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2004 SOŇA KILIANOVÁ
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Introduction
In the last decades, we could observe rapidly expanding trading of financial deriva-
tive securities in financial markets. Mathematical modelling in finance as well as
empirical analysis draw attention from researchers from a wide spectrum of dis-
ciplines, ranging from mathematics and statistics over operations research to eco-
nomics.

In this paper, we focus on a special class of financial derivatives. We consider
the pricing of European type of options whose values are determined by the prices
of several underlying assets. Stock index options are a typical example of such a
financial instrument. This paper deals with a theoretical framework which can be
applied to index derivative pricing.

In the first chapter we explain the main characteristics of indices and introduce
the mostly known examples such as the Dow Jones Industrial Index or the S&P 500
Index.

Next, we recall the generalized Black-Scholes equation derived in Kwok’s book
[6]. This equation governs the price of an option with multiple underlying assets
where the asset prices all follow the lognormal distributions. We derive an analyt-
ical solution to the Black-Scholes equation consisting of solving an n-dimensional
integral where n denotes the number of undelying assets.

Because of the practical uselessness of the analytical solution for indices with
many underlyings (for example n = 500 when considering the S&P 500), several
numerical attempts to solve this high-dimensional problem occurred worldwide.
We can mention for example methods using Monte Carlo simulation ([10],[7]) or
an algebraic approach ([8]).

In the third chapter, we introduce the additive operator splitting (AOS) method
known mainly from image processing. Using this technique leads to the decom-
position of the multi-dimensional problem into several one-dimensional problems,
which can be solved very efficiently. We apply the AOS method to solve the Black-
Scholes equation instead of solving a high-dimensional integral which is the ana-
lytical solution to this equation.

Finally, we pay attention to estimation of the error of the AOS scheme. We
show that the use of this method generates (when choosing the appropriate spatial
discretization step h and the time-step k) an error of the order O(h2) when compar-
ing to a precise analytical solution to a parabolic differential equation.



1 Indices and their derivatives
In this chapter, we explain the basic terminology such as an index, a derivative and
an index derivative. We introduce the main ways of index composing and deal with
the mostly known indices in more detail. Next, we characterize the index options.
The text is supplemented by tables and figures showing the real data on some indices
and options on indices, in order to present briefly the current situation in the world
market. Sources [9] and several internet sites were used1.

1.1 What indices are
A portfolio encompassing all possible (or many) securities would be too broad to
measure. Proxies such as stock indices have been developed to serve as indicators
of the overall market’s performance. In addition, specialized indices have been
developed to measure the performance of more specific parts of the market, such as
small companies.

It is important to realize that a stock price index by itself does not represent an
average return to shareholders. By definition, a stock price index considers only the
prices of the underlying stocks and not the dividends paid. Dividends can account
for a large percentage of the total investment return.

One characteristic that varies among stock indices is how the stocks comprising
the index are weighted in the average. Even if no explicit weighting is applied
when calculating an average, there may be an implicit one. While a one dollar price
change in one stock in a simple stock price index will have the same effect as a one
dollar change in any other stock, a given percentage increase of a higher price stock
influences the index more than a corresponding percentage increase of a lower price
stock. For example, a 1% change in a $ 100 stock will change the index more than
a 1% change in a $ 10 stock. For this reason, indices that are based on the simple
summation of the stock prices are referred to as price-weighted.

As an example we can mention one of the mostly known indices at all, the
American Dow Jones Industrial Average. The Japanese Nikkei 225 is constructed
in a similar way.

In a price-weighted index, a change in the stock price of the largest company in
the index would influence the average no more than an equal change in the stock

1

http://money.cnn.com/markets/world markets.html
http://quote.cboe.com
http://www.neatideas.com/djia.htm
http://www.sec.gov/answers/indices.htm
http://www.theponytail.net/DOL/DOLnode8.htm
http://www.quickmba.com/finance/invest/indices.shtml
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price of the smallest company in the index. However, the larger company’s per-
formance will have a greater impact on the economy. To consider the size of the
company, a market capitalization weighted index (or value-weighted index) can be
used, in which a company’s impact on the index is proportional to the size of the
company.

The majority of the main world indices is created in this way. We can name
for example the Standard & Poor’s 500 Index, NASDAQ Composite Index, DAX
Index, Wilshire 5000 Index, London FTSE, MSCI indices, Czech PX 50 and Slovak
SAX.

Some indices do not weight for market capitalization, but do adjust for price dif-
ferences to remove the implicit price weighting. This unweighted method tracks the
performance of an index in which equal dollar amounts are invested in the underly-
ing stocks. Some consider an unweighted index to be a good indicator of a market’s
performance from the perspective of the investor who places an equal amount of
money in each stock in his or her portfolio, regardless of its market capitalization.
However, if every investor placed an equal amount of money in each investment,
relatively few investors would own small-cap stocks, so an unweighted index would
not reflect the portfolio performance of the average investor when all investors are
considered.

1.2 Some of the more commonly-used indices
There are hundreds of indices that are designed to measure the broad market or a
specific part of it.

The Dow Jones Industrial Average (DJIA) is a price-weighted index and is the
most widely quoted stock index. It consists of 30 American ”blue chips” (stocks
of great American companies) which are the best representatives of the American
economy. The Index includes a wide range of companies from financial services
companies over computer companies to retail companies, but does not include any
transportation or utility companies, which are included in separate indices. The
stocks included in the DJIA are not changed often.

The Index was created by Charles Dow in 1896 and is now the historically oldest
stock index. The original index comprised only twelve stocks including General
Electric, which as the only one can be still found in this index. In 1916, the DJIA
was extended into twenty stocks, and this number increased to 30 in 1928.

The Dow Jones Industrial Average uses a divisor to adjust for events that result
in no change in a company’s value but that would otherwise influence the index.
One such event is a stock split; another is the replacement of one company in the
index by another. While this adjustment does not result in a change in the index
value when a stock splits, because the index is price-weighted newly split stock
will have a lower price and therefore less influence on the index.
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Figure 1: The evolution of the DJIA Index from March 2000 to February 2001.
Source: BigCharts.com, February 16, 2001

The Dow Jones Industrial Average is calculated by the following formula:

DJIA =

∑30
i=1 Si

Divisor
(1)

where Si is the current market price of stock i.
The DJIA Index followed the evolution of the overall American stock market

very precisely.

Standard & Poor’s 500 Index is a capitalization-weighted index of 500 stocks
intended to be a representative sample of leading companies in leading industries
within the U.S. economy. Stocks in the Index are chosen for market size (large-
capital), liquidity, and industry group representation. The S&P 500 Index includes
industrial, utility, transportation, and financial stocks. It is widely used as a bench-
mark by institutional investors.

Except the American companies, the S&P 500 Index contains also some Cana-
dian and only two European companies: Royal Dutch Petroleum and Unilever.
More than 85 per cent of the them are traded in New York Stock Exchange (NYSE),
the remainder mostly in NASDAQ and only a slight number in American Stock Ex-
change (AMEX).
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Table 1: Currently mostly used stock indices, March 22, 2004 (Close of day)
Source: http://www.neatideas.com/djia.htm

Indicator Value
DJIA 10064,75
S&P500 1095,40
NASDAQ Composite 1909,90
Russell 2000 568,99
Nikkei 225 11318,50
FTSE 100 4333,80
DAX 3729,23

The formula for computing the S&P 500 reads as:

SP =

∑500
i=1 SiQi

Divisor
(2)

where Si is the current market price of stock i, Qi is the number of stocks emitted
in the market.

Similarly as for DJIA, the divisor’s function is to compensate the unfavorable
influences of the corporate phenomena.

Deutscher Aktien Index (DAX) is composed of thirty German ”blue chips”.
It belongs to the capital-weighted indices. It is calculated by the same rules as the
S&P500.

A more detailed description of indices characteristics and their construction can
be found in [9] or on internet web sites.

In summary, the index value is a weighted sum of current stock prices where
weights are either equally distributed (DJIA) or depend on the number of emitted
stocks (S&P 500, etc.). In general, the index value I can be expressed as

I =
n∑

i=1

wiSi

where wi are weights corresponding to the index definition, Si are the prices of n
underlying stocks.



1 INDICES AND THEIR DERIVATIVES 8

1.3 Current stock indices
At this place we present the values of some world stock indices. Figure 1 shows
the time evolution of the daily values of the Dow Jones Industrial Average (DJIA)
in the year 2000 and the beginning of 2001. We can observe its stochastic character
when considering short time periods as well as its stability in 2000. The bottom
part of the figure shows the volume traded. Table 1 shows the current values of the
mostly known indices. Table 2 describes the situation on Asian exchanges. It shows
the current values of the indices and the changes in index values to the given date.
Table 3 deals with European indices.

