUM to 006y [(0.06)* [(0.07)* |(0.06)* |(0.06)**
1392 |-1425 |-1260 |-1.427 |-1.263
LTIME (0.03)* [(0.02)* |(0.04)** |(0.02)* |(0.04)**
LAV_WAGE 3612  |3.465 |[3.665  [3.520
RATE (0.36)*  |(0.54)* |(0.36)** |(0.54)**
1.012 1.007
NER (0.20)** (0.20)**
-0.186 | -0.166
BA (0.08)*  [(0.10)
R-squared |0.988  |0.993  |0.993 |0.996  |0.996
Adjusted R- [0.988  [0.993  [0.993 [0.996  |0.996
squared
Akaike info |139.564 |117.585 |94.420 |116.436 |93.509
criterion
Schwarz 139.580 |[117.616 |94.458 |116.474 |93.553
criterion
Hannan- 139574 |117.597 |94.435 |116.451 |93.526
Quinn criter.
LRindex  [0.974  [0.978  [0.983 [0.979  |0.983
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The basic model has the same problems with residuals as in OLS
estimation and therefore needs to be extended. We have constructed similar
models to OLS estimation and found out, that the best model is the Model 3,
which has the same regressors as the final Model 5 in OLS regression. These
models can be then compared. In Poisson regression higher fit has been
achieved and the mentioned advantages speak in favour of Poisson model. The
estimated parameters have correct signs and values. The difference between
origin and destination areas is more obvious. The values of coefficients are
more reasonable than those of OLS Models 8 and 5 (constant term and W; and

W; coefficients).

The final fitted equation is in the following form:

W-OAZOW'OA78R W-;;A(’
T;-/ — 037 i J J

elAOI*NBR . (66)

1.26
i

6.1.4 NLS Estimation Results

NLS estimation was introduced in the chapter 3. It does not need
logarithmic transformation of (6.1) for estimation (as in OLS estimation).

The estimation is made iteratively and convergence has to be achieved,
because no exact computing method of coefficient estimation exists. Estimation
of complicated models can therefore not be possible, when iteration process
does not converge. Estimation results of different models are given in the Table
6.3.
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Table 6.3 NLS estimation results

Dependent Variable: COMMUTER

Method: Least Squares (NLS)

Included observations: 729

Variable Model1 [Model2 ([(Model3 ([Model4 ([Model5 ([Model 6
c 3.507 1.693 2.136 1.165 0.488 0.880
(0.208)* [(0.17)*  |(0.13)* |(0.11)** [(0.05)** |(0.07)**
SUM § -0.196 |-0.144 [0.08 0.113 0.057 0.018
~Irom — 10.02)*  |(0.03)**  |(0.03) (0.03)*  |(0.03)*  |(0.03)
SUM ¢ 1.063 1.020 0.828 0.805 0.950 0.984
-0 (0.02)**  [(0.02)* |(0.03)* [(0.02)** [(0.02)** |(0.03)**
TIME 1179 [-1.091  |[-1.329 [-1.224 [-1243 |-1.347
(0.02)**  [(0.02)* |(0.03)* [(0.03)** [(0.02)** |(0.02)**
AV_WAGE 3.059 2.726 2.604 2.883
_RATE (0.25)*  [(0.22)* |(0.19)* |(0.22)**
0.63 0.55 0.53
exp(NBR) (0.08)* (0.07)*  |(0.06)*
exp(BA) 0212 |[-0.216

0.01)*  |(0.01)**

R-squared 0.996 0.997 0.997 0.997 0.998 0.998

Adjusted R- 0.996 0.996 0.997 0.997 0.998 0.998
squared

Akaike info 14.729 14.628 14.507 14.401 14.051 14.189
criterion

Schwarz 14.754 14.659 14.538 14.439 14.095 14.227
criterion
Log -5364.75 |-5326.82 |-5282.75 |-5243.09 |-5114.64 |[-5165.89
likelihood

In the basic model (Model 1) can be seen that estimated coefficient for
origin attraction is negative which would indicate unattractiveness of home city.
This not reasonable. Models 4 and 5 have the best results (all coefficients
highly significant) and they are reasonable (according to the mentioned criteria).
Discussion about better model from the Model 5 and 4 is similar to the
discussion in chapter 6.1.2, though both models have correct signs of
coefficients. In the Model 5 we can see, that despite our expectations the sign
of the parameter BA is negative. It can be however probably reasonably
explained. The attraction of Bratislava is included both in its size and relative
wage. The wage difference and its great size and possibly neighbouring could
overcome the effect of cluster. The fitted parameters are similar to Poisson
regression and the fit is very good.
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The resulting model forms according Model 4 (6.7) and Model 5 (6.7):

