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Abstract

Business cycles are characterized by the co-movement of large number of time
series at the national and international level. This suggests that the business
cycle is driven by relatively small number of common factors, which are not
directly observed. The appropriate technique for discovering some of unobserved
common factors is called factor analysis and it has become very popular in recent
years. Other measures of synchronization in the case of business cycle, which
is defined in frequency domain, are dynamic correlation and cohesion. The aim
of this thesis is to introduce dynamic correlation analysis and various types
of factor analysis and their application to macroeconomic data (GDP of 23
European countries and 5 other countries). We also try to find the common
factors for describing the business cycle and finally we compare our results with
the leading coincident indicator of the euro area business cycle published by
Center for Economic Policy Research (CEPR).

Keywords: business cycle, dynamic correlation, cohesion, principal

components, factor models
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Abstrakt

Hospodérsky cyklus, ako na narodnej, tak aj na medzinarodnej arovni, je charak-
terizovany ako spolo¢ny mechanizmus velkého poc¢tu premennych. Téato sku-
to¢nost poukazuje na to, ze hospodarsky cyklus je v skuto¢nosti pohanany
malym poc¢tom spoloénych avSak nie priamo pozorovanych faktorov. Vhodnou
metodou, ktord poodhaluje charakter nepozorovanych spolo¢nych faktorov, je
faktorova analyza. Jej prudky rozvoj zaznamenavame najmi v poslednych
rokoch. Dal§im sposobom merania synchronizacie hospodérskeho cyklu, ktory
si zasluhuje zvySenti pozornost, je aj dynamicka korelacia a kohézia, ktoré su
definované na kmitoc¢tovej doméne. Cielom tejto diplomovej prace je predstavit
analyzu dynamickej korelacie a rozne typy faktorovej analyzy a aplikovat ich na
dostupné data (HDP dvadsiatich troch europskych krajin a piatich krajin sveta).
Taktiez sa budeme snazit opisat hospodarsky cyklus pomocou spolo¢nych fak-
torov. Na zaver porovname naSe vysledky s vSeobecne uznavanym indikdtorom

eur6pskeho hospodarskeho cyklu.

Krlacdové slova: hospodarsky cyklus, dynamické korelacia, kohézia, analyza

hlavnych komponentov, faktorové modely
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Chapter 1
Introduction

Eight countries of Central and Eastern Europe (CEECs), namely, the Czech Re-
public, Estonia, Hungary, Latvia, Lithuania, Poland, Slovakia and Slovenia, and
also Malta and Cyprus entered the European Union in May 2004. Furthermore,
these countries will all join the European Monetary Union (EMU) as soon as
they satisfy the Maastricht convergence criteria. Slovenia, as the first country
of the group, introduced the euro in this year. Our analysis, which is based on
the sample of data ranges from 1Q1995 to 4QQ2005, aims to answer the question
whether this step as well as the plans of the remaining countries, was optimal

from the point of view of the economic theory.

The successful enlargement of EMU requires that a criteria of a optimum
currency area (OCA) have to be satisfied. OCA theory, originated by Mundell
(1961), requires that the members of a monetary union to have some common
characteristics. The main criterion of OCA is a high degree of synchronization
between the monetary union’s members. McKinnon (1963) and Kenen (1969)
have contributed to OCA theory and they have added an additional OCA criteria
which include labor mobility, flexibility of the labor markets, fiscal policy and
enhanced trade and integration of financial markets. Earlier research showed
that possibly some new member states have already achieved a comparably high
degree of business cycle synchronization (see Fidrmuc and Korhonen, 2006),

while the remaining criteria are generally not yet fulfilled even by the euro area



(see De Grauwe, 2005).

The creation of the monetary union could be highly costly in terms of in-
creased volatility of output and inflation. Accordingly, if the cost outweighs
the benefits of the monetary union, EMU enlargement may be premature. It
may be caused by asynchronous business cycles between the new member states
and the euro area. Therefore, it is highly important to study the business cycle
in Central and Eastern European countries and the euro area as an important

prerequisite for successful EMU enlargement.

There is a growing literature on business cycle correlation between CEECs
and the euro area. In a survey paper, Fidrmuc and Korhonen (2004) report 27
studies dealing with this issue. Darvas and Szapary (2005) analyse the synchro-
nization for GDP, industry, exports, consumption, services and investment. Ar-
tis et al. (2005) use concordance measure to acquire an information on whether
the business cycles in NMS are in phase with business cycle of the euro area
countries. Eickmeier and Breitung (2005) employ dynamic factor model to in-
vestigate how important shocks to the euro area business cycle are for NMS in

comparison to the current EMU members.

This thesis tries to determine whether the Central and Eastern European
countries are ready to join EMU. It assesses the current degree of business cycle
synchronization in CEECs in comparison to the euro zone cycle. We put our
focus at the countries, aiming to join the EMU. We show that the achieved
degree of business cycle synchronization with the euro area is different among
the membership candiates.

In the thesis, we outline two approaches for the description of business cycle
synchronization that have become popular in the recent years: dynamic correla-
tion analysis and factor analysis. However, there are still only few applications

to the process of the euro area enlargement.

First, Croux et al. (1999) propose two measures of business cycle synchro-

nization: bilateral dynamic correlations and their multivariate extension, termed



cohesion. Both indicators are appropriate for analyses of the nature of dynam-
ics in the co-movement because they account not only contemporaneous covari-
ances, but also covariances at leads and lags. We compute dynamic correlation
between output growth of individual countries and the euro area. It provides an
information on existence of synchronization between the euro area and CEECs.
Then we examine the cohesion as a measure of the degree of business cycle
synchronization across seven group of states. Finally, for all European countries
we compute ratio that was also suggested by Croux et al. (1999). This ratio,
termed Borders Measure, describes the co-movement from geographical point of

view.

The second approach, factor analysis, is the appropriate technique for dis-
covering the driven factors of business cycle. The factor analysis is a statistical
method which reduces a large number of variables that characterize the business
cycle to a small number of factors.

The factor analysis has several advantages. Therefore, it is a preferred tech-
nique for discovering the latent structure of business cycle. It can cope with
many variables without running into scarce degrees of freedom problems often
faced in regression-based analysis. Furthermore, the factor models can elim-
inate idiosyncratic movements which possibly include measurement error and
local shocks. Finally, the factor model is that the modelers can remain agnos-
tic about the structure of the economy, which may be the subject of structural
changes making standard regression analysis difficult or even impossible. There-
fore, we employ the factor analysis to find the common factors for describing
the business cycle and to estimate how CEECs are synchronized with EMU

countries.

The master thesis is structured as follows. Chapter 2 proposes a measure
of co-movement between many economic time series based on dynamic correla-
tion. Chapter 2 also introduces a multivariate measure of co-movement, which
is called cohesion. Finally, in order to study the problems of business cycle

synchronization and dependence of co-movements from geographical point of



view, we estimate dynamic correlation and cohesion of output growth for Eu-
ropean countries. Chapter 3 outlines the classical, approximate and dynamic
factor model and it is also dedicated to the description of the business cycle
by the factor analysis. In Chapter 4 we briefly present the results of estimat-
ing the dynamic correlation, cohesion and also the factor model for a output
growth for member countries of European Monetary Union (EMU) and Central
and Eastern European countries (CEECs). We also assesses the transmission
to New Member State. In Appendix we describe our data set and introduce
EuroCOIN™ | the leading coincident indicator of the euro area business cycle
published by CEPR every month.



Chapter 2

Correlation Analysis

2.1 Introduction

The correlation analysis is the fundamental approach, which has been applied
in the literature to study the degrees of synchronization between economic va-
riables.

The most common measure of co-movement between time series is classical
correlation, which is also used in the literature on the measuring the business
cycle correlation between the euro area and the countries from Central and
Eastern Europe. Fidrmuc and Korhonen (2006) review these publications and
use the meta analysis that confirms the high correlation between the euro area
and several CEECs.

The classical correlation, corr(x,y;), between two random variables z; and

y; is defined as:

E(l’tyt) - E(xt)E(yt)
VE(@}) — E(x)*\/E(y?) — E(y)?

Unfortunately, the classical correlation is associated with two main draw-

corr(xy, y) =

backs: Firstly, it does not allow for a separation of idiosyncratic components
and common co-movements. Secondly, it is basically tool of static analysis that
fails to capture any dynamics in the co-movement.

An alternative measure of synchronization in the case of business cycles is

5



2.2 Dynamic Correlation 6

the dynamic correlation.

Croux et al. (1999) used the notion of dynamic correlation to construct a
multivariate index of co-movement, called cohesion. The cohesion provides a
measure of the degrees of co-movement within a group of variables or between

two group of variables (cross-cohesion).

2.2 Dynamic Correlation

Let x and y be a two zero-mean real stochastic processes. Let S, (A) and S, ()
be the spectral density functions of x and y and C,,(\) be the co-spectrum,

—m < A < m. The dynamic correlation is defined as

Cay(V)

505,00 21)

Pay(A) =

The dynamic correlation lies between -1 and 1.

If two stochastic processes x and y are obtained by summing the waves of
x; and y; within a given frequency interval, the dynamic correlation can be
defined on the frequency band. Set A, = [A;, A2) and A = [—Xy, —A;), where
0 < Ay < Ay <. Thus, the dynamic correlation within the frequency band A,

is defined as

Sy, Coy(N)dA
\/fA+ Sz(A)dA fA+ Sy()\)d)\‘

pxy(A-i—) — (2.2)

In a particular case, if \; = 0 and Ay = 7, the p,, (A;) is reduced to the static
correlation between x; and y;, corr(zy, y;).