Table 2: Current Asian stock indices.
Source: http://money.cnn.com/markets/world markets.html

exchange index level change %change date time (ET)
Australia All Ordinaries 3395.70 +10.50 0.31% Mar 25 1:08:56
China Shanghai Comp. 1820.94 -5.40 -0.30% Mar 25 2:09:26
Hong Kong Hang Seng 12520.21 -157.92 -1.25% Mar 25 4:59:00
Indonesia Composite 727.10 -11.69 -1.58% Mar 25 4:03:45
Japan Nikkei 225 11530.91 +165.92 1.46% Mar 25 1:12:42
Japan TOPIX 1160.00 +13.40 1.18% Mar 25 4:05:33
Malaysia Composite 890.14 -5.17 -0.58% Mar 25 4:04:52
New Zealand Top 40 2302.15 +11.97 0.52% Mar 25 0:09:19
Philippines PHS Composite 1393.12 +3.25 0.23% Mar 24 23:38:20
Singapore Straits Times Ind. 1830.40 -4.89 -0.27% Mar 25 4:10:54
South Korea KOSPI 853.38 -8.34 -0.97% Mar 25 2:06:09
South Korea KOSPI 200 112.16 -1.02 -0.90% Mar 25 2:06:55
Taiwan Weighted 6156.73 -56.83 -0.91% Mar 25 1:09:49
Thailand SET 664.66 -12.95 -1.91% Mar 25 5:01:42

1.4 The index derivatives
A derivative is any financial instrument whose payoffs depend in a direct way on
the value of an underlying variable at a time in the future. This underlying variable
is also called the underlying asset, or just the underlying. Examples of underlying
assets include financial asset, commodity, another derivative, index, interest rate,
and many others.

Usually, derivatives are contracts to buy or sell the underlying asset at a future
time, with the price, quantity and other specifications defined today. Contracts can
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Table 3: Current European stock indices.
Source: http://money.cnn.com/markets/world markets.html

exchange index level change %change date time (ET)
Amsterdam AEX Index 334.53 +8.20 2.51% Mar 25 11:40:00
Brussels Bel 20 2346.82 +25.27 1.09% Mar 25 12:03:00
Frankfurt DAX 3811.92 +85.85 2.30% Mar 25 11:45:00
London FTSE 4373.60 +64.20 1.49% Mar 25 11:36:00
Paris CAC 3570.40 +51.95 1.48% Mar 25 12:01:00
Switzerland Market Index 5592.30 +88.30 1.60% Mar 25 11:32:00

be binding for both parties or for one party only, with the other party reserving
the option to exercise or not. If the underlying asset is not traded, for example
if the underlying is an index, some kind of cash settlement has to take place. A
cash settlement is a process by which the terms of an option contract are fulfilled
through the payment or receipt in dollars of the amount by which the option is in-
the-money as opposed to delivering or receiving the underlying stock. Derivatives
are traded in organized exchanges as well as over the counter (OTC derivatives).
Examples of derivatives include forwards, futures, options, caps, floors, swaps, and
many others. By forming portfolios utilizing a variety of derivatives and underlying
assets, one can substantially reduce her risk exposure, when an appropriate strategy
is considered.

Derivative contracts provide an easy and straightforward way to both reduce
risk (hedging), and to bear extra risk (speculating). As noted above, in any market
conditions every security bears some risk. Using active derivative management
involves isolating the factors that serve as the sources of risk.

1.4.1 Index options

An index call (put) option is a right to buy (sell) an index in the beforehand (at
time t = 0) determined exercise price E, to the given expiration date t = T . The
European option can be exercised at the expiration date only, unlike the American
option which can be exercised at any time up to the date the option expires.

Each option (as well as each derivative) is characterized by a payoff function.
If the index value I is compounded from several underlying stocks, I =

∑n
i=1 wiSi

where wi > 0 are the index weights, then for the value of a Call option at expiry T
we have

VCall(I, T ) = max(I − E,O) . (3)
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Table 4: Call options on Dow Jones Industrial index DJX-E (CBOE) from Mar
29,2004 at 11:16 ET. The price of DJX was 103.33, i.e. 10333 points.

Calls Last Sale Net Bid Ask Vol Open Int

04 Apr 96.00 (DJV DR-E) 7.10 +0.70 7.20 7.60 3 713
04 Apr 97.00 (DJV DS-E) 4.60 pc 6.20 6.60 0 180
04 Apr 98.00 (DJV DT-E) 5.20 +0.40 5.30 5.70 1 1318
04 Apr 99.00 (DJV DU-E) 3.90 pc 4.40 4.70 0 688
04 Apr 100.0 (DJV DV-E) 3.60 +0.80 3.50 3.70 79 13636
04 Apr 101.0 (DJV DW-E) 2.80 +0.80 2.65 2.90 183 3773
04 Apr 102.0 (DJV DX-E) 2.00 +0.60 1.90 2.10 278 4728
04 Apr 103.0 (DJV DY-E) 1.35 +0.45 1.25 1.40 89 11608
04 Apr 104.0 (DJV DZ-E) 0.85 +0.30 0.70 0.90 676 10440
04 Apr 105.0 (DJV DA-E) 0.40 +0.15 0.35 0.45 128 7936
04 Apr 106.0 (DJV DB-E) 0.15 – 0.15 0.20 156 24256
04 Apr 107.0 (DJV DC-E) 0.10 – 0 0.15 10 5920
04 Apr 108.0 (DJV DD-E) 0.05 – 0 0.15 50 4642
04 Apr 109.0 (DJV DE-E) 0.05 pc 0 0.15 0 700
04 Apr 110.0 (DJV DF-E) 0.15 pc 0 0.15 0 5013
04 May 96.00 (DJV ER-E) 7.60 pc 7.50 7.90 0 100
04 May 97.00 (DJV ES-E) 0 pc 6.60 7.00 0 0
04 May 98.00 (DJV ET-E) 0 pc 5.80 6.20 0 0
04 May 99.00 (DJV EU-E) 5.10 pc 5.00 5.40 0 20
04 May 100.0 (DJV EV-E) 3.40 pc 4.20 4.50 0 704
04 May 101.0 (DJV EW-E) 3.60 +0.40 3.40 3.70 3 206
04 May 102.0 (DJV EX-E) 2.35 pc 2.75 3.00 0 777
04 May 103.0 (DJV EY-E) 2.10 +0.15 2.15 2.40 1 2886
04 May 104.0 (DJV EZ-E) 1.35 pc 1.65 1.85 0 1776
04 May 105.0 (DJV EA-E) 1.30 +0.25 1.20 1.30 2 3474
04 May 106.0 (DJV EB-E) 0.80 +0.10 0.80 1.00 200 3340
04 May 107.0 (DJV EC-E) 0.60 +0.05 0.50 0.65 7 2234
04 May 108.0 (DJV ED-E) 0.40 +0.10 0.30 0.40 60 3282
04 May 109.0 (DJV EE-E) 0.20 pc 0.15 0.35 0 1140
04 May 110.0 (DJV EF-E) 0.15 pc 0.05 0.25 0 4319

For a Put option we have the payoff

VPut(I, T ) = max(E − I, O) . (4)

We will talk about the payoff functions in more detail in Section 2.1.3.
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One of the biggest option exchanges in the world is the Chicago Board Op-
tions Exchange (CBOE), founded in 1973. The European counterpart of CBOE is
EUREX, founded in 1998.

Several rules are applied to index options. These are the general rules concern-
ing the trading conditions. These rules are not same for all indices. The character-
istics of the options on DJIA, S&P 500, or Dow 10 are the following ([9]):

- the basic element is a hundredth part of the index value,

- the option price is given in decimal numbers and one point equals 100 USD
(or another currency),

- the minimal price change is 0.05 (5 USD) for those with value less than 3.0,
and 0.1 (10 USD) for the others,

- the last trading day is one day (usually Thursday) before the third Friday in
the month of expiration,

- the expiration date is Saturday after the third Friday in the month of expira-
tion,

- the expiration cycle consists of the three nearest months, longer cycles are
based on the quartal shift,

- index options are cash-settled, which means that, when exercising the option,
the owner has not right to buy (sell) the index for the strike price, but only the
financial settlement is applied, whereby the owner gains the money amount of
the difference between the strike price and the current index value multiplied
by 100,

- the opening index value of the day before expiration (usually Friday) is taken
to be the current index value used for calculating the settlement rate.

Apart from the plain vanilla contracts which are American or European, a lot
of other exotic options have appeared recently, mostly as OTC contracts. These
include Asian options, digital options, lookback options, etc.