0.11 0.81 2.73
Tii :1'17VVi lezsRVVlj
i e
0.06 0.95 2.60
T.=0.49 W W, RW
y C-14A24

g

6.2 Maximum Entropy Model

0.80*NBR

3

eOA77*NBR—0A31*BA

(6.8)

The principle of maximum entropy and its use in transportation analysis was

introduced in the chapter 4. Maximum entropy uses known information on

marginal commuting flows (row and column sums of commuters for each

region, e.g. the out- and in-flows from / into each region) and information on

cost of trips between regions.

We have used real data to compute marginal flows. These marginal flows

are written in the Table 6.4. As cost of trip matrix, the transportation cost matrix

(Table 5.7 in Annex A) has been used and total cost of trips C has been

computed with use of real data.

Table 6.4 Marginal number of trips and a total cost of trips

Region Origin |Destination Region Origin (Destination

1 |Bratislava 138397 |185516 15 [Nové Mesto / Vahom |15332 |14 884
2 |Malacky 15 658 9 696 16 |Partizanske 10 651 9 866
3 |Pezinok 14 186 8 447 17 |Povazska Bystrica 13795 |12593
4 |Senec 12 343 7 040 18 |Prievidza 38443 |38 013
5 |Dunajska Streda [26440 | 21592 19 |Pdchov 13111 (13284
6 |Galanta 20280 | 14912 20 |Tren€in 31478 (31962
7 |Hlohovec 12407 | 11115 21 |[Komarno 24378 (23 608
8 |PieStany 17057 | 15883 22 |Levice 27037 (27941
9 |Senica 16 168 | 13931 23 |[Nitra 43226 |44 671
10 [Skalica 11900 | 11532 24 |[Nové Zamky 33369 (27813
11 |Trnava 36787 | 35654 25 |[Sala 12355 |10 652
12 [B. nad Bebravou | 9 841 8758 26 |Topolcany 17573 |15 540
13 [llava 16 928 16 530 27 |Zlaté Moravce 9473 8128
14 |Myjava 7 862 6914 Total costs 9164 070
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6.2.1 Computation of Maximum Entropy Model

Estimation of O-D matrix with help of maximum entropy concept is based on
maximisation problem, which is introduced in the chapter 4. In this part of the
thesis we described one possible way of solving this problem (by so-called
Bregman's method). We have decided to use another estimation technique for
solving of our problem. This computation technique is described in detail in this
chapter and then applied on real data. Source codes of the developed program

are in Annex C.

According to solution of classical maximum entropy problem [13], we have
transformed the maximum entropy maximising system (4.2-4.5) by
normalisation 6.9 into a normalised system (6.6.9a-6.13)

<3

T,
Py = = ?] (6.9)

=

-
Il
1l

—_

>¥p, =1, (6.92)

i=1 j=l1

n n

Hz—zz%i.lnp” , (6.10)
i=1 j=1

D> pc; =CIT=¢,, (6.11)

i=l j=1 )

ng/:Oz—/T:Ow (6.12)

J=!

Y p,=D,/T=d,. (6.13)

i=1

This maximisation problem with constraints can be solved by Lagrange
function of the system and then by substituting Lagrange multipliers into the
original system and constructing dual system to the original system. We then
get unconstrained maximum entropy problem in the following minimalizing form
(6.10)

50



H= iaiOi +iﬂiDj +7/.C+1n(iiexp(—(ai +pB,+r)T)). (6.14)

i=1 j=1
By solving the (6.14) according to unknown parameters a;, B, y we get
solution of our system in the following form (6.15) and after eliminating
substituting T into the equation we get the solution (6.15a)
exp(—(a, + B, +yc, )T
r =y SPC@HS D) (6.15)

g non

D> exp(—(a, + B, +1c,)T))

i=l j=I

T, =exp(-a',—f' ,—y'c,)——— . (6.15a)
Z z eXp(—Ol'l. _IB'_/ _7/'ng)

i=1 j=1

The optimisation results (from 6.15a) can be found in the Table 6.5 and

resulting commuting flow estimates are in the Table 6.11 in Annex B.