The dynamic correlation within the frequency band, as is defined in (2.2),
can be used also for measurement of the co-movement of seasonal components
of two economic time series, because we can select the frequency band of our

interest and then evaluate the dynamic correlation within this frequency band.
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2.3 Cohesion and Cross-cohesion

The cohesion, defined in frequency domain, is a measure of dynamic co-movement
between time series. In bivariate case, the measure is reduced to the dynamic
correlation (2.1). The cohesion is useful to studying problems of business cycle
synchronization and to investigating short-run and long-run dynamic properties
of multiple time series. It is an appropriate technique to obtain the facts on
co-movements of macroeconomic variables at specified frequency band.

Let z; = (w14, ... ,ng)" be avector of N > 2 variables and w = (wy, ... ,wy)’
be a vector of the non-normalized positive weights to the variables in x;. The
cohesion of the variables in z; is defined as the weighted average of dynamic
correlation between all possible pairs of series. Therefore, the cohesion is defined

as

Zi;ﬁj WiW;Pr;a; ()‘)
D i Wil

Clearly coh,(\) =1 if and only if all the variables in z; are perfectly co-moved

coh,(A) = (2.3)

at frequency A. But the small cohesion index does not need to imply the small
pairwise co-movements because it can be originated from large negative and
positive covariances canceling out each other.

The measure of cohesion within frequency band A, = [A;, A9] is analogously

given by

D iz Wil Py (M)
D i Will

The cohesion index can be generalized to an index measuring the cross-

coh,(Ay) = (2.4)

cohesion between the N— vector x; and M —vector y;. So the cross-cohesion of

x; and y,; at frequency A is given by

N M
- | Wa, Wy Py (A

N M
dict Zj:l Wy, Wy,

If the x; and y,; are scalars, then the cross-cohesion is reduced to the dynamic

correlation (2.1).
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2.4 An Empirical Application of the Correlation
Analysis

The correlation analysis, especially dynamic correlation and cohesion, has be-
come very popular in recent years. In comparison with static correlation, dy-
namic correlation is a modern technique of measuring dynamic co-movement
between time series.

In this section we try to analyse our data ! in terms of business cycle correla-
tion and mainly, we pay attention to find common features between the business
cycles of Central and Eastern European countries and the euro area using the

correlation analysis.

2.4.1 Classical Correlation

As a starting point, we compute the classical (static) correlation between output
growth of the countries from Central and FEastern Europe and output growth of
the euro area.

As it is shown in Table 2.1, it is apparent that only four countries from Cen-
tral and Eastern Europe have positive business cycle correlation with the euro
area. In particular, Hungary, Poland and Slovenia have a correlation coefficient
with the euro area above 0.3. On the other hand, Lithuania, Slovakia and the

Czech Republic stand out as countries with negative correlation coefficients.

Czech Republic  Estonia Hungary Latvia  Lithuania Poland Slovakia  Slovenia
EA -0.2373 0.0652 0.4717 -0.0725 -0.3905 0.4039 -0.3731 0.3283

Table 2.1: Classical correlation between the euro area and CEECs.

This findings are in line with study of Fidrmuc and Korhonen (2006) who
argue that business cycle for Hungary, followed by Slovenia and Poland, has the
highest correlation with the euro area among the new EU members. This study

also points out that Lithuania and Slovakia trail behind other countries.

! More information about data are including in Appendix A.
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2.4.2 Synchronization of Business Cycles in Europe
Dynamic correlation

In addition, we compute dynamic correlation between output growth of individ-
ual countries and the euro area. This analysis may provide an information on

whether synchronization between CEECs and EMU countries may exist.

From table 2.2 it is apparent that the output growth in the countries of the
euro area is on average more highly correlated with the corresponding output of
the euro area than the corresponding variables in CEECs.

The average of the dynamic correlation for euro area countries at all frequen-
cies and also at long run and business cycle frequencies (respectively 0.4267,
0.7172 and 0.5879) is much higher than for CEECs (0.1049, -0.0347 and 0.0656).
It is not surprisingly that Germany (0.6018, 0.9057 at all and at the long run
frequencies and 0.7474 at BC frequencies), Italy, Belgium and France have the
highest dynamic correlation among the current EMU members. And the dy-
namic correlation in the Netherlands, Finland and Portugal at all frequencies
are the lowest.

Among the CEECs, the dynamic correlations of output growth are relatively
high for Hungary, Poland and Slovenia, but still lower than for the most coun-
tries of the euro area. These findings can be explained by tight trade linkages
between Slovenia and euro area and also by big similarity to euro area industry
in Hungary. On the other hand, the dynamic correlations between the Czech
Republic and Slovakia and the euro area are slightly negative, whereas Lithuania
trails behind the others.

Among non-European countries, Canada, followed by the USA, have the
highest dynamic correlation with the euro area.

Our findings are in line with existing studies. We found out that Hungary,
Slovenia and Poland have achieved relatively high degree of business cycle co-
rrelation with the euro area. This is also confirmed by meta analysis realized
by Fidrmuc and Korhonen (2006). Also Darvas and Szapary (2005) found out

that GDP and industrial production in Hungary, Poland and Slovenia achieved a
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Country All freq. | Long run freq. | Short run freq. | BC freq.
Austria 0.4012 0.6965 0.3047 0.5980
Belgium 0.5065 0.7594 0.4239 0.6521
Germany 0.6018 0.9057 0.5026 0.7474
Spain 0.4155 0.6647 0.3342 0.5102
Finland 0.2947 0.5491 0.2112 0.4940
France 0.4936 0.8809 0.3671 0.7409
Ttaly 0.5913 0.8843 0.4956 0.7507
Netherlands 0.0998 0.2157 0.0620 0.1723
Portugal 0.3972 0.7658 0.2769 0.5552
Luxemburg 0.4651 0.8499 0.3395 0.6577
Sweden 0.3825 0.6065 0.3093 0.4997
Switzerland 0.5150 0.7326 0.4440 0.6259
Norway 0.2542 0.3630 0.2186 0.3692
Denmark 0.2855 0.5696 0.1927 0.3613
UK 0.3523 0.7524 0.2216 0.6141
Czech Republic -0.0539 -0.3231 0.0340 -0.2698
Estonia 0.1155 -0.0390 0.1660 0.1130
Hungary 0.3360 0.5562 0.2640 0.4678
Latvia 0.1107 -0.2348 0.2235 0.0047
Lithuania -0.1682 -0.5611 -0.0400 -0.3303
Poland 0.3377 0.4231 0.3098 0.4590
Slovakia -0.0763 -0.5500 0.0783 -0.2804
Slovenia 0.2375 0.4506 0.1679 0.3612
USA 0.2848 0.4826 0.2202 0.3929
Canada 0.4307 0.7608 0.3229 0.6089
Japan 0.1063 -0.0150 0.1459 0.0979
Mean all 0.3044 0.4465 0.2580 0.3950
Mean Europe 0.2998 0.4312 0.2569 0.3858
Mean EA 0.4267 0.7172 0.3318 0.5879
Mean CEECs 0.1049 -0.0347 0.1504 0.0656
Std. all 0.2035 0.4455 0.1374 0.3209
Std. Europe 0.2107 0.4601 0.1426 0.3320
Std. EA 0.1476 0.2095 0.1320 0.1742
Std. CEECs 0.1920 0.4567 0.1190 0.3378

Table 2.2: Average dynamic correlation between output growth in individual

countries and the euro area?.

high degree of correlation with the euro area. We also confirm that the business

cycle correlation is higher for the countries of the euro area.

2Tt is referred to (unweighted) average dynamic correlation over all/long run/short

run/business cycle frequencies. Business cycle frequencies correspond to 4 to 8 years.
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Figure 2.1: Cohesion of the euro area-EA (solid line) and dynamic correlation
between output growth of the euro area and individual countries of Central and

Eastern Europe (dot-and-dashed line).

The graphical comparisons of the dynamic correlation between euro area and
countries from Central and Eastern Europe and cohesion of the euro area are
illustrated in Figure 2.1. The findings implied from Table 2.2 are also confirmed
by Figure 2.1 where the dynamic correlation and cohesion are represented at
all frequencies. Well, from Figure 2.1 it is apparent that Hungary, Poland and
Slovenia have a business cycle similar to cycle within the euro area at all frequen-
cies. The other CEECs have a low degree of business cycle synchronization with

the euro area. The difference at low frequencies is large, but at high frequencies
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the difference is much smaller. The dynamic correlation of euro area at busi-
ness cycle frequencies is similar to dynamic correlation of Hungary, Poland and
Slovenia. These findings are also apparent in Table 2.2 and support affirmation

that these countries have a business cycle similar to the euro area.

Cohesion and cross-cohesion

In order to illustrate the synchronization across the countries, we compute the
cohesion, which is the best technique for measuring of dynamic co-movement

between time series.

EU EA CEECs CEECs1 CEECs 2 V4 Baltic states
Average cohesion | 0.3111 0.3116 0.1182 0.0463 0.2676 -0.0508 0.5899

Notes:

EA: Austria, Belgium, Germany, Spain, Finland, France, Italy, Netherlands,
Portugal and Luxemburg.

CEECs: Czech Republic, Hungary, Estonia, Latvia, Lithuania, Poland, Slovakia
and Slovenia.

CEECs 1: Hungary, Poland, Slovenia.

CEECs 2: Czech Republic, Estonia, Latvia, Lithuania, Slovakia.