In Table 4 we present the values of Call options on Dow Jones Industrial index
from March 29, 2004. The price of DJX was 103.33, i.e. 10333 points. The
table comes from the internet site http://quote.cboe.com. The column ”Last Sale”
shows the price for which the last sale took place. The column ”Net” means the
net change in the index value. ”Bid” means the price at which a buyer is willing to
buy an option. ”Ask” means the price at which a seller is offering to sell an option.
”Vol” denotes the volume of transactions done. ”Open Int” means Open Interest,
i.e. the number of outstanding option contracts in the exchange market.



2 Stock index derivative pricing model

2.1 The n-dimensional Black-Scholes equation
Let us consider an European option price of which depends on prices of n risky
assets and on the time to expiry τ . The goal of this section is to recall a derivation
of a mathematical model describing the price evolution of this derivative.

The derivation process consists of two steps. At first we find a stochastic equa-
tion describing the evolution of the derivative value V in dependance on the time t
and the prices Si, i = 1, ..., n of assets comprised in the index. Details of the deriva-
tion can be found in Kwok’s book [6]. Then we will construct a self-financing port-
folio comprising assets, options on these assets and riskless bonds. We shall extend
the one-asset case considered in [12].

2.1.1 A stochastic equation for a derivative value

Now, our goal is to derive a stochastic differential equation for the index derivative
value.

Let Si, i = 1, 2, ..., n, be the price of the asset i and V (S1, S2, ..., Sn, τ) the
value of the derivative on a given set of assets (where τ is the time to expiration).
Assume that the asset prices behave according to lognormal diffusion processes:

dSi
Si

= µidt+ σidZi, i = 1, 2, ..., n, (5)

where µi and σi mean the expected rate of return and the volatility of asset i, dZi is
the Wiener process’ differential for stock i. Let ρij indicate the correlation coeffi-
cient of dZi and dZj ,

E(dZidZj) = ρijdt, i, j = 1, 2, ..., n, i 6= j. (6)

Each process Zi can be considered as a linear combination of Wiener processes wk
with independent increments, k = 1, 2, ..., n . Thus

dZi =

n∑

k=1

σ̃ikdwk, i, j = 1, 2, ..., n,

with

E(dwidwj) =

{
dt i = j
0 i 6= j.
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Then

E(dZidZj) =
n∑

k=1

n∑

l=1

σ̃ikσ̃jlE(dwkdwl) =
n∑

k=1

σ̃ikσ̃jkdt.

Therefore the correlation coefficients satisfy

ρij =

n∑

k=1

σ̃ikσ̃jk, i, j = 1, 2, ..., n, i 6= j.

Lemma 2.1 (Itô lemma for functions with a vector argument) Let f = f(x, t) :
Rn × R be a smooth function of a vector argument x = (x1, ..., xn)T . Let the
variables xi, i = 1, 2, ..., n, satisfy a system of stochastic differential equations:

dxi = µi(x, t)dt+

n∑

k=1

σ̄ik(x, t)dwk

where w = (w1, w2, ..., wn)T is Wiener processes’ vector whose components have
increments independent of each other. In a vector form it reads as follows:

dx = µ(x, t)dt+K(x, t)dw

where K(x, t) = {σ̄ij(x, t)}i,j=1,...,n is an n × n matrix. Then the first differential
of f is given by

df =

(
∂f

∂t
+

1

2
Tr(KT∇2

xfK)

)
dt+∇xfdx

where ∇xf is the gradient of the function f and Tr(KT∇2
xfK) =

∑n
i,j=1

∂2f
∂xi∂xj∑n

k=1 σ̄ikσ̄jk.

In our case we have µi(x, t) = µiSi, σ̄ik(x, t) = σiσ̃ikSi, and according to
Lemma 2.1

dV =

(
∂V

∂t
+

1

2

n∑

i,j=1

∂2V

∂Si∂Sj
σiσjSiSj

n∑

k=1

σ̃ikσ̃jk

)
dt+

n∑

i=1

∂V

∂Si
dSi ,

so the price of a derivative satisfies the stochastic differential equation

dV =
∂V

∂t
dt+

n∑

i=1

∂V

∂Si
dSi +

1

2

n∑

i=1

n∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
dt . (7)
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2.1.2 Construction of a riskless portfolio

Our next step is construction of a riskless portfolio consisting of a certain number
of several kinds of assets, options on these assets, and zero coupon riskless bonds.
The case of a portfolio consisting of a certain number of one asset, options on this
unique asset, and zero coupon riskless bonds, is developed in [12]. We will follow
the three economic fundamentals of the classical Black-Scholes theory which are
the zero increase in the investment, a self-financing portfolio, and a risk averse
investor. The condition of zero increase in investment means that the portfolio
elements are dynamically bought and sold so that no more investment is needed
to maintain the zero riskiness of the portfolio. The condition of a self-financing
portfolio means that a purchase or a sale of one portfolio element is compensated
by a sale or a purchase of another one.

The elements of our portfolio at time t are: QV pieces of options with price
V , the number QSi of assets i of price Si (i = 1, ..., n), and the value B of zero
coupon riskless bonds. Then the assumption of the zero increase in investment can
be expressed as

i)
∑n

i=1 SiQSi + V QV +B = 0 ,

and the condition of a self-financing portfolio can be written as

ii)
∑n

i=1 SidQSi + V dQV + δB = 0

where dQSi , dQV and δB mean the change in the number of assets, the number
of options, and the change of the value of riskless bonds contained in the portfolio
needed for self-financing the portfolio.

By differentiating i) we obtain

n∑

i=1

(SidQSi + dSiQSi) + dV QV + V dQV + dB = 0.

The continuously compounded bonds follow the equation dB = rBdt. They are
also used for the self-financing mechanism of the portfolio. Because of that the
total change of the value of the bonds is dB = rBdt + δB. Using this knowledge
and condition ii) we realize that

n∑

i=1

dSiQSi + dV QV + rBdt = 0
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must hold. Proceeding by replacing dSi and dV with (5) and (7), after some simple
rearrangements we obtain

µ̃dt+
n∑

i=1

(σiSiQSi +
∂V

∂Si
σiSiQV )dZi = 0

where

µ̃ =
∑

i

µiSiQSi +
∂V

∂t
QV +

∑

i

∂V

∂Si
µiSiQV +

+
1

2

∑

i,j

ρijσiσjSiSj
∂2V

∂Si∂Sj
QV + rB . (8)

In order to achieve a riskless portfolio we will eliminate all stochastic terms in the
last equation by assuming

σiSiQSi +
∂V

∂Si
σiSiQV = 0, i = 1, 2, ..., n.

Then the relation for the number of assets i and the number of options reads
QSi

QV
= −∂V

∂Si
, i = 1, 2, ..., n. (9)

With such a composition of the portfolio we can eliminate its risky part. Conse-
quently, µ̃ = 0. After dividing (8) by nonzeroQV and substitutingB = −∑i SiQSi−
V QV from i) we obtain

∂V

∂t
+

1

2

n∑

i=1

n∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
+ r

n∑

i=1

Si
∂V

∂Si
− rV = 0 . (10)

By replacing time t by time to expiry τ (i.e. τ = T − t where T is the expiration
time) we have

∂V

∂τ
=

1

2

n∑

i=1

n∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
+ r

n∑

i=1

Si
∂V

∂Si
− rV , (11)

0 < S1, ..., Sn <∞, τ > 0.

Equation (11) is called the generalized n−dimensional Black-Scholes partial
differential equation describing the evolution of the price V of a derivative in time.
Notice that the equation does not depend on expected rates of return µi of the assets.
For different types of derivatives different initial conditions at τ = 0 have to be
added to equation (11). The initial conditions to (11) are the final conditions at
t = T to (10), i.e. the terminal conditions (payoff functions) of the derivatives.

Based on the partial differential equations theory it is necessary to add also the
boundary conditions to equation (11) resp. (10).
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2.1.3 The terminal conditions

The terminal (payoff) conditions to the Black-Scholes equation (10) are determined
by the type of a derivative and its specifics. These conditions are the functions of
the derivative value in dependance of the index value at the expiry time T.

In the case of a Call option the payoff function read as:

V (S, T ) = max

((∑

i

wiSi

)
− E, 0

)
(12)

where wi are weights corresponding to the index definition, E is the exercise price
of the index. The following idea is the reason for a Call option payoff function to
have the form (12): if the current index value

∑
iwiSi at time T exceeded the value

E, the option premium would be the difference between the current value
∑

i wiSi
of the index and the exercise value E, i.e.