Table 6.5 Maximum entropy parameters

Region Alfa |[Beta Region Alfa |Beta
1 |Bratislava 3.60 [-599 |15 [Nové m./Vahom [-0.65 |0.78
2 |Malacky 251 |-2.12 |16 [Partizanske -0.93 |1.53
3 |Pezinok 3.56 |-2.17 |17 |Povazska Bystrica |[-1.31 |1.51
4 |Senec 293 |-1.32 |18 [Prievidza -1.89 10.82
5 |Dunajska Streda | 1.12 [-1.52 |19 [Puchov -1.11 1 1.37
6 |Galanta 0.71 |-0.41 |20 |Trencin -1.32 | 0.59
7 |Hlohovec 0.39 |0.15 |21 |Komarno -1.32 | 0.75
8 |Piestany -046 |0.46 |22 |Levice -0.24 |-0.50
9 |Senica -0.48 [0.53 |23 [Nitra -0.63 (-0.45
10 |Skalica -0.21 [0.38 |24 [Nové Zamky -1.59 10.85
11 |Trnava 0.61 |-1.39 |25 [Sala 0.61 |0.14
12 [B. nad Bebravou |-1.02 |1.64 |26 |Topol¢any -1.02 |1.00
13 |llava -1.14 [ 1.22 |27 |Zlaté Moravce -0.41 | 0.99
14 [Myjava -0.65 |0.78 Gamma 0.06

A proper interpretation of these parameters is difficult because the
equations (6.15 and 6.15a) include normalising factor (numerator in the
equations 6.151 and 6.15a) which is not directly interpretable. Alfas and Betas

characterise commuting habits between each pair of origin and destination
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regions. In gravity model, it can be achieved by additional constant terms, which
would characterise each origin and destination area. This would also improve fit
of the model. Gravity model on the other hand can include additional
explanatory variables and maximum entropy uses only those variables that are

included in the classic model.

We have achieved high correlation of real and estimated data 0.996. This
correlation is comparable to that which was achieved by Poisson and NLS
regression. But direct comparison of results is misleading. Estimated OD table
from maximum entropy model is already normalised to meet origin and
destination constraints and OD matrices from gravity model estimation by OLS,
NLS and Poisson regression do not meet these constraints. We therefore used
RAS (row-column approximate iterative process which results in doubly
constrained OD matrix). The RAS process was programmed in Mathematica
software and the program source code can be found in Annex D. After RAS
transformation of result OD matrices of final OLS, NLS and Poisson models we
have in all cases improved correlation of real and estimated data. These
correlations before and after transformation are in the table 6.5. For better
comparison we have chosen models with the same explanatory variables (basic

model and extended model without BA dummy).

Table 6.5 Correlation of real and estimated OD matrices
before and after RAS transformation

Estimation Correlation
Model technique Before RAS |After RAS
OLS 0.764 0.9986
Classical NLS 0.996 0.9982
Poisson 0.988 0.9994
OLS 0.823 0.9994
Extended NLS 0.997 0.9993
Poisson 0.993 0.9996

Here can be seen that correlation has been improved in all cases and in
case of OLS estimation this improvement was very significant. In all cases
correlation is comparable to the correlation of estimated and real OD matrix in

maximum entropy model.
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6.3 Final Comparison of Models

We have used all proposed models to estimate Origin-Destination matrix
with use of original data. The results were described in the previous sections
(6.1 and 6.2). In the following text, we would like to compare them. The selected
estimation results can be found in Annex B in the Tables 6.6 - 6.11 and in
Annex at the end of the thesis.

Maximum entropy estimation leads to a very good fit with original data, but
this fit is comparable with other estimation methods. This method solves only
the whole system and needs all column and row sums (origin and destination)
and matrix of costs. Disadvantage of this model is that it gives no explicit
solution for a given pair of regions., On the other hand its advantage is, that it is
applicable on any commuting system without specifying additional regional
characteristics. Maximum entropy also does not depend on coefficients that
have been obtained in other regression.

On the contrary, gravity model needs for its best fit additional explanatory
variables. And the fitted results depend on parameters that have been
estimated in the regression. In gravity model, it is possible that the estimated
parameters change, when we take into consideration a smaller part of the

selected region or we change commuting conditions.

Maximum entropy model in this form does not answer to changeable
environment as well, but can be used to any subregion without additional

restrictions.