V4: Czech Republic, Hungary, Poland, Slovakia.

Baltic States: Estonia, Latvia, Lithuania.

Table 2.3: Average cohesion for seven groups of countries within Europe.

Table 2.3 represents the unweighted average of the cohesion for seven groups
of countries. The average cohesion over all frequencies across the euro area
countries is reasonably high and it amounts to 0.3116. But the cohesion across
all countries from Central and Eastern Europe is low (0.1182). Following the
findings from previous section, we divide the CEECs into to two groups: “CEECs
1%, the countries with high correlation with the euro area (Hungary, Slovenia and
Poland) and others, “CEECs 2. Well, from cohesion measure, it is apparent that
Hungary, Poland and Slovenia are less cohesive than CEECs, even though they
are the most correlated with the euro area.

The cohesion across Baltic States (Latvia, Lithuania and Estonia) is the
highest (0.5899) which suggests the high degree of business cycle synchronization

across these countries. On the other hand, the synchronization across V4 coun-
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tries (the Czech Republic, Hungary, Poland and Slovakia) is too small that is
proved by slightly negative cohesion across them.

Well, our cohesion measures suggest greater synchronization across coun-
tries of the euro area than across countries from Central and Eastern Europe.

However, the synchronization across Baltic states is the highest.

CEECs CEECs 1 CEECs 2

0.6
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0.3

Cohesion
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Figure 2.2: Comparison of the cohesion of the euro area (solid line) and the

cohesion of the countries of Central and Eastern Europe (dashed line).

Table 2.3 shows only average cohesion over all frequencies for seven groups
of countries defined before, but there are important differences at high and at
low frequencies. Therefore, the Figure 2.2 illustrates a graphical representation
of cohesion at all frequencies. The figure provides a comparison of the cohesion
of the euro area countries and cohesion of other groups. The comparison with
EU is left out of the figure, because the cohesions are very similar.

As expected, the new member states of EU are less cohesive than EMU
countries, which in turn are less cohesive than Baltic states at all frequencies.
The group of the countries from Central Europe (V4) is the least cohesive.

The difference between the euro area and CEECs is large especially at busi-
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ness cycle frequencies (around 1.5, corresponding to a period of about 4 years),
but at short run frequencies the difference is much smaller. We conclude that
as soon as synchronization of short cycles is concerned, the difference between
the euro area and CEECs is small and non-significant, while the opposite holds
for the business cycle and long run frequencies.

While it is difficult to interpret this behaviour, it seems that the conduct of
common monetary policy (which influences especially economic development at
high frequencies) will not pose a major problem for the CEECs. In turn, the
differences with regard to the long-run development (low frequencies) reflect the

convergence process of these countries.

0.6
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Figure 2.3: Within and Cross-cohesion of the group of CEECs and the group of

the euro area states.

The relation between cohesion of the euro area and cohesion of CEECs is
illustrated in Figure 2.3, where is also drawn the cross-cohesion between the
euro area and CEECs. We can see that the cohesion of EMU countries is larger
than cross-cohesion, but again the differences disappear in the short run. We
conclude that, the EMU countries are more correlated with other EMU countries
than with CEECs and on the contrary, CEECs are less correlated with other
CEECs than with EMU countries.



2.4 An Empirical Application of the Correlation Analysis 15

2.4.3 Geographical Aspects of Business Cycle Fluctuations

For all European countries we compute ratio between average cohesion with
neighbour states and average cohesion with all states. This ratio was suggested
by Croux et al.(1999) as a measure of the extent to which “borders matters®. So

this measure is defined as

averagejec; pij (At )
average;zipij(Ay)

BM;(A,) = (2.6)

where C; is the set of all neighbour states of state 7 and p;;(A) is the dynamic
correlation between the state 7 and j at the selected frequency band A, .

If the ratio is computed for long run frequencies, A, = [0,7/4], then BM;
represents the border-correlation measure for the long run of country ¢. The
short run border-correlation measure is obtained by the use of the frequency
band A, = [7/4,7].

Table 2.4 illustrates values of Borders Measure for European states. This
ratio (2.6) has been computed for 22 European states with exception of UK, that
has no neighbour state (10 countries of EMU, 8 states from Central and Eastern
Europe and 4 other European countries). Border Measure has been computed
for long run (A = [0,7/4]) and short run frequencies (A} = [7/4, 7).

The results from Table 2.4 should be interpreted with caution, because the
average co-movements with neighbours are not significantly different from the
average co-movements with all states. The Baltic states are the exceptions.
These findings are also suggested by Forni and Reichlin (1999) who argue that
the core of the most integrated regions in Europe does not have national bound-
aries.

However, Table 2.4 shows that no difference in patterns emerges between
short run and long run ratios and therefore the effect of cohesion with neighbours
is the same for long run and short run period. Spain, France and Portugal are
the countries which co-move more strongly with their neighbours than with other

states, because the ratios are above 1.
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Country Long run BM | Short run BM | Neighbours
Austria 0.9594 0.9770 7
Belgium 1.2817 1.1585 4
Germany 1.2709 1.1366 9
Spain 3.1915 5.1007 2
Finland 1.5720 1.6358 2
France 2.1617 1.9709 6
Italy 1.5927 1.3879 4
Netherlands -1.541 -0.9683 2
Portugal 2.5105 - 1
Luxemburg 2.0174 1.9927 4
Sweden 0.7777 1.7009 2
Switzerland 1.8078 1.7038 4
Norway 1.2497 1.7427 2
Denmark 2.0156 2.0020 1
Czech Republic 0.3378 -0.4243 4
Estonia - 2.8956 1
Hungary -0.2809 0.1513 3
Latvia - 3.1098 2
Lithuania -1.3745 - 2
Poland 0.4331 0.2677 4
Slovakia 0.4756 -0.5204 4
Slovenia 0.9282 0.7078 3

Table 2.4: Borders Measure BM; for the long run and short run computed for

22 European countries. The number of neighbours is in the last column.

2.4.4 Conclusions from the Applications of the Correlation

Analysis

The static correlation has some drawbacks, it fails to capture any dynamics
in the co-movement, whereas dynamic correlation analysis is the appropriate
technique to reveal the degree of synchronization between economic variables.
Therefore we use the dynamic correlation and cohesion within Europe in our
empirical analysis to illustrate the importance of the dynamic decomposition of
co-movements.

Static correlations computed between the euro area and CEECs show that
three states (Hungary, Poland and Slovenia) among the new members of EU

have the highest correlation with the euro area. Unfortunately, these findings
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do not define if the countries are correlated with the euro area in the long run
or in the short run. In order to specify it, we compute the dynamic correlation
between the euro area and other countries. It is obvious that the countries from
the euro area are higher correlated with euro area output than the CEECs.
The results from dynamic correlation are in line with the conclusion from static
correlation. Among the CEECs, Hungary, Poland and Slovenia have a relatively
high dynamic correlation and they are stronger correlated with the euro area in
the long run.

However, the static correlation as well as the dynamic correlation proves
that Lithuania, the Czech Republic and Slovakia have negative business cycle
correlation with the euro area.

Our empirical analysis also provides the information about the cohesion
within Europe. The Baltic states are the most synchronized since they have the
highest cohesion. On the other hand, synchronization across V4 is too small.

In addition, we provide results on the geographical structure of cohesion for
Europe. We show, that the long run and short run ratios are similar for the
countries and therefore effect of cohesion with neighbours is the same for long

run and short run period.



Chapter 3

Factor Analysis

3.1 General Introduction

Factor analysis is a branch of statistics, but because of its development and
extensive use in psychology the technique itself is often mistakenly considered
as psychological theory. The method came into being specifically to provide
mathematical models for the explanation of psychological theories of human
ability and behavior.

In 1888, the concept of classical factor analysis was suggested by Galton, but
the formulation is generally ascribed to psychologist Carl Spearman (1904) who
developed the factor analysis for psychological purposes. He first charged that
enormous variety of tests of mental ability could be explained by one underlying
factor of general intelligence. Although nowadays we know that the Spearman’s
hypothesis on only one intelligence factor is not true, this research has became
the driving mechanism of the development of new statistical technique. After
40 years, the Spearman’s model was extended by Thurston (1945) and Lawley
(1940) who were interested in the estimating of the factor loadings.

Factor analysis is different from many other statistical methods that are used
to study the relationship between independent and dependent variables whereas
the factor analysis is used to study the patterns of relationship among many

dependent variables. The main goal of factor analysis is to discover something

18
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about the nature of the independent variables that affect the dependent ones,
nevertheless those independent variables cannot be measured directly. So the
information obtained by factor analysis is more tentative and hypothetical than
the information received from direct observation of independent variables.

The main applications of the factor analytic techniques are: to reduce a large
number of variables to a smaller number of factors for modeling purposes and
to uncover the latent structure of a set of variables. Therefore, factor analysis
is applied as a data reduction or structure detection method. It could also be
used for identifying clusters of cases or outliers.

There are several different types of factor analysis. The simplest factor ana-
lytic technique is the principal components analysis (PCA). However, the most
popular factor method is the classical factor analysis (CFA) which is more widely

used than the principal components analysis.

3.1.1 Applications of Factor Analysis

The application of factor analysis has been chiefly in the field of psychology.
Although the factor analysis was developed originally for analyses of mental
tests, it is suitable not only for psychological purposes, but also for wider range
of cases. For example, the analyses of the set of economic variables or set of
physical measurement.

Applications of factor analysis in fields other than psychological purposes
have became very popular since 1950. These fields include such varied disciplines
as meteorology and medicine, sociology, political and regional science, biology
and archeology.