∑
i wiSi − E. On the other hand, if the

current value does not exceed the exercise value E, we do not exercise the option,
so it has a zero value.

We can follow a similar idea when deriving the payoff function for a Put option.
If the current value

∑
i wiSi of the index at time T is greater than the exercise value

E, the option will not be exercised, thus its value is zero. On the other hand, if the
current index value

∑
i wiSi is less than the exercise valueE, the value of the option

at the expiry time t = T is equal to E−∑i wiSi. Hence, the terminal condition for
a Put option is the function

V (S, T ) = max

(
E −

(∑

i

wiSi

)
, 0

)
. (13)

2.2 Analytical solution to the Black-Scholes equation
In this section we focus on the analytical solution to the Black-Scholes partial dif-
ferential equation (11) with an arbitrary initial condition, as it is done in [6]. We
shall look for the solution in the convolutionary form

V (S, T − τ) = e−rτ
∫

Rn
V (ξ, T )ψ(ξ; S, τ)dξ (14)

where S = (S1, S2, ..., Sn)T and ψ(ξ; S, τ) is a function of an n−dimensional vari-
able ξ = (ξ1, ξ2, ..., ξn)T .

Seeking for the function V (S, τ) of the form (14) and satisfying (11) is equiva-
lent to the problem of finding a function ψ solving

{
∂ψ
∂τ

= 1
2

∑n
i=1

∑n
j=1 ρijσiσjSiSj

∂2ψ
∂Si∂Sj

+ r
∑n

i=1 Si
∂ψ
∂Si

ψ(ξ; S, 0) = δ(ξ − S)
(15)
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where

δ(x) =

{
0 x 6= 0
+∞ x = 0

represents the Dirac distribution.
We can easily prove this simply by substituting (14) into (11) and by recognizing

that the function V (ξ, T ) in (14) is arbitrary.

We apply some transformations of variables on function ψ with effort to trans-
form equation (15) to a one with a known solution. More precisely, ∂ψ

∂τ
= 1

2

∑
i
∂2ψ
∂x2
i
.

At first we adopt the following change of variables:

yi =
1

σi

(
r − σ2

i

2

)
τ +

1

σi
lnSi , i = 1, 2, ..., n, (16)

and put Φ(y, τ) = ψ(S, τ) where y = (y1, y2, ..., yn)T . For partial derivatives we
obtain the relations

∂ψ

∂τ
=

n∑

i=1

∂Φ

∂yi

∂yi
∂τ

+
∂Φ

∂τ
=
∂Φ

∂τ
+

n∑

i=1

1

σi

(
r − σ2

i

2

)
∂Φ

∂yi
,

∂ψ

∂Si
=
∂Φ

∂yi

∂yi
∂Si

=
1

σiSi

∂Φ

∂yi
, i = 1, 2, ..., n,

∂2ψ

∂Si∂Sj
=

1

σiσjSiSj

∂2Φ

∂yi∂yj
, i, j = 1, 2, ..., n, i 6= j,

∂2ψ

∂S2
i

= − 1

σiS2
i

∂Φ

∂yi
+

1

(σiSi)2

∂2Φ

∂y2
i

, i = 1, 2, ..., n,

and then (15) becomes an equation with constant coefficients

∂Φ

∂τ
=

1

2

n∑

i=1

n∑

j=1

ρij
∂2Φ

∂yi∂yj
, −∞ < yi <∞, τ > 0 . , (17)

This equation can be rewritten in the following matrix form:

∂Φ

∂τ
=

1

2

(
∂
∂y1
, ∂

∂y2
, · · · , ∂

∂yn

)
R




∂
∂y1
∂
∂y2

...
∂
∂yn


Φ (18)
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where R is an n × n symmetric matrix whose elements are Rij = ρij, i, j =
1, 2, ..., n, i 6= j. The diagonal entries are taken to be 1.

The matrix R is always positive semidefinite. Henceforth, we will assume that
R is positive definite. This is the case when stochastic processes {dZi, i = 1, ..., n},
are not perfectly correlated. It follows from the matrix theory that there exists an
orthogonal matrix Q such that

QTRQ = Λ

where Λ is a diagonal matrix whose entries are the eigenvalues of R.

Aiming to eliminate the matrix R from (18) it is required to apply such a trans-
formation of the variable y = (y1, y2, ..., yn)T into a new variable x = (x1, x2, ...xn)T

by which for the ”old” function Φ and the new one (after transforming) Φ̃ the rela-
tion

(
∂Φ̃
∂x1
, ∂Φ̃

∂x2
, . . . , ∂Φ̃

∂xn

)T
= Λ

1
2 QT

(
∂Φ
∂y1
, ∂Φ

∂y2
, . . . , ∂Φ

∂yn

)T

holds, because then (18) changes into

∂Φ̃

∂τ
=

1

2

(
∂
∂x1
, ∂

∂x2
, . . . , ∂

∂xn

)




∂
∂x1
∂
∂x2...
∂
∂xn


 Φ̃ .

Therefore we look for a transformation of y = (y1, y2, ..., yn)T into x = (x1, x2,
..., xn)T such that for the gradients of the original function Φ and the function Φ̃ the
following identity holds:

(∇xΦ̃)T = Λ
1
2 QT (∇yΦ)T (19)

where Φ̃(x(y)) = Φ(y), and x = x(y) is the required transformation. We have

(∇yΦ)T =
( ∑n

j=1
∂Φ̃
∂xj

∂xj
∂y1
, . . . ,

∑n
j=1

∂Φ̃
∂xj

∂xj
∂yn

)T
=

=

n∑

j=1

∂Φ̃

∂xj

(
∂xj
∂y1
, . . . ,

∂xj
∂yn

)T
=

=




∂x1

∂y1
, ∂x2

∂y1
, · · · , ∂xn

∂y1

...
...

∂x1

∂yn
, ∂x2

∂yn
, · · · , ∂xn

∂yn







∂Φ̃
∂x1...
∂Φ̃
∂xn


 = JT (∇xΦ̃)T
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where J denotes the Jacobi matrix of the transformation x = x(y). Comparing
with (19) we obtain

J = Λ−
1
2 QT ,

which implies that the transformation x = x(y) of variables has the form

x = Λ−
1
2 QTy. (20)

We can apply it because R is positive definite, i.e. all its eigenvalues are positive
(nonzero). By applying it in (18) we obtain the following n−dimensional diffusion
equation

∂Φ̃

∂τ
=

1

2
∆Φ̃ (21)

where ∆ is the so called Laplace operator defined as ∆Φ̃ =
∑n

i=1
∂2Φ̃
∂x2
i

.

Since the solution to (21) is generally known, we subsequently obtain a function
satisfying (15) by returning to the original variables. In [13] it is shown that the
fundamental solution to (21) is

Φ̃(x, τ) =
1

(2πτ)
n
2

exp(− 1

2τ
xTx) (22)

and it satisfies the initial condition

Φ̃(x, 0) = δ(x) =

{
0 x 6= 0
+∞ x = 0

representing the Dirac distribution. By transforming x back to y we obtain the
function

Φ(y, τ) = Φ̃(Λ−
1
2 QTy, τ) =

1

(2πτ)
n
2

exp(− 1

2τ
yTR−1y) (23)

solving (18) with the initial condition

Φ(y, 0) =
√

det R δ(y).

Let us apply the following substitution:

wi =
ln ξi − lnSi − (r − σ2

i

2
τ)

σi
, i = 1, 2, ..., n, (24)
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whose Jacobian is (
∏

i σi
∏

i ξi)
−1. Then

ψ(ξ; S, τ) =
1

(2πτ)
n
2

√
det R

∏
i σi
∏

i ξi
exp (− 1

2τ
wTR−1w) (25)

satisfies (15) with the initial condition

ψ(ξ; S, 0) =

{
0 ξ 6= S
+∞ ξ = S.

But then the function

W (S, τ) =

∫

Rn
ψ(ξ; S, τ)W0(ξ)dξ (26)

solves (15) with arbitrary initial condition W (S, 0) = W0(S). Finally, the function

V (S, T − τ) = e−r(T−τ)

∫

Rn
ψ(ξ; S, τ)V0(ξ)dξ (27)

is the desired solution to the Black-Scholes partial differential equation (11) with
the initial condition V (S, T ) = V (S, T − 0) = V0(S). We have found a solution
in the form of the terminal function in convolution with the solution of parabolic
equation (15).

Hence, if we want to calculate the value of a derivative on an index, we have to
solve integral (27). For example, if the index is comprised of n = 500 stocks, we
should solve a 500-dimensional integral. This is a very difficult problem. In addi-
tion, the function V0(ξ) appearing in the integral expression is in principle arbitrary
and then (27) can become analytically unsolvable.