Another problematic task results from the choice of best estimation
technique among gravity model estimation techniques. A very good correlation
has been achieved in NLS and Poisson models. Their advantages and
disadvantages were described in section 6.1 and do not need to be repeated.

Poisson regression leads to very good results. It does not give negative
number results and is easy to estimate with possibility to use wide variety of
regression variables. NLS estimation is rather complicated as convergence is
not achieved in all cases and model variables need to be precociously selected.
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Depending on purpose of commuting flow estimation, observable obtained
data, we use either maximum entropy model or gravity model. From the gravity
model estimation techniques, we recommend to use Poisson regression. It is
easy to apply and its pre-conditions of non-negativity and whole number
explained variable suit for commuting flows. Not forgetting its very good fit, we
suppose that results gained in the thesis (final model 3 by Poisson regression)

is the best for prediction of commuting flows in Western Slovakia region.
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7 Conclusion

Since the beginning of urban analysis, many models have been developed
to better understand processes in urban systems. The thesis has introduced
various models used in regional analysis. Different model categories, source

data needs, estimation techniques and functions have been described.

A further aim of the thesis was to estimate commuting flows among Slovak
counties based on real commuting data from Slovak Statistical Institute [7]. In
order to estimate the flows, two models were chosen: gravity model and
maximum entropy model. As already discussed in this thesis, both models have
many extensions and variations. Estimation techniques differ according to the
model used. In the chapter 6, both models for estimation of commuting flows
were applied. We have also tried to find their best possible model forms. The
gravity model can be estimated using a variety of estimation techniques. Only
three of them have been selected: OLS, Poisson and NLS estimation. We have
implemented them and then compared the results. It has been found out, that
the best results for gravity model are achieved by Poisson regression (model 3).

Results of all used estimations are written in the chapter 6.

Further gravity model and maximum entropy model results were compared
in the chapter 7. Gravity model and maximum entropy estimations show a very
good fit with real data, which is similar in both cases. It can not be said, which
method is better only comparing model results. Both models have their fields of

use in different situations and therefore both models can find their application.

The gravity model results can be used for forecasting traffic flows between
two areas, based on their socio-economic and travelling data. We do not need
information on other areas in the system. We can predict traffic flows for each
pair of origin and destination separately.

In maximum entropy model, we need aggregate data on traffic flows from
each origin and to each destination in the system. Further information on overall
travelling costs in the system and cost matrix of all origin-destination areas are
needed. We can forecast the system as whole. This is useful when we can not
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obtain any additional information on determinants, which influence commuting

behaviour (e.g. socio-economic data).

Forecasts made by both models can be used in urban planning, road

construction, regional development projects and other projects.

Not all models introduced in this thesis were applied. We suppose that he
created model forms, their estimation and so their results can be further

improved.

In gravity model estimation, other estimation methods could be used (for
example spatial econometrics) and then be compared to the used ones. More
explanatory variables can be introduced into the model to better explain socio-
economic situation influencing commuting patterns. A special focus can be set
on border effects. Border effects play probably a very important role in
commuting behaviour in Western Slovakia, as the most part if it lies next to
state borders. Special discussion on the problem is to be a subject of another

paper.

In entropy problem, the disaggregated model can be used for tracking traffic
flow changes. This is important, as commuting flows vary in time and "dynamic"

system could better describe the commuting system.
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Index of Used Signs

Tj - number of commuters commuting from region | to region J
T - total number of commuters
dj - distance between origin | and destination J
t; - travelling time between origin | and destination J
cj - travelling cost between origin | and destination J
C - total travelling costs (C=) > c,.T,)
i=1 j=1

k - constant term
W; - mass of region | (given by population, number of emplyees, ...)
n - number of regions
W - entropy function (W = H(N))
N - number of microstates in entropy function
Uj - utility function, gives utility of commuting from region | to region J
F(cj) - distance deterrence function, as function of commuting costs
O; - origin constraint for region | (O, = ZTU )

j=l
D; - destination constraint for region J (D, = ZTU. )

i=1

wj - stochastic term

ESTIMATION VARIABLES

commuter - number of commuters

commuter1 = commuter -1

C - constant

BA - Bratislava

NBR - neighbouring region

sum_from - number of outgoing commuters from given region
sum_to - number of in-commuting commuters to given region
time - travelling time

av_wage_rate rate of average wage between each pair of origin

and destination
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