Correspondingly, the first application of the factor model to general economic
questions was in the marketing. More recently, factor analysis has been used in

finance and macroeconomics.
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3.1.2 General Definitions

This section introduces the basic terms used by factor analysis which are common
for the principal component analysis and also for the classical factor analysis.

The output of factor analysis is generated as a table in which the rows are
observed raw indicator variables and the columns are the factors. The cells in the
table are called the factor loadings and they express the meaning of the factors
induced from seeing which variables are most heavily loaded on which factor.
The negative coefficient of factor indicates that the variable with negative factor
loadings may be regarded as measuring the reversed aspect of the usual type of
factor.

Factor loadings, also called component loadings in PCA, are the correlation
coefficients between the variables and factors. The squared factor loading is the
percent, of variance in that variable explained by the factor. To get the percent
of variance in all the variables accounted for by each factor, add the sum of the
squared factor loadings for that factor and divide by the number of variables.
This is the same as dividing the factor’s eigenvalue by the number of variables.

The sum of the squared factor loadings for all factors for a given variable,
which is called communality, is the variance in that variable accounted for by all
factors. In a complete PCA, with no factors dropped, this will be 1.0, or 100%
of the variance. When an indicator variable has a low communality, the factor
model is not working well for that indicator and possibly it should be removed
from the model. The communality exceeding 1.0 reflects too small sample or
the researcher has too many or too few factors.

Uniqueness of variance is the variability of the variable minus its communal-
ity. It indicates the extent to which the common factors fail to account for the
total unit variance of the variable. Sometimes it is convenient to separate the
uniqueness into two portions of variance-the specificity and unreability of the
variable.

Figenvalue for a given factor measures the variance in all the variables which
is accounted for by that factor. If a factor has a low eigenvalue, it is contribut-

ing little to explanation of variances in the variables and may be ignored as
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redundant with more important factors. An eigenvalue of the factor may be
computed as the sum of it squared factor loadings for all variables. Thus, eigen-
values measure the amount of variation in the total sample accounted for by
each factor.

Factor scores, also called component scores in PCA, are the scores of each case
on each factor. Factor scores may be used as variables in subsequent modeling.
Note also that factor scores are quite different from factor loadings. Factor scores
are coefficients of cases on the factors, whereas factor loadings are coefficients of

variables on the factors.
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3.2 Principal Components Analysis

3.2.1 Introduction

The method of principal components, or principal components analysis (PCA), is
a classical statistical method belonging to factor analytic techniques. The PCA
is a concept for simplifying a dataset by reduction the dimension of observable
random variables which has been widely used in data analysis. The PCA is one
of the basic and the simplest factor analytic methods.

The PCA is a linear transformation that transforms the data to a new coor-
dinate system such that the greatest variance by any projection of the data is
attributed to the first coordinate (called the first principal component), the sec-
ond greatest variance to the second coordinate, and so on. The PCA can be used
for dimensionality reduction in a dataset while retaining those characteristics of
the dataset that contribute most to its variance.

The principal components analytic approach was first proposed by Karl Pear-
son (1901) for a nonstochastic variables. Then Person’s concept, introduced only
for the nonstochastic variables, was fully developed for the random variables by
Hotelling (1933).

3.2.2 Definition of Principal Components in the Popula-
tion

Let z; = (214, ... ,xn¢)" be a N-vector with

E(x) = (3.1)
cov(zy)) = X (3.2)

So suppose that random vector x; has known covariance matrix ¥. We shall
assume the cases in which the mean vector is 0 and the covariance matrix X is
positive semidefinite matrix or it has multiple roots.

The principal components of z; are normalized linear combinations of the

components of x; which have special properties in terms of variance. The first
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principal component of x; is normalized linear combination
!
P1t = T Ty, tzl,,T

where 7 € EN with 7’7 = 1 such that

var(r'z;) = max var(mz;) (3.3)
for all m; = (m;1,...,mn) € EV satisfying mim; = 1.
The variance of 7,z is
var(miz,) = E(mix2)m) — B*(mlx,) = E(rixa)m) = 7.8 (3.4)

To determine the first principal component 7'x; it is necessary to find the =

that maximizes (3.4) for all m; € EV and satisfies 7/m; = 1. Let
¢y (m;) = mom; — Nmim — 1) (3.5)

where A\ is a Lagrange multiplier. The goal is to find the 7= that maximizes
the Lagrange function ¢;(7;) among all choices of 7; that satisfy the condition
mim; = 1. Therefore we deduce that the vector m must satisfy the first derivation
of Lagrange function ¢;(7;) set to equal O:
091
or;

Therefore since 7, ¥m; and 7}m; have derivatives everywhere in region containing

=257 — 2A1 =0 (3.6)

mim; = 1, a vector m must satisfy
(X — M)7 = 0. (3.7)

By reason that 7 # 0 (as a consequence of 7'm = 1), equation (3.7) has a solution

if ¥ — AI is singular, so if
det(3X — M) = 0. (3.8)

That is, A is a eigenvalue of ¥ and 7 is the corresponding eigenvector. Since

¥ is dimension N x N, therefore equation (3.8) has N roots. Let

A > Aol > Ay (3.9)
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are the ordered eigenvalues of ¥ and

!
g -

7T1:(7T11,...,7T1N) .,ﬂ'N:(ﬂ'Nl,...,T{'NN), (310)

are the corresponding eigenvectors of ¥. If we multiply the (3.7) by 7’ on the

left, we obtain
T'Yr =M’ = A (3.11)
This relationship shows that if 7 satisfies (3.7) and also 7’7 = 1, then
var(m'x,) = 7’81 = A (3.12)

Thus for maximization of the variance we have to choose the largest eigen-
value A; of the ¥. So let m; be an eigenvector corresponding to the A;. Thus

the normalized linear function
pu=mmzy, t=1,...,T
called the first principal component of x;, is a function with maximum variance.

The second principal component is the normalized linear function 7'z, with
the maximum variance among the all normalized linear functions 7/x; that are

uncorrelated with py;. So if any function 7z, is uncorrelated with py, then
E(mizp) =0 (3.13)

From (3.13) it is clear that the vectors 7; and 7, are orthogonal. '

Now by maximization of Lagrange function
bo(m;) = miXm; — N(mim;) — 20y (. 2m) (3.14)

where the A and v; are the Lagrange multipliers, we find the second principal
component. So the maximizing © must satisfy

02
87ri

mi=r= 22T — 2 7 — 2v¥m = 0. (3.15)

VE(rlzipit) = BE(nlaw,) = E(rlairim) = w37 = mlhim = \iwim = 0.
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Therefore (3.15) implies the relation
mIr — Amyr — vy Xm =0 (3.16)

From (3.16) we get
’U)\l =0

since X7 = 0 and X1 = A;. Therefore v = 0 and A and 7 must to satisfy

(3.6) and (3.7). So the second principal component of x, is
th:ﬂ'él't, tzl,,T

where the 7, is the eigenvector of 3 corresponding to second largest eigenvalue
Ag.
We continue in this way to the Nth step.

Conclusion

If A\ > Xy... > Ay are ordered eigenvalues of ¥ and 7y,... ,my are the corre-

sponding eigenvectors, then

M O ... 0
0 X ... 0

A= _ |, T = (my, Moy ..., 7TN)
0 0 ... Xy

are the matrices of ordered eigenvalues and eigenvectors. From relations IT'II = I
and XIT = ITA we dedicate that II'SIT = A. Thus exist p; = (pis, Pots - - -, PNE) 2,

a vector of orthogonal transformation

pt:H,fL’t, t:]_, ,T (317)

2Properties of py:
* cov(pt) = A where A = diag{\,... ,An}.
* {th column ; of II satisfies (¥ — A\;I)m; = 0.

* The components of p; are uncorrelated and p; has maximum variance among all nor-

malized linear combinations uncorrelated with pis,... ,p;_1:.
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that is called the vector of principal components of x;.

In matrix notation the model is written as
P = XTI, (3.18)

where X = (xy,...,2zr) is TxN matrix of data and P = (py,... ,pr)" is TxN

matrix of principal components.
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3.3 Classical Factor Analysis

3.3.1 Introduction

The classical factor analysis (CFA) is a multivariate statistical technique to apply
a single set, of variables to reduce a large set of variables to a more meaningful,
smaller set of variables called factors which can account for the correlation of a
set. The variables, that are correlated with one another and they are also largely
independent of other subsets of variables, are combined into factors. The CFA
is one of the most extended forms of factor analysis. The nature of the CFA is
using the method principal components analysis that is applied for correlation

matrix in which the diagonal elements are not ones, as in the PCA.

3.3.2 Definition of the Model

The each element of the observable vector z; = (z14, ... , o) can be written in
q—factor model (¢ < N) as ?

Ty = ap fre+ .o+ Ggfg + uy, t=1,...,T (3.19)

where x;; is the value of the ¢-th observation on the i-th variable, fi; is the ¢-th
observation on the k-th common factors, a;;, is the set of linear coefficients called
the factor loadings associated with fi;, and wu; is similar to residual because it
is a part of x;; not explained by the common factors.
If a] = (air,...,a) is a vector of factor loadings, then (3.19) can be ex-
pressed as
Ty =afi+ uy, t=1,...,T,

where fy = (fit,..., fqt)' is a vector of ¢ common factors.
Let u; = (ug, ... ,uny)' is a vector of N idiosyncratic (specific) components

of z; and f; is a vector of ¢ common factors. Then the model can be rewritten

3We assume that E(z;) = u; = 0. If the E(x;) # 0, then x; = py + Af; + uy.
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in matrix notation as

Ty = Aft+ut t:]_,,T (320)

X = FA+U, (3.21)
where X = (xy,...,2z7) is TxN matrix of data, A = (ay,...,an) is Nxq
matrix of factor loadings, F' = (f1,..., fr) is Txq matrix of factors and U =
(ug,...,ur) is TxN matrix of specific components.