Therefore, we shall apply an another method for looking for a solution to the
Black-Scholes partial differential equation (11). We will consider the following
form of the solution:

V (S, T − τ) = e−rτψ(S, τ) = e−rτφ(y, τ) = e−rτ φ̃(x, τ) (28)

where φ̃ is a solution to

∂Φ̃

∂τ
=

1

2
∆xΦ̃ . (29)

The following relations for the initial conditions hold:

φ̃(x, 0) = φ(y, 0) = ψ(S, 0) = V (S, T ) = V0(S) .
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The relations between the individual variables are known from (16) and (20):

x = Λ−
1
2 QTy ,

yi = 1
σi

(
r − σ2

i

2

)
τ + 1

σi
lnSi , i = 1, 2, ..., n .

(30)

Then the function V (S, T − τ) solves equation (11).
If we find a solution to (29), the function V (S, T −τ) is easily to obtain by (28).

Therefore, in the following chapter we will focus only on finding a solution to (29),
hence

{
∂Φ̃
∂τ

= 1
2
∆xΦ̃ x ∈ Rn, τ ∈ [0, T ]

Φ̃(x, 0) = Φ̃0(x) x ∈ Rn. (31)



3 Numerical methods
In the previous chapter we derived explicit formula (27) for computing the value
of a derivative whose underlying is not a unique asset but a set of assets. For the
different types of derivatives and their specifications, the initial condition V0(ξ)
(i.e. the payoff function of the derivative) varies. In general, V0(ξ) is an arbitrary
function.

It would be very difficult and time expensive to solve the corresponding n-
dimensional integral for a large dimension n (e.g. n = 100) given by (27), or
even unsolvable. Several methods were applied worldwide to solve this problem.
The most wide-spread is the use of Monte Carlo simulation, presented for example
by Milstein & Shoenmakers ([10]) and Levy ([7]). Lo and Hui adopted an algebraic
approach ([8]). Another approach is applied by Reisinger in [11].

Henceforth, let us concentrate only on looking for a solution to parabolic equa-
tion (29). For simplification of notation, we shall deal with function (32) defined
below. The adjustment of our results for (32) to obtain results for (29) is straight-
forward.

We shall apply the additive operator splitting method to solve (32). First, we
pay attention to the following section, in which we discretize the problem.

3.1 Full space-time discretization
3.1.1 Discretization in time

Have a look at the numerical solution to the general equation
{

∂u
∂τ
−∆u = 0 x ∈ Rn, τ ∈ [0, T ]

u(x, 0) = u0(x) x ∈ Rn. (32)

First, we discretize (32) in time by dividing the time interval [0, T ] into m parts of
equal length k. We denote by uj(x) a numerical approximation of u(x, τ) at time
τj = jk, i.e.

uj(x) ≈ u(x, jk), x ∈ Rn, j = 0, 1, ..., m .

After substituting the time derivative by the time difference

∂u

∂τ
(x, jk) ≈ uj(x)− uj−1(x)

k
,

the semidiscretization of (32) reads as:

uj(x)− uj−1(x)

k
− (Auj)(x) = 0 (33)
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where A represents the Laplace operator ∆, i.e. Au = ∆u =
∑n

i=1
∂2u
∂x2
i
. After

rearranging (33) we obtain

uj = (I− kA)−1uj−1, j = 1, 2, ..., m. (34)

3.1.2 Spatial discretization

Secondly, we discretize the spatial variable in each direction with the same number
d of (internal) dividing points and the spatial step of size h. It means that the whole
problem ”lives” in an n-dimensional cube Ω = (−L, L)n where L is large enough.
Then for the spatial step we have h = 2L

d
. The procedure discussed in the following

sections is not limited to such a spatial discretization but it could lead to a more
complicated scheme with a more general spatial grid. We stick to this simplification
for clarity of the idea.

We put the gridpoints into a sequence in this way: we place the origin of the co-
ordinate system into one of the corners of the cube. The grid is already created (with
the same number of dividing points in each direction). We number the dividing
points on the individual axes, starting with number 1 and continuing ”outwards”.
Each gridpoint has a characteristic consisting of n elements: in the i-th place there is
the order number of the appropriate dividing point in direction i. Thereby we obtain
the names of all gridpoints. In order to present the way of ordering we consider the
following ”low-dimensional” examples for n = 2, d = 3, and n = 3, d = 3 (see
Figure 2).

Figure 2: Spatial grid for a)n = 2, d = 3, b)n = 3, d = 3.
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For n = 2, d = 3 the order of gridpoints is
u11, u21, u31, u12, u22, u32, u13, u23, u33.

For n = 3, d = 3 their order is
u111, u211, u311, u121, u221, u321, u131, u231, u331,
u112, u212, u312, u122, u222, u322, u132, u232, u332,
u113, u213, u313, u123, u223, u323, u133, u233, u333.

We use the central differences for the approximation of the second partial deriva-
tives with respect to the space variables xi, i = 1, ..., n. In the case of n = 2 with the
spatial variable x = (x1, x2) the approximation in a gridpoint with characteristics
(p, q), p, q = 1, ..., d has the form

∂2u

∂x2
1

+
∂2u

∂x2
2

≈ up+1,q + up−1,q + up,q+1 + up,q−1 − 4up,q
h2

,

taking the boundary values u0,., u.,0, ud+1,., u.,d+1, equal to 0. Thus, the matrix rep-
resenting the discretization of the Laplace operator for n = 2, d = 3 is then of the
form

A =
1

h2




−4 1 0 1
1 −4 1 1
0 1 −4 1
1 −4 1 0 1

1 1 −4 1 1
1 0 1 −4 1

1 0 −4 1
1 1 −4 1

1 0 1 −4




where h is the spatial step (same for all components of the spatial variable).

3.1.3 The boundary conditions

We cannot forget the boundary conditions to (32) in the domain Ω = (−L, L)n. For
a single stock Call option (where the stock price S is considered to be in (0,+∞]),
the boundary conditions are ([12]):

V (0, t) = V0(0) = 0,

lim
S→+∞

V (S, t) = V0(S) .
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In the case of index Call option, the boundary conditions will have the form

lim
|S|→0

V (0, t) = V0(0) = 0,

lim
|S|→+∞

V (S, t) = V0(S)

where S = (S1, ..., Sn)T is a vector of prices of the stocks comprised in the index.
In the case of equation (32) in the domain Ω = (−L, L)n, the boundary condi-

tion will be

u(x, τ) = u0(x) (35)

for x ∈ ∂Ω, i.e. for some i with |xi| = L.

3.2 The additive operator splitting technique
After the spatial discretization of (34), the operator A becomes a high-dimensional
matrix. For example, for n = 20 and the number d = 10 of dividing points in the
spatial variable (in each direction), this matrix is of type dn × dn = 1020 × 1020.
That’s a huge number, but the discretization used isn’t very fine. Moreover, for our
purposes we need n to be much greater, e.g. n = 100 for S&P 100 or n = 500 for
S&P 500. To solve the full-discretized problem (34) we had to solve a system of
N = dn linear equations, which is for large n and d in general a very difficult task.
A question arises, how to simplify solving such a high-dimensional problem.

In this section we apply the additive operator splitting method developed in [3],
[16], [17]. This method is widely used in image processing. The application of the
additive operator splitting technique to index derivative pricing resides in finding an
approximate solution to (31) using the AOS scheme and subsequently in applying
the appropriate transformations of the variable x into the variable S given in (30).
We obtain the price of the derivative by using (28).

The main idea of the additive operator splitting method is the following: let us
have operators (or matrices) Bi, i = 1, ..., n. Replace the arithmetical mean by the
harmonic one, i.e.

1

n

n∑

i=1

Bi ←→ n(
n∑

i=1

B−1
i )−1 .

Then the inverse is approximated by

(
1

n

n∑

i=1

Bi)
−1 ←→ 1

n

n∑

i=1

B−1
i .
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Let A =
∑n

i=1 Ai where Ai introduces the second partial derivative with respect to
xi. Then I− kA = 1

n

∑n
i=1 Bi where Bi = I− knAi. The AOS approximation to

(I− kA)−1 is

(I− kA)−1 ←→ 1

n

n∑

i=1

(I− knAi)
−1.

Finally, the AOS-approximation of the time discretization (34) reads as:

ūj =
1

n

n∑

i=1

(I− knAi)
−1ūj−1, ū0 = u0, j = 1, ..., m. (36)

The order of the introduced approximation will be discussed later. Now, notice that
the solution to (36) can be written as

ūj =
1

n

n∑

i=1

v̄ji

where

v̄ji = (I− knAi)
−1ūj−1.