We shall assume that the vector of uncorrelated errors, u,, is distributed inde-
pendently of f, cov(f;, u;) = E(fiu;) = 0, with mean E(u;) = 0 and covariance
matrix

cov(u) = E(uuy) = 0,

where U = diag(v?, ..., ¢%).
Furthermore, we assume that the vector f; is taken as a random vector with
E(f;) =0 and
cov(fy) = E(fif]) = Q.
When we require €2 = I, the factors are said to be orthogonal. Oblique factors we
obtain by replacing I by €2, where 2 is not diagonal, positive definite correlation
matrix.

It follows from these assumptions that the covariance matrix of observed X

for oblique model is *
cov(z)) = AQA' + ¥ =% (3.22)
and in the case of the orthogonal factor model (X = I) the covariance matrix is

cov(zy) = AA + U =3,

43 = cov(zy) = E(zyz}) — (E(xy))? = E(mx}) = E((Afy + ue) (Afy +wp)') = AQA" + 0.
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3.3.3 Estimation of the Factor Model

Let the classical factor model in matrix notation
X=FA+U

satisfies the assumption defined in previous section. So the matrices A (Nxq)
and F (Txq) are both unknown.

There are various criteria for determining the matrix of factor loadings and
matrix of factor scores, such as method of principal components, maximum-
likelihood, minres method (minimum residual) and unweighted least-squares

method. Bellow there are described only two most widely used methods.

Principal Factor Method

The principal factor method is the most commonly used, and is the “default” in
most computer programs. In this method, one extracts principal factors from a
correlation matrix with communalities in the diagonal. Once the communalities
are estimated (for the last time), the analysis proceeds as in principal component
analysis. The results are then called principal axes.

The unknown matrix of factor loadings A can be estimated by minimizing

the residual sum of squares:

T
Z(xt — Af) (xy — Afy) (3.23)
t=1

subject to the constraint A’A = I,. Differentiating (3.23) with respect to A

and F yields the first order condition (uly — S).Zl\k =0for k=1,...,q, where

S =T'7 z2) and A; is the ¢’th column of A. The matrix A minimizes

the criterion function (3.23). Thus, the columns of A are the eigenvectors of

the ¢ largest eigenvalues of the matrix S. So the matrix A is the Principal

Components estimator of A°.

5This derivation of the factor loading for principal factor method was originated by Jolliffe
(2004).
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Maximum-likelihood Method

The method of maximume-likelihood is a well-established and popular statistical
procedure for estimating the unknown population parameters. This method
yields values of the estimators which maximize the likelihood function of the
sample.

Under the assumption of a given number (¢) of common factors and normally
distributed of x;, the method of maximum-likelihood is applied to get estimators
of the factor loadings from the sample of N variables on the T" observations. If

S =TS 2 the maximum-likelihood estimator minimizes the function
0 =tr(SEY) + log(]X))

originated by Joreskog (1969).

Test of significance for the number of factors should be the inseparable part
of maximum-likelihood method, because the implicit in the development of the
function ¢* is an assumption regarding this number. The test procedure is
to reject the hypothesis Hy of ¢ factors if the value of Likelihood Ratio Test
LR = —2[(*(T = §)—*(S = AA+T)] exceeds the y? for the desired significance
level.

In applying the forgoing test, it is necessary to know the degrees of freedom
of x? distribution. For the hypothesis Hy of ¢ factors, the number of degrees of
freedom is given by v = 0.5[(n — ¢q)*> — n — ¢.

3.3.4 Approximate Factor Model

The assumptions of the classical, also called static, factor model are restrictive
for economic problems because it assumes that V is fixed and much smaller than
T, the u; are independent over time and are also independent across ¢. Thus
the variance-covariance matrix of u;, U = E(u,uy}), is a diagonal matrix. Further
limitation is independence between the factors f; and idiosyncratic components
Ut

Chamberlain and Rothschild (1983) introduced an approzimate factor model

which is more general than the static model. The approximate factor model
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relaxes the assumption of classical factor analysis and it is also assumed that
number of variables (N) increases to infinity. An approximate factor model
allows for weakly serial and cross correlation and heteroskedasticity of the id-
iosyncratic components. Finally, the weak dependence between factors and id-
iosyncratic components is allowed.

Thus the approximate factor model in sense of Chamberlain and Rothschild

must have bounded eigenvalues for covariance matrix .

3.3.5 Ciriteria for Determining the Number of Factors

In practice, to determine the unknown number of factors is not so clear. There
are some criteria for determining the number of factors which could help us to
specify the right number of factors.

The number of common factors, k, is indicated by k largest eigenvalues of
correlation matrix R ® of the sample. A part of total variance explained by the
k common factors is 7(k) = (Zle )\i> /N, where J; is i’th eigenvalues of R.
To choose all N factors enables to explain the total variance exactly because
7(N) = 1.7 Unfortunately, the limit for the explained variance indicates the

sufficient fit is unknown.

Kaiser Criterion

Criterion, originated by Kaiser in 1960, is a common rule for determining the
number of factors of the factor analysis. The Kaiser rule means to drop all
components with eigenvalues under the 1.0. Unfortunately it is a conservative
criterion which is not exactly right, it may overestimate or underestimate the

true number of factors.

6Instead of eigenvalues of correlation matrix it is possible to use the k largest eigenvalues

of covariance matrix X.
T7(N) = tr(R)/N = (., \i)/N = N/N = 1.
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Scree-test

Scree criterion, designed by Cattell (1966) is, in contrast to the Kaiser criterion,
a graphical rule for determining the number of factors. Scree-test illustrtaes
the number of factors as the X axis and the corresponding eigenvalues at the Y
axis. Cattell suggests to find an elbow on curve of eigenvalues where the smooth
decrease of eigenvalues appears to level off to the right of the plot. This point
says to drop all components after one starting point of the elbow.

As the Kaiser criterion, the Scree test is not unambiguous criterion because
the determining the elbow point can be fairly subjective decision, the researcher

may be tempted to set the number of factors desired by his research.

The Kaiser criterion and the Scree test are classical methods for determining
the number of factors based on the k largest eigenvalues of correlation matrix
R. But it can be shown that all eigenvalues of R increase with N thus the tests

based on the sample of eigenvalues are not feasible.

Bai and Ng’s Criteria

Further information criteria for specifying the number factors originated by Bai
and Ng (2002) are not based on the sample of eigenvalues. It is a method
suggested for approximate factor model as N and T converge to infinity.

Let V(k) = (NT)~'S,_, @@, is the sum of squared residuals (divided by
NT) from a k-factor model, where u; = z; — Af; is the vector of estimated
idiosyncratic errors. Bai and Nq suggest the following three information criteria

for determining the number of factors:

N+T NT
IC, (k) = In[V(k)]+k NT lnN-i-T
N+T
ICy(k) = In[V(k)]+k NT InC%p
1 2
ICy(k) = W[V(R)] +k (— (’;NT) |
CNT

where C%, = [min{N,T}]. Minimizing one of these information criteria in the

range k = 0,1,..., kmax, where kmax is some pre-specified upper bound for
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number of factors, can consistently estimate the true number of factors (q).
Although the criteria suggested by Bai and Ng (2002) are not based on the

eigenvalues, they have unfortunately some bad features. That is, they require the

large dimensional approximate factor model and according to Onatski (2006),

Bai-Ng criteria tend to severely overestimate the true number of factors.

3.3.6 Rotation Methods

The idea of rotation is to simplify the factor structure by changing the factor
loadings, such that the interpretation of factor analysis is more understandable.
Since the alternative rotations may explain the same variance but have different
factor loadings, they are used to describe the meaning of factors. Therefore
the interpretation of results of factor analysis depends on the applied rotation
method. Rotation does not actually change anything but may make the inter-
pretation of the analysis easier.

Two main types of rotation are used: orthogonal when the new axes are also
orthogonal to each other, and non-orthogonal (oblique) when the new axes are
not required to be orthogonal to each other. If we choose an oblique rotation
the factors are permitted to be correlated with one another (cov(f;) = Q).
By an orthogonal rotation the factors are not permitted to be correlated (they
are orthogonal to one another = couv(f;) = I). There are various rotational

orthogonal or oblique strategies that have been proposed.

Orthogonal Rotation

An orthogonal rotation is specified by a rotation matrix denoted Q, where the
rows stand for the original factors and the columns for the new (rotated) factors.
A rotation matrix has the important property of being orthonormal because it

corresponds to a matrix of direction cosines and therefore QQ'Q) = I.

Varimax rotation developed by Kaiser (1958), is the most popular orthogo-

nal rotation method of factor axes which tries to maximize the variance of each
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of the factors, so the total amount of variance accounted for is redistributed over

the extracted factors.

Oblique Rotation

In oblique rotations the new axes are free to take any position in the factor
space, but the degree of correlation allowed among factors is, in general, small
because two highly correlated factors are better interpreted as only one factor.
Oblique rotations, therefore, relax the orthogonality constraint in order to gain

simplicity in the interpretation.

Promax rotation is an alternative non-orthogonal rotation method which has
the advantage of being fast and conceptually simple and therefore is appropriate

for very large dataset.
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3.4 Dynamic Factor Analysis

3.4.1 Introduction

In this section we will review only briefly the dynamic factor analysis because
this topic is not the main subject of this master thesis for two reasons. First, the
dynamic factor models represent a rich area of empirical analysis which cannot
be surveyed in this thesis completely. Second, dynamic factor models require a
large number of variables what is the primary justification. Actually, this is the

major reason why we do not use this method in this master thesis.

In recent years, large-dimensional factor models have become the most pop-
ular type of factor analysis because it has a lot of advantages in various respects
in comparison to the other methods.

The dynamic factor model, called also index model, was propossed by Sarget
and Sims (1977) and Geweke (1977). Each variable in index model is repre-
sented as a sum of common component and an idiosyncratic component, which
is orthogonal at any lead and lags both to the common factors and to the id-
iosyncratic components of all other variables. But the mutual orthogonality of
the idiosyncratic components at any lead and lags causes the weakness of this
model.

Forni and Lippi (2001) and Forni, Hallin, Lippi and Reichlin (2000) suggested
a new model, generalized dynamic factor model, which provides a generalization
of index model by allowing for non-orthogonal idiosyncratic terms. Three impor-
tant features define this model: it is a finite dynamic factor model; it is designed
for analysis of large cross section of time series and it allows a correlation between

the idiosyncratic terms.

3.4.2 Specification of the Model

The basic idea, in the dynamic factor analysis, is that the every element of
the vector z;, x;, i@ € N, is represented as the sum of a common component

xit and an idiosyncratic component &;. The common component is driven by
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g—dimensional vector of common factors f; = (fi, ..., f;), which are loaded

with possibly different coefficients and lags:

Xit = bit (L) fie + bio(L) for + ... + bg1 (L) fr-

The generalized dynamic factor model can be written in matrix notation as

follows:

ry =Xt + & = B(L)f + &, (3.24)

where x; = (X165 -+ > xne)s & = (&it, - -+, Ene) and B(L) is a Nxq matrix of lag
operator whose (7, j) entry is b;;(L).

There are three approaches of forecasting in a dynamic factor framework.
First, Forni et al. (2000) show that the common component can be approximated
by projecting the vector x; on the first ¢ dynamical principal components of x;.
But the disadvantage of this approach is that the dynamic principal components
are not available at the beginning and at the end of the sample period. Forni et
al. (2000) suggest an estimator of the dynamic factors in the frequency domain.

The estimator is given by

fo(A) = fr(A) + fe(N),

where f, is the spectral density matrix of z;, f, is spectral density matrix of x;
and f¢ is the spectral density matrix of &,.

Second, Stock and Watson (2002b) show that the common component can
be approximated by projecting the z; on the first r = ¢(s + 1) static principal
components of z;, where (s+ 1) is the number of the current and lagged values.

Third, Forni et al. (2005) proposed two-step approach to solve the missing
data problem for dynamic principal component at the end of the sample. In the
first step the covariance matrix of the common and idiosyncratic component is
estimated by the spectral decomposition and then generalized static principal

component of x; is calculated.
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3.4.3 Applications of Dynamic Factor Models

The dynamic factor models can be used to address different economic issues.
For instance, it has been successfully applied in a number of papers to construct
economic indicator and also for forecasting and in financial and macroeconomic
literature to estimate in insurable risk. Recently they have been also applied to
macroeconomic analysis to respect in international business cycle.

EuroCOIN™® and Chicago Fed National Activity Index (CFNAT)? are two
most important examples of monthly coincident business cycle indicators con-
structed by dynamic factor analysis. The former is leading coincident indicator
of the euro area business cycle constructed by Altissimo et al. (2001). The
latter one corresponds to the index of economic activity developed by Stock and
Watson (1999).

The factor models are also used as the forecasting tool. Stock and Watson
(2002) used an approximate factor model for the estimation of indexes and to
construct forecasts for monthly U.S. macroeconomic time series. The various
economic variables in European Union have been forecasted by Marcellino (2001)
and also by Banerje (2005). Schneider and Spitzer (2004) produced short-term
forecasts of real Austrian GDP using the generalized factor model. Artis et al.
(2001) forecasted various real, nominal and financial variables for UK economy,
Schumacher (2005) forecasted the German GDP and Reijer (2005) Dutch GDP
using large scale factor models.

The application of factor models in international business cycle is the most
important for us. Helbling and Bayoumi (2003) identified the international busi-
ness cycle among Group of Seven (G-7) countries using the asymptotic dynamic
factor model. Eickmeier and Breitung (2005) investigated co-movements be-

tween CEECs and the euro area by means of a large-scale dynamic factor model.

8For more information see Appendix B.
9See http://www.chicagofed.org/economic research and data/cfnai.cfm.
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3.5 Empirical Application of the Factor Analysis

Our empirical application addresses the recent discussion on whether the CEECs
should join European Monetary Union. One of the criteria that should be sat-
isfied is the synchronization of business cycles. We investigate how important
euro area factors are for the CEECs compared to the current EMU members.
We use a classical (static) factor model to study the degree of synchronization
between the CEECs and EMU countries. Although the use of a static factor
model has some drawbacks, the use of more sophisticated approaches, as ap-
proximate factor model or dynamic factor model, is not possible. In the classical
factor model, the idiosyncratic components are assumed to be uncorrelated,
whereas approximate factor model allows for the idiosyncratic error terms. But
it is assumed that the number of variables in approximate factor model tends to
infinity. And the primary justification of dynamic factor model is large number
of variables as well. Therefore, the assumption of large number of variables for
approximate factor model and dynamic factor model is not fulfilled, because our

data contain only 28 variables. Therefore, we use the classical factor model.

3.5.1 Determining the Number of Factors

Before the application of the factor analysis to data, it is necessary to determine
the number of factors. In section 3.3.5, we specify three criteria for determining
the number of factors. But we can use only two of them, because the use of
Bai and Ng’s criteria is conditional by use of the approximate factor model.
Therefore, we use only Kaiser criterion and Scree test that are unfortunately

reliable criteria for determining the number of factors.

Kaiser Criterion

From Figure 3.1 that illustrates 28 eigenvalues of the correlation matrix is ap-
parent, that seven eigenvalues of correlation matrix are greater than 1, therefore
the Kaiser criterion determines the seven factors used in the factor analysis.

Seven factors specified by Kaiser criterion explain 84.5% of variance if we
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use the principal factor method and 78.88% of variance in case of the maximum-
likelihood method (Table 3.1).
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Figure 3.1: Kaiser criterion.
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Figure 3.2: Scree test.

Scree test represents the number of eigenvalues in X axis and corresponding

values in decreasing order on Y axis. If we choose Scree test for determining the
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number of factors, we can find a couple of elbows on the curve of eigenvalues
(Figure 3.2). Therefore, it is clear, that Scree test is not unambiguous criterion
for specifying the number of factors. From Figure 3.2 it is apparent, that we can

choose one, three, five or eight number of factors.

Since both criteria (Kaiser and Scree test) determine the different numbers
of factors, emerging the question which criterion to use. The Kaiser criterion
retains too many factors, while Scree test underestimates the number of factors.
An important additional aspect is the extent to which a solution is interpretable.

Therefore, both criteria are not reliable.

The number || Principal factor | Maximum-likelihood
of factors method method
1 0.3602 0.3406
2 0.4979 0.4618
3 0.6157 0.5778
4 0.7032 0.6488
5 0.7599 0.7093
6 0.8077 0.7434
7 0.845 0.7888
8 0.8717 0.8092
9 0.8974 0.8346
10 0.9153 0.8674

Table 3.1: Percentage of variance explained by the first ten factors.

The Table 3.1 represents percentage of variance explained by the first ten
factors if it is used principal factor method or maximum-likelihood method. The
number of factors is specified in first column of the table.!® Well, the Table 3.1
illustrates how the number of factors affects the percent of explained variance.
The percent of the explained variance is the same for rotated and unrotated
method, because the idea of the rotation is to simplify the factor structure not
to improve the explained variance.

This table can help us to decide how many factors we use in factor analysis. It

is clear, that the explained variance increases with increased number of factors.

10The variance shares of principal factor method in Table 3.1 is equal to expression from
section 3.3.5: 7(k) = (Zle )\i) /N, where \; is i’th eigenvalues of correlation matrix and N

is number of observations.
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To use only one factor is not correct, because the business cycle in Europe is
not driven only by one factor. We choose three factors, because the differences
between the explained variances are fewer and fewer with increased number of
factors. Another reason is that two factors explain relatively low share of the

total variance (49.79%), whereas three factors account for 61.57%.

3.5.2 Principal Factor Method

First, we applied principal factor method for estimating unknown matrix of
factor loadings and factor scores. We estimated three factors as explained before.

The factor loadings of these factors are illustrated in Figure 3.3.

Factor loadings
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Figure 3.3: Principal factor method: Factor loadings.

Figure 3.3 makes visible that every factor has a particular meaning, because
the values of factor loadings are different and depend on the country.

Specifically, the first factor describes euro area countries, because the factor
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loadings of first factor reach the highest values for countries from the euro area
(Luxemburg, Portugal, Belgium, etc.). Among CEECs, Poland, Hungary and
Slovenia have the highest value of the first factor. Other countries from Central
and Eastern Europe have negative value of the factor loadings of the first factor.
The second factor is characteristic for Baltic states and Slovakia. The third
factor we can term as idiosyncratic or regional factor, because its factor loadings
reach the lowest value among all the factors and the Netherlands, Estonia and

Latvia have the highest (negative) value.