It means that

v̄ji − ūj−1

k
− nAiv̄

j
i = 0

and hence v̄ji is the approximation of the solution to the one-dimensional parabolic
equation





∂v
∂τ
− n ∂2v

∂x2
i

= 0, xi ∈ R, τ ∈ (0, T ),

v(x̃1, ..., x̃i−1, xi, x̃i+1, ..., x̃n, 0) =
= ūj−1(x̃1, ..., x̃i−1, xi, x̃i+1, ..., x̃n), xi ∈ R

(37)

at time k, i.e.

v̄ji (x) ≈ v(x, jk).

However, the solution to (37) can be found in an explicit way

v(x, τ) =

∫

R
G(xi − ξi, τ)v(x1, ..., xi−1, ξi, xi+1, ..., xn, 0)dξi .
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Hence, the approximation of v reads as

v̄ji (x) ≈
∫

R
G(xi − ξi, k)ūj−1(x1, ..., xi−1, ξi, xi+1, ..., xn)dξi (38)

where G(x, τ) is the one-dimensional Green function for (37):

G(x, τ) =
1√

4πnτ
exp

(
− x2

4nτ

)
. (39)

We can finally assemble the AOS approximation scheme for solving (32). It con-
sists of solving the one-dimensional parabolic equations only and uses the AOS
technique. We use the notation ¯̄uj for a solution obtained by this method:

¯̄uj =
1

n

n∑

i=1

¯̄vji , j = 1, 2, ..., m (40)

where

¯̄vji (x) =

∫

R
G(xi − ξi, k)¯̄uj−1(x1, ..., xi−1, ξi, xi+1, ..., xn)dξi (41)

and ¯̄uj−1 = ūj−1.

3.3 The order of the AOS approximation
We proceed by answering the question of the precision of the approximation scheme
(40) derived in the previous section. We shall prove that

‖ūj − uj‖ ≤ const.kν1 , (42)

‖¯̄uj − ūj‖ ≤ const.kν2 (43)

where ν1, ν2 ∈ N and ‖.‖ is a norm, what after putting together gives the estimate
for the norm ‖¯̄uj − uj‖ of the difference between the analytical solution of one-
dimensional parabolic equations constructed by the AOS scheme and the precise
solution to (32).

Now we shall aim to answer the first problem (42). Recall that

uj = Muj−1, j = 1, ..., m,

ūj = Mūj−1, j = 1, ..., m,

where M = (I − kA)−1 and M = 1
n

∑n
i=1(I − knAi)

−1. According to [3], the
following theorem holds. We also recall the proof of this theorem because we need
a precise form of the constant C > 0 appearing below.

At first, we recall the definition of the simultaneously diagonalizable matrices.
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Definition 3.1 ([14]) The set F of matrices A1, ...,An of the same size is simulta-
neously diagonalizable iff each of the matrices inF transforms to a diagonal one by
a common similarity. Thus, matrices A1, ...,An are simultaneously diagonalizable
iff there exists a matrix W (of the same size) with

W−1AiW = Λi , i = 1, ..., n,

where Λi is a diagonal matrix.

Theorem 3.1 ([3]) Let n ∈ N, k ≥ 0, and let A1, ...,An ∈ RN×N be simultane-
ously diagonalizable matrices with eigenvalues in the left half plane. Then there
exists a constant C with

‖M−M‖ ≤ Ck2

where M = (I− kA)−1 and M = 1
n

∑n
i=1(I− knAi)

−1.

Proof 3.1 Based on the assumption of the simultaneous diagonalizability of matri-
ces Ai, i = 1, ..., n, let us diagonalize these matrices by a matrix W consisting of
the eigenvectors of any Ai:

W−1AiW = Λi = diag(λi,j, 1 ≤ j ≤ N)

where Λi are the diagonal matrices composed from the corresponding eigenvalues.
Hence,

W−1(I− nkAi)W = I− nkΛi,

W−1(I− k
n∑

i=1

Ai)W = (I− k
n∑

i=1

Λi),

and subsequently

W−1[(I− k
n∑

i=1

Ai)
−1 − 1

n

n∑

i=1

(I− nkAi)
−1]W =

= (I− k
n∑

i=1

Λi)
−1 − 1

n

n∑

i=1

(I− nkΛi)
−1

is a diagonal matrix where the l-th diagonal entry is given by

ql = Θ(k

n∑

i=1

λi,l)−
1

n

n∑

i=1

Θ(nkλi,l), Θ(x) =
1

1− x.
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The Taylor expansion of the function Θ at x0 = 0 reads as:

Θ(x) = 1 + x +
x2

(1− ξ)3
, ξ = ξ(x) ∈ (0, x).

It yields

ql = 1 + k
n∑

i=1

λi,l +
k2(
∑n

i=1 λi,l)
2

(1− ξ)3
− 1

n

n∑

i=1

(
1 + nkλi,l +

(nkλi,l)
2

(1− ξi)3

)
=

= k2

(
(
∑n

i=1 λi,l)
2

(1− ξ)3
− 1

n

n∑

i=1

(nλi,l)
2

(1− ξi)3

)
=

=: k2g(λ1,l, ..., λn,l).

It is assumed that we can find compact sets Qi contained in the left complex half
plane which enclose all eigenvalues of Ai. Consequently, the continuous function
g attains its maximum on Q := Q1 × ...×Qn,

Ĉ := max{|g(z)|; z ∈ Q}.

We thus have |ql| ≤ Ĉk2 for l = 1, ..., N . The statement follows from

‖(I− k
n∑

i=1

Ai)
−1 − 1

n

n∑

i=1

(I− nkAi)
−1‖ ≤

≤ ‖W‖ ‖W−1‖ ‖(I− k
n∑

i=1

Λi)
−1 − 1

n

n∑

i=1

(I− nkΛi)
−1‖ ≤ Ck2

where

C = Ĉ‖W‖‖W−1‖ . (44)

♦

Later we will prove the validity of the assumptions in Theorem 3.1 for matrices
Ai representing the second partial derivatives with respect to individual variables.
Let us therefore assume that we can apply the above mentioned theorem.

We have

uj − ūj = Muj−1 −Mūj−1 = (M−M)ūj−1 + M(uj−1 − ūj−1)
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and

‖uj − ūj‖ ≤ ‖M−M‖ ‖ūj−1‖+ ‖M(uj−1 − ūj−1)‖

where ‖.‖ is a yet unspecified norm. Introducing notation θ = maxλ∈σ(M)|λ| and
referring to Theorem 3.2 presented below we will realize that

‖uj − ūj‖ ≤ ‖M−M‖ ‖ūj−1‖+ θ‖uj−1 − ūj−1‖.

Next, supposing that

‖ūj‖ < C̃, j = 0, 1, ..., m, (45)

for some C̃ ∈ R, we obtain

‖uj − ūj‖ ≤ (1 + θ + θ2 + ... + θj−1)Kk2

with a constant K = CC̃. Moreover, if θ < 1 then

‖uj − ūj‖ ≤ 1

1− θKk
2. (46)

3.3.1 The forming matrices

For the validity of (46) we have to verify θ < 1. Linear algebra theory defines the
spectral radius of a matrix B as r(B) = supλ∈σ(B) |λ| where σ(B) is the spectrum
of B. By [4] (see also [5]) we have

r(B) = lim
n→∞

n
√
‖Bn‖ = sup

n→∞
n
√
‖Bn‖ . (47)

The next theorem deals with the real symmetric matrices, which as we will see are
our case 2. We recall the proof for the reader’s convenience.

2For more general matrices, the Ljapunov theorem can be used. It shows that (for matrix B with
spectral radius less than 1) there exists an equivalent norm ‖.‖∗ such that ‖B‖∗ < 1.

Theorem. Let B be an N ×N matrix with r(B) < 1. Then there exists a norm ‖.‖∗ on RN such
that

‖B‖∗ = sup
x6=0

‖Bx‖∗
‖x‖∗

= r(B) < 1.

The use of this theorem leads (using similar techniques as in our case) to error estimates too,
although they are of worse quality.
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Theorem 3.2 Let B be a real symmetric N ×N matrix. Let θ = r(B). Then

‖Bu‖ ≤ θ‖u‖ ∀u ∈ RN

where ‖.‖ is the Euclidean norm on RN .

Proof 3.2 First, we consider the case when the eigenvalues of B are simple. Let
e1, ..., eN be the eigenvectors of B. From the matrix theory we know that the
eigenvectors corresponding to simple eigenvalues are orthogonal. Moreover, let
‖ei‖ = 1, i = 1, ..., N .

Let us express the vector u ∈ RN using the vectors of the orthonormal basis
{ei, i = 1, ..., N}:

u =

N∑

i=1

uiei, ui ∈ R.

Then

Bu =
N∑

i=1

uiλiei, ui ∈ R

and exploiting the orthonormality of vectors ei, i = 1, ..., N and the definition of θ,
we have

‖Bu‖2 =

N∑

i=1

u2
iλ

2
i ≤ θ2

N∑

i=1

u2
i = θ2‖u‖2 .

Consequently,

‖Bu‖ ≤ θ‖u‖ .

In the case of multiple eigenvalues, the proof is very similar and the statement
holds. ♦

Our goal is to verify whether there is θ = r(M) < 1 in our case. Let us inves-
tigate the eigenvalues of M = (I− kA)−1 where A =

∑n
i=1 Ai. In the following,

we change the notation of matrix A into A(n) to express the dependance of A on
n. In the previous section we discretized the spatial variable in each direction with
the same number of dividing points d and the spatial step h, and we showed an
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example of the matrix representing the discretization of the Laplace operator for
n = 2, d = 3. Generally, this matrix for arbitrary n, d will have the form

A(n) =
1

h2




H I 0 · · · 0 0
I H I · · · 0 0

0 I H
. . . 0 0

...
... . . . . . . . . . ...

0 0 0
. . . H I

0 0 0 · · · I H




where H = A(n−1) − 2I. The size of the matrix A(n) is N × N,N = dn. In
addition, A(n) =

∑n
i=1 Ai. At the same time,

Ai =
1

h2
(−2I + Si)

where I is the identity matrix of the same type as Ai, and Si (of the dimension
N ×N , too) is a special matrix of the form

Si =




Zi 0 · · · 0
0 Zi · · · 0
...

... . . . ...
0 0 · · · Zi




where Zi is a di×di matrix whose entries are equal to 1 on the (di−1+1)-th diagonal,
direction ”to the right” and ”downwards”; otherwise they are equal to 0. Matrices
Ai represent the second partial derivative with respect to xi.

For eigenvalues λij of each matrix Ai, i = 1, ..., n we have

−4

h2
< λij < 0, j = 1, ..., N. (48)

It can be shown easily:

< Aiv,v >=
1

h2
< (−2I + Si)v,v >=

1

h2
[< −2Iv,v > + < Siv,v >] =

=
1

h2
[−2

N∑

j=1

v2
j + 2

∑

j = 1, ...,N
j 6= pdi − q
p = 1, ..., dn−i

q = 0, 1, ..., di−1 − 1

vjvj+di−1 ] =
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= − 1

h2
[

∑

j = 1, ...,N
j 6= pdi − q
p = 1, ..., dn−i

q = 0, 1, ..., di−1 − 1

(vj + vj+di−1)2 +
∑

j = pdi + 1, ..., pdi + di−1

p = 0, 1, ..., di−1

dn−di

v2
j ] <

< 0 ∀v 6= 0.

The reader can examine this procedure for, say, n = 3, d = 3. Now realize the
following: if we define Ãi = Ai + 4

h2 I, then for the spectrum we have

σ(Ãi) = σ(Ai) +
4

h2
. (49)

In the same way as in the previous case we obtain

< Ãiv,v >=
1

h2
< (2I + Si)v,v >=

1

h2
[< 2Iv,v > + < Siv,v >] =

=
1

h2
[2

N∑

j=1

v2
j + 2

∑

j = 1, ...,N
j 6= pdi − q
p = 1, ..., dn−i

q = 0, 1, ..., di−1 − 1

vjvj+di−1 ] =

=
1

h2
[

∑

j = 1, ...,N
j 6= pdi − q
p = 1, ..., dn−i

q = 0, 1, ..., di−1 − 1

(vj + vj+di−1)2 +
∑

j = pdi + 1, ..., pdi + di−1

p = 0, 1, ..., di−1

dn−di

v2
j ] >

> 0 ∀v 6= 0.

As a direct aftermath of this, all eigenvalues of Ãi are positive and thanks to (49) the
first inequality in (48) is valid. At the same time, we confirmed that the assumption
”eigenvalues belong to the left half plane” from Theorem 3.1 is fulfilled.

We look right now on the second assumption of this theorem, i.e. the simulta-
neous diagonalizability of matrices Ai.

Theorem 3.3 ([2], p.78-80) Let A,B be the real symmetric N ×N matrices. The
necessary and satisfying condition for the orthogonal matrix T with

TTAT = diag(λ1, ..., λN), TTBT = diag(µ1, ..., µN)

to exist, where λ1, ..., λN are the eigenvalues of A and µ1, ..., µN are the eigenvalues
of B, is the commutativity of matrices A a B.
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We recall the proof for reader’s convenience.
Proof 3.3 Suppose that the matrix A has simple eigenvalues. From

Axi = λix
i

and from the commutativity of A,B we have

A(Bxi) = B(Axi) = B(λix
i) = λi(Bxi). (50)

As we can see, Bxi is the eigenvector of A corresponding to the eigenvalue λi.
Because of the simplicity of the eigenvalues, eigenvectors belonging to the same
eigenvalue must be proportional. Hence,

Bxi = µix
i, i = 1, ..., N,

where µi are scalars which have to be the eigenvalues of B. It means that A,B
have the same eigenvectors x1, ...,xN . The matrix T can be taken as

T = (x1,x2, ...,xN).

Now consider the case when λ is an eigenvalue of multiplicity s with the corre-
sponding eigenvectors x1,x2, ...,xs. Then (50) implies

Bxi =
s∑

j=1

cijx
j, i = 1, ..., s ,

for some cij ∈ R. Notice that the matrix C = (cij) is symmetric. It can be deduced
from the orthonormality of vectors xi and the symmetry of B:

< xj,Bxi >= cij =< Bxj,xi >= cji.

Let us concentrate now on the question whether it is possible to construct such
a linear combination of vectors xi which would be the eigenvector of B. Consider
the linear combination

∑s
i=1 aix

i:

B(

s∑

i=1

aix
i) =

s∑

i=1

aiBxi =

s∑

i=1

ai(

s∑

j=1

cijx
j) =

s∑

j=1

(

s∑

i=1

cijai)x
j.

It can be inferred that by choosing ai so that

s∑

i=1

cijai = r1aj, j = 1, ..., s, (51)
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we come to

B(

s∑

i=1

aix
i) = r1(

s∑

i=1

aix
i)

implying that r1 is the eigenvalue of B and
∑s

i=1 aix
i is the appropriate eigenvector.

From (51) we have that r1 is the eigenvalue of C and ai are the components
of the appropriate eigenvector. Hence, if Ts is the s-dimensional orthogonal map
leading the matrix C to the diagonal form, then the vectors zi obtained by




z1

z2

...
zs


 = Ts




x1

x2

...
xs


 ,

which are the images of the orthonormal set of vectors, appear to be the eigenvectors
common to both matrices A,B. Carrying out the analogous mappings belonging to
each multiplicity of the eigenvalue we can construct the matrix T.

The necessity of the statement follows from the fact that two matrices for which

A = Tdiag(λ1, ..., λN)TT , B = Tdiag(µ1, ..., µN)TT ,

commute if T is orthogonal. ♦
Both the theorem and the proof can be found in [2]. But we deal with not

only two matrices, but with a set of n matrices. This situation is the subject of the
following theorem.

Theorem 3.4 ([14], p.77) The set F of normal matrices of the same size commutes
if and only if it is simultaneously unitary diagonalizable (i.e. if each of the matrices
in F transforms to a diagonal one by a common unitary similarity).

Note: The (square) matrix A is called normal if AA∗ = A∗A where A∗ = ĀT .
The real symmetric matrices are a special case of normal matrices.

Hence, in order to prove the simultaneous diagonalizability of matrices Ai rep-
resenting the discretized second partial derivatives we need to show the commuta-
tivity of the couples Ai,Aj, i 6= j. This is a consequence of the following state-
ment.

Theorem 3.5 ([18]) Let f be a positively definite quadratic form, let g a next arbi-
trary quadratic form on the Euclidean space V . Then there exists a base in V such
that f and g become

f(x) = x2
1 + ...+ x2

n,

g(x) = λ1x
2
1 + ...+ λnx

2
n.
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Our matrices Ai, i = 1, ..., n, are negatively definite because their eigenvalues
are negative. Hence, the matrices −Ai, i = 1, ..., n are positively definite. In addi-
tion, they are real and symmetric, and therefore we know from the matrix theory that
each of them is similar to a diagonal matrix by an orthogonal matrix C consisting
of their orthonormal eigenvectors. This means that for Ai there exists C ∈ O(N)
such that

C−1AiC = CTAiC = diag(λi,1, ..., λi,N) =: −Di,

thus

Ai = −C
√

Di

√
DiC

−1.