The findings implied from Figure 3.3 are also confirmed by Table 3.2. The
table shows how much of the variance of output growth in CEECs and EMU
countries is explained by 3 common factors.

From Table 3.2 it is clear that on average, the first factor explains a large
part of output growth in EMU countries (50%) compared to CEECs (17.43%).
Among CEECs the largest variance shares explained by the first factor are ex-
hibited by Hungary, Slovenia and Poland. This implies that these countries are
highly synchronized with economies of the euro area. Therefore, from Table 3.2
implies that the first factor can be interpreted as the euro area factor. For exam-
ple, the first factor accounts for more than 60% of the output growth of France,
Luxemburg and Germany. Canada is closely correlated with euro area, because
the factor loading and variance share is the highest among the all non-European
countries.

On the contrary, the second factor can be interpreted as the factor of CEECs,
because it explains a large part of output growth for some countries of Central
and Eastern Europe. The highest shares of variance are accounted for by the
second factor mainly for the Baltic states and Slovakia. Specifically, 62.43%
of the output growth of Estonia, 40.86% of Slovakia, 45.96% of Lithuania are
explained by the second factor. On average, the second factor explains a large
part of growth (44.89%) in CEECs compared to the first factor (17.44%). The
exceptions are Hungary, Poland and Slovenia which are described by the first
factor.

The third factor is idiosyncratic, because the variance shares are so low. The
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Netherlands has the highest variance share which is not explained by the first

two factors. Since the third factor improves the explained part of output growth

for some countries (the Netherlands, Latvia and Hungary), it can be interpreted

as regional factor.

Country Principal factor method
First Factor ~ Second Factor  Third Factor | All factors

Austria 0.5635 0.0004 0.0142 0.5781
Belgium 0.4528 0.0163 0.0216 0.4907
Germany 0.6615 0.0174 0.0539 0.7327
Spain 0.3450 0.1856 0.0207 0.5513
Finland 0.4296 0.1513 0.0629 0.6438
France 0.7802 0.0736 0.0804 0.9342
Ttaly 0.5853 0.0045 0.1970 0.7868
Netherlands 0.0070 0.0565 0.3358 0.3993
Portugal 0.5010 0.2333 0.0378 0.7722
Luxemburg 0.6802 0.0267 0.0073 0.7143
Sweden 0.6045 0.0026 0.0014 0.6085
Switzerland 0.5726 0.1256 0.1048 0.8030
Norway 0.1614 0.3237 0.0706 0.5558
Denmark 0.3529 0.1129 0.0963 0.5623
UK 0.6068 0.0114 0.0009 0.6191
USA 0.5123 0.0397 0.2439 0.7960
Canada 0.7327 0.0212 0.0051 0.7591
Japan 0.0010 0.2272 0.0058 0.2340
Australia 0.1256 0.0045 0.4068 0.5370
New Zealand 0.0133 0.0243 0.0165 0.0541
Czech Republic 0.1025 0.0269 0.0065 0.1359
Estonia 0.0003 0.6243 0.2349 0.8594
Hungary 0.3407 0.0257 0.3421 0.7085
Latvia 0.0180 0.4845 0.3073 0.8098
Lithuania, 0.2082 0.4596 0.0135 0.6813
Poland 0.2323 0.1480 0.1119 0.4923
Slovakia 0.2003 0.4086 0.1937 0.8027
Slovenia 0.2926 0.0188 0.3074 0.6188
Total variance 0.3602 0.1377 0.1179 0.6157

Table 3.2: The variance shares explained by the first, the second and the third

factor and by all factors together in individual countries for the principal factor

method.

In general, the first factor is often interpreted as a common business cycle.

Following the previous findings about the first factor, we can suppose that the



3.5 Empirical Application of the Factor Analysis 44

EuroCOIN vs. First Factor
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Figure 3.4: Comparison of EuroCOIN™ (dot-and-dashed line) and the first
factor (solid line) of the principal factor method.

first factor is closely linked with the euro area business cycle. Therefore, we
compare the first factor with leading coincident indicator of the euro area busi-
ness cycle. Indeed, as it is obvious from Figure 3.4!', our first factor is highly

correlated with EuroCOIN™ 12, 13 and therefore it can be really interpreted as

euro area business cycle.

3.5.3 Maximum-likelihood Method

We also applied maximum-likelihood method for estimating the factor loadings
and factor scores. We estimated three factors and according to Likelihood Ratio
Test, defined in section 3.3.2 it is the sufficient number of factors. First, we use
the maximum-likelihood method without rotation, but the factor structure is
not simply. Therefore we use varimax rotation to change the factor structure

and to make the interpretation of factors more understandable.

"The monthly EuroCOIN™ series was converted into a quarterly series and it was nor-

malized to have mean of zero and variance of one.

12(Classical correlation between normalized first factor and normalized EuroCOIN™ equals
to 0.7714.

3For more information about EuroCOIN™ see Appendix B.
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The factor loadings of maximum-likelihood method with rotation are pre-
sented in Figure 3.5. The Table 3.3 shows shares of variance of output growth
explained by the common factors for maximum-likelihood method with rota-
tion and also without rotation. The maximum-likelihood method accounts for
57.79% of total variance.

Country ML Rotate ML Unrotate All
1.Factor  2.Factor 3.Factor | 1.Factor 2.Factor 3.Factor | Factors
Austria 0.3434 0.2317 0.0215 0.4725 0.0002 0.1239 0.5966
Belgium 0.4314 0.0342 0.0112 0.4066 0.0678 0.0023 0.4767
Germany 0.5864 0.0863 0.0144 0.5772 0.0924 0.0174 0.6871
Spain 0.4015 0.0026 0.1314 0.4587 0.0447 0.0322 0.5356
Finland 0.1861 0.4198 0.0297 0.2493 0.0872 0.299 0.6356
France 0.9059 0.0063 0.0650 0.9629 0.0008 0.0135 0.9772
Ttaly 0.7698 0.0004 0.0181 0.654 0.1094 0.0249 0.7883
Netherlands 0.0267 0.2289 0.0003 0.0042 0 0.2517 0.256
Portugal 0.3041 0.0925 0.3139 0.5113 0.1648 0.0343 0.7105
Luxemburg 0.5406 0.078 0.0285 0.6315 0.0002 0.0154 0.6471
Sweden 0.4688 0.1126 0.0007 0.5256 0.0207 0.0359 0.5822
Switzerland 0.5407 0.0917 0.1118 0.4665 0.2559 0.0217 0.7441
Norway 0.0304 0.2794 0.1468 0.0331 0.1908 0.2327 0.4566
Denmark 0.1081 0.3599 0.0122 0.1652 0.044 0.2711 0.4802
UK 0.441 0.1947 0.0020 0.5334 0.0162 0.0882 0.6378
USA 0.1352 0.6803 0.0107 0.2888 0.0004 0.5369 0.8261
Canada 0.5991 0.0893 0.0273 0.6967 0.0008 0.0183 0.7158
Japan 0.0007 0.0242 0.1108 0.0004 0.1137 0.0217 0.1358
Australia 0.0001 0.3833 0.0658 0.0294 0.0499 0.3699 0.4492
New Zealand 0.0135 0.0037 0.0182 0.0169 0.0116 0.007 0.0355
Czech Republic 0.0774 0.0082 0.0088 0.0928 0.0006 0.001 0.0944
Estonia 0.0317 0.0088 0.8708 0.0042 0.8909 0.0162 0.9113
Hungary 0.5239 0.0059 0.0928 0.3646 0.2087 0.0494 0.6227
Latvia 0.0061 0.0522 0.7031 0.0272 0.6772 0.0571 0.7614
Lithuania 0.1600 0.0013 0.4798 0.3006 0.3382 0.0022 0.641
Poland 0.0553 0.3919 0.0199 0.0994 0.0482 0.3194 0.4671
Slovakia 0.4499 0.1538 0.2112 0.4457 0.0982 0.2711 0.8149
Slovenia 0.0385 0.4394 0.0158 0.1204 0.0022 0.371 0.4936
Total variance 0.2920 0.1593 0.1265 0.3264 0.1263 0.1252 0.5779

Table 3.3: The variance shares explained by the first, the second and the third
factor and by all factors together in individual countries for the maximum-
likelihood method.

From Table 3.3 and from Figure 3.5 it is obvious that the first factor can be
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interpreted as euro area factor, because the countries of euro area (France, Italy,
Luxemburg, Belgium, etc.) reach the highest positive value of its factor load-
ings. Among CEECs only Hungary, Poland, Slovenia and Estonia have positive
factor loadings belonging to the first factor. On the contrary, factor loadings
of Slovakia, Latvia and Lithuania are negative, what confirms the negative co-
rrelation between these countries and euro area. The first factor explains a
large part of output growth in EMU countries (44.96%) compared to CEECs
(16.79%). Among CEECs the largest variance shares explained by first factor
are exhibited by Hungary, following Slovakia. Let’s remember that Slovakia has

a negative factor loading.

Factor loadings
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Figure 3.5: Maximum-likelihood method-rotate: Factor loadings.

The second factor represents the relationship between European countries
and the USA, because the USA is a leading country of the second factor. The
factor loading of the USA is the highest and also variance shares accounted for
by the second factor are also the highest.