Then by (3.5)

Aj = −C
√

DiDj

√
DiC

−1

where Dj is a diagonal matrix. Since the diagonal matrices commute, matrices
Ai,Aj commute too.

The commutativity of the mentioned matrices can be clear also intuitively by
realizing the interchangeability of the order of deriving with respect to two different
variables.

It means that all assumptions of Theorem 3.1 are fulfilled, so we really had the
right to use it.

In addition, let us make the following remarks to the assumptions of Theorem
3.1:

i) eigenvalues in the left half plain for each matrix Ai, i = 1, ..., n ensure the
regularity of matrices (I− nkAi) and therefore also their invertibility,

ii) the simultaneous diagonalizability of Ai, i = 1, ..., n and eigenvalues in the
left half plane ensure the regularity and invertibility of (I− k∑n

i=1 Ai),

iii) the assumption of eigenvalues in the left half plane is restrictive to the choice
of matrices Ai, but allows an arbitrary k. On the other hand, for k small
enough the statement holds for arbitrary matrices.

iv) Although the assumption of the eigenvalues belonging to the left half plane
isn’t important for the statement to be true, it is needed to prove the stability
of the numerical scheme.
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Now, return to our goal which is to estimate the eigenvalues µj, j = 1, ..., n of
matrix M = (I − kA)−1. By the Spectral mapping theorem ([4]) we come to a
knowledge that

µj =
1

1− kγj
, j = 1, ..., N,

where γj denotes the eigenvalue of A. We know that γj =
∑n

i=1 λij because the
matrices Ai, i = 1, ..., n are simultaneously diagonalizable. At first we emphasize
the validity of a strengthened version of (48). We know that Sn = {v ∈ Rn; ‖v‖ =
1} is a compact set in Rn, so the function v 7→< Av,v > (which is continuous)
attains its maximum in Sn. Let us label it with δ, and from (48) it follows that
max‖v‖=1 < Av,v >= δ < 0. Hence,

−4

h2
< λij < δ < 0 , i = 1, ..., n, j = 1, ..., N. (52)

Then, for all j, −4n
h2 < γj < nδ < 0 and that yields

0 < µj <
1

1− knδ < 1. (53)

Hereby we proved that θ = r(M) < 1.

3.3.2 Error estimates

We have shown that θ = r(M) < 1 and hence the estimate (46) holds for a constant
K. Now, we proceed with estimating the value of the constantK for which we have
K = CC̃. Let us recall that C is a constant appearing in Theorem 3.1, talking about
the estimate of the norm ‖M −M‖. The constant C̃ originates in the assumption
that ‖ūj‖ < C̃, j = 0, 1, ..., m.

We pay our next attention to estimation of the constant C from Theorem 3.1.
Recall that by (44) from Proof 3.1 the constant C originates from the constant Ĉ =
max{|g(z)|; z ∈ Q} where Q is a compact set in Rn containing all eigenvalues of
matrices Ai, and g is a function defined in the proof. By (52) we have Q = (<
− 4
h2 , δ >)n. Then for function g defined as

g(z) =
(
∑n

i=1 zi)
2

(1− ξ)3
− 1

n

n∑

i=1

(nzi)
2

(1− ξi)3

where zi ∈< − 4
h2 , δ >, i = 1, ..., n, ξ ∈ (k

∑n
i=1 zi, 0), ξi ∈ (nkzi, 0), i =

1, ..., n, the following estimate holds:

g(z) ≤ (n(− 4
h2 ))2

(1− ξ)3
− n

n∑

i=1

δ2

(1− ξi)3
≤
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≤ n2 16

h4
− n2δ2 1

(1− kn(− 4
h2 ))3

≤ n2 16

h4
.

Then for ql from the proof of the theorem we have ql ≤ n2 16
h4k

2 for l = 1, ..., N .
For the next purpose, let us denote the diagonal matrix from the proof whose entries
are ql as Q.

Using the Euclidean norm on RN defined as

‖u‖ =

√√√√ 1

N

N∑

i=1

u2
i (54)

for a vector u ∈ RN , according to the result from the proof we have

‖M−M‖ ≤ ‖W‖‖W−1‖‖Q‖ ≤ n2 16

h4
k2 = Ck2

because W is orthogonal3 and therefore ‖W‖ = ‖W−1‖ = 1. We have shown that
the estimate of the constant C depends on the space-discretization step h and the
number n of underlying assets, and has the value

C = n2 16

h4
. (55)

Next, notice that

‖M‖ ≤ ‖M −M‖ + ‖M‖ ≤ Ck2 + θ

where θ = r(M). Moreover, by (53) we know that θ = θ(k) = 1
1−knδ . The Taylor

expansion of θ = θ(k) in k = 0 yields

θ(k) ≤ 1−O(k) +O(k2)

whereby

‖M‖ ≤ Ck2 + 1−O(k) +O(k2) = 1− O(k) +O(k2) < 1

for k << 1. It is obvious that

‖ūj‖ ≤ ‖M‖j‖ū0‖ ≤ ‖ū0‖ = ‖u0‖ =: C̃

because ‖M‖ < 1. Hereby we verified the validity of the assumption (45). Hence,
C̃ := ‖u0‖.

3The orthogonality of the matrix W follows from the fact that the matrices Ai representing the
second partial derivatives with respect to xi are real and symmetric.
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Now we can proceed with estimating of the norm in (46) where the constant
K = CC̃:

‖uj − ūj‖ ≤ 1

1− θKk
2 =

1

1− θn
2 16

h4
‖u0‖k2 ≤

≤ 1

1− 1
1−nkδ

n2 16

h4
‖u0‖k2 =

=
(1− nkδ)
−δ n

16

h4
‖u0‖k = H

k

h4

where H is a constant. Therefore, the estimate of (42) is

‖uj − ūj‖ ≤ O(
k

h4
) . (56)

Next, the estimate (43) of the norm of the difference between the analytical so-
lution to a one-dimensional parabolic equation and its numerical counterpart based
on the implicit (in time) Euler scheme is by [15] as follows:

‖¯̄uj − ūj‖ ≤ O(k + h2) . (57)

Finally, we can join these two estimates together in order to obtain the error
estimate of our method:

‖¯̄uj − uj‖ ≤ ‖¯̄uj − ūj‖+ ‖ūj − uj‖ ≤ O(k + h2) +O(
k

h4
)

= O(k + h2 +
k

h4
) . (58)

By choosing the ratio of k and h it is possible to control this error. For example, the
choice k = h6 implies

‖¯̄uj − uj‖ ≤ O(h2) . (59)

It is an interesting result because the time-step k is usually taken to be k = h2 which
is a well-known CLF condition.

It is worth to mention that the norm (54) corresponds in the continuous case to
the norm

‖u‖ =

√∫

Ω

|u(x)|2dx (60)

where Ω = (−L, L)n.

We have shown that the error of the additive operator splitting method used
for solving equation (32) in comparison to the precise analytical solution to this
equation is in general of order O(k+ h2 + k

h4 ). Especially for k = h6, it is of order
O(h2).
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3.4 Computational parallelism
The advantage of the AOS scheme resides in the computational parallelism it offers.
At each time τj, problem (40) is solved. For that purpose, at each time τj, we have to
solve n one-dimensional integrals given by (41). This process can be parallelized.
The individual one-dimensional integrals can be simultaneously solved and at the
end of these n procedures (with the overall execution time equal to the duration
of one procedure only) the output consists of n functions. The results are to be
averaged in order to obtain the solution uj+1 at the next time-step τj+1 = (j+1)k in
accordance to (40). This is done subsequently for all time-steps τj, j = 0, ..., m−1.



Conclusions
In this paper, we considered pricing of index options, i.e. options whose underlying
is a set of assets. We have shown that instead of solving a high-dimensional integral
which is the analytical solution to the Black-Sholes partial differential equation
governing the price of an option, a better approach exists.

We applied the additive operator splitting technique to find an approximate so-
lution of the mentioned equation. By using this method, the complicated multi-
dimensional problem was replaced by several simple one-dimensional problems.

We have shown that by an appropriate choice of the time-discretization step
k and the spatial step h we can control the order of the error caused by the AOS
method, and achieve the order of O(h2) for k = h6.

The advantage of the used method in comparison with other approaches resides
in parallelism of computations it offers.

Computational simulations and tests based on real data are to be done to prove
the practical usefulness of the introduced method. From the view of the needed
time and space, this problem offers a challenge for a whole next paper. Therefore,
let this paper be considered just as a conceptual framework useful for multi-asset
derivative pricing.
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