The large part of output growth in Baltic states (Estonia: 87.01%, Latvia:
70.31% and Lithuania: 47.98%) and Slovakia (21.12%) is explained by the third



3.5 Empirical Application of the Factor Analysis 47

factor. All of these countries also reach the highest value of the factor loadings.

Well, we can interpret the third factor as a factor of Baltic states and Slovakia.

EuroCOIN vs. First Factor

First Factor
EuroCOIN
oL -

302005 |-

Figure 3.6: Comparison of EuroCOIN™ (dot-and-dashed line) and the first

factor (solid line) of the maximum-likelihood method.

As well as in the case of principal factor method, we compare the first factor
of maximum-likelihood method with leading coincident indicator of euro area
business cycle, EuroCOIN™, As it is obvious from Figure 3.6, the first factor is
highly correlated with indicator of euro area business cycle. The static correla-

tion'* between EuroCOIN™ and first factor equals 70.61%. Therefore, the first

factor can be interpreted as the euro area business cycle.

3.5.4 Conclusions from the Application of the Factor Ana-
lysis

The first step to estimate the unknown factor loadings and factor scores is to
determine the number of factors. We use two criteria for specifying the number of

factors: Kaiser criterion and Scree test. However, these criteria are not reliable,

1We use static correlation, because we use classical (static) factor model. Static factor

model does not allow for dynamics, therefore we can not use the dynamic correlation.
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because they determine the different number of factors. Finally, we decided to
use three factors, because three factors sufficiently explained the variance.

The both applied methods, principal factor method and maximum-likelihood
method, present look-like results. Three factors generated by principal factor
method account for 61.57% of total variance and three factors of the maximum-
likelihood factor account for 55.79% of total variance. Among all countries,
the explained variance of France, following Estonia, Latvia, Switzerland and
Slovakia is higher than 80% in case of principal factor method. Among all
countries, France, following Estonia, the USA and Slovakia have the highest
variance shares explained by maximum-likelihood method.

The factor that is estimated as the first one by both method can be inter-
preted as euro area factor, because it mainly accounts for the output growth of
EMU countries. The factor estimated by principal factor method is also char-
acteristic only for three countries from Central and Eastern Europe: Hungary,
Poland and Slovenia. Other CEECs have a negative factor loadings of first
factor. That means, Hungary, Poland and Slovenia have a business cycle simi-
lar to euro area business cycle. Hovewer, Slovakia, Latvia and Lithuania have
negative correlation with EMU countries.

One of another two factors describes Central and Eastern countries, espe-
cially Baltic states and Slovakia. Hungary, Poland and Slovenia is accounted for
by the euro area factor and the Czech Republic is a specific case, because it has
the lowest variance share among all European countries and the factor loadings
reach very low values.

The first factor is interpreted as the euro area factor, therefore we compare
the first factor with EuroCOIN™  which is the indicator of euro are business
cycle. The Figures 3.4 and 3.6 and the relatively high static correlation between

the first factor and EuroCOIN™ indicate the intensive relation between them.



Chapter 4
Results and Conclusions

This master thesis examines the business cycle synchronization in the new EU
members of Central and Eastern Europe and countries of the euro area. From
the perspective of common monetary policy, it is relevant to know how the
countries are synchronized.

We included in our study the data of GDP at a quarterly frequency for 24
OECD countries and for 3 Baltic countries plus Slovenia. For our analysis we
used the softwer MATLAB, because the method of factor analysis is inbuilt in
it. The sources of another needs matlab files are web ' and also some of the
authors of related papers who responded to my request for help. Especially, 1
would like to thank Sandra Eickmeier, Jorg Breitung and Marco Lippi for their
valuable advises.

The main goal was to assess the current degree of synchronization of the
CEECs and to see what extent they are satisfying one of the OCA criteria,
namely, the synchronization of their business cycle with the euro area. We used
two approaches for description of business cycle synchronization across Europe:

dynamic correlation analysis and static factor analysis.

Firstly, we applied the dynamic correlation analysis which provide an infor-

mation on existence of synchronization between the euro area and CEECs. On

! Bai-Ng criteria: http://www-personal.umich.edu/~ngse/research.html

Correlation analysis: http://www.economia.unimore.it/forni mario/matlab.htm
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average, business cycle correlation between the NMS and the euro area are lower
than correlation between EMU countries and the euro area.

We start with EMU countries, which can we spilt into two groups: the “core”
countries (Austria, Belgium, Germany, Spian, France, Italy and Luxemburg)
which show a higher dynamic correlation with euro area output growth, and
“peripheral” countries (Finland, Portugal and the Netherlands) which exhibit a
lower synchronization. The reason of these differences could be that the periph-
eral countries joined to EMU much later.

According to our analysis, we can spilt CEECs into three groups: Hungary,
Slovenia and Poland which are more suitable accession candidates than other
NMS, because they are the most synchronized; Latvia and Estonia which are
less synchronized; and Slovakia, Lithuania and the Czech Republic which are
negative correlated with EMU countries.

Our empirical analysis also provides the information about the cohesion
within Europe, which illustrates the synchronization across countries. The co-
hesion across Baltic states is the highest and relatively high cohesion is charac-
teristic also for EMU countries. On the other hand, the synchronization across
CEECs and across V4 countries are low.

Secondly, we use the static factor model, which is being increasingly em-
ployed. The basic underlying idea is that common movement in a cross-section
can be captured by common factors. But the main drawback of using a static
factor model is that it does not allow for dynamics in the relationship between
the economic variables and factors. Therefore, many studies have used instead
of variants of a dynamic factor model.

The first factor estimated by factor analysis can be interpreted as the euro
area factor, because it mainly accounts for the output growth of EMU countries.
The first factor estimated by principal factor method is also characteristic only
for three countries from Central and Eastern Europe: Hungary, Poland and
Slovenia. Other CEECs have a negative factor loadings of first factor. That
means, Hungary, Poland and Slovenia have a business cycle similar to euro

area business cycle. Hovewer, Slovakia, Latvia and Lithuania have negative
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correlation with EMU countries.

One of another two factors describes Central and Eastern countries, espe-
cially Baltic states and Slovakia. Hungary, Poland and Slovenia is accounted for
by the euro area factor and the Czech Republic is a specific case, because it has
the lowest variance share among all European countries and the factor loadings

of all three factors reach very low values.

According to our analysis, Hungary, Poland and Slovenia are more suitable
accession candidates than other NMS. Of those countries, Hungary is particu-
larly deeply integrated in terms of trade and FDI and exhibit industry structures
are similar to those in the euro area. The Slovenian economy is closely connected
through trade with the euro area.

The low synchronization of the Czech Republic and Slovakia is due to the
insufficient reforms and macroeconomic imbalance in the first half of the 1990s,
leading to currency crisis in the Czech Republic and in Slovakia in 1997 and in
1998. These countries will most probably reach as high level of synchronization

as leading CEECs in the coming years.



Appendix A

Data

This appendix describes the main guidelines followed setting up the database
which has been used for analysing.

We include in our study the data of GDP at a quarterly frequency for 24
OECD countries and for 3 Baltic countries plus Slovenia. The main source of the
data is International Financial Statistics service of the International Monetary
Found, Washington (WIFO database)®.

The sample of OECD countries includes Austria, Belgium, Denmark, Ger-
many, Spain, Finland, France, United Kingdom, Italy, the Netherlands, Portu-
gal, Sweden, Switzerland, Norway, Luxemburg, the Czech Republic, Hungary,
Slovak Republic, Poland, the USA, Canada, Japan, Australia, New Zealand.
Thus, our data set excludes Greece and Ireland for reason of data unavailabil-
ity and Mexico, Iceland, Turkey and Korea which are not significant for our
analysis. Estonia, Latvia and Lithuania belong to data set of Baltic countries.
Overall, we include N = 28 quarterly series.

The reliable time series of our data set are unfortunately available from
different starting points. They are disposable only from the beginning of the
1990s and for some countries, data availability is even more limited. The sample
range for all countries was constrained by availability of data for Hungary and

Poland, which start in 1Q1995. So in our estimation the sample ranges from

IWIFO - Austrian Institute of Economic Research.
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1Q1995 to 4Q2005.

Firstly, the data have been seasonally adjusted using the X12ARIMA method.
And then for this analysis we use log differenced data in order to render the data
stationarity.

Finally, the series are collected in the Nx1 vectors z; (¢t = 1,2,...,T),
where N = 28 represents the number of variables and 7" = 40 number of the

observations. So prepared data set is appropriate for the analysis.



Appendix B

EuroCOINT™

"The EuroCOIN™ s the leading coincident indicator of the euro area business
cycle available in real time. The indicator provides an estimate of the monthly
growth of euro area GDP — after the removal of measurement errors, seasonal
and other short-run fluctuations. The indicator is available very quickly, well

before the GDP numbers are released.” !

The existence of the indicator is reasonable, because the only looking at
GDP can be misleading. Whereas euro area GDP growth may be influenced by
seasonal effects or by factors affecting only a particular sector or a particular
country. An additional problem with GDP growth is that it does not provide an
information about the monthly economic activity by reason that it is measured
at quarterly frequency. Thus, the EuroCOIN™ measured at monthly frequency
is the best equipment to describe the euro business cycle.

Therefore, the EuroCOIN™ is often used as a leading indicator for the
economic development in the euro area. It is also used for the assessment the
current state of the business cycle in the euro area and also for the establishment
of historic dating of expansions and recessions.

EuroCOIN™  monthly coincident indicator of the business cycle of the euro

area, was constructed by Altissimo et al. in 2001. They used GDP, industrial

'Source: http://www.cepr.org/data/eurocoin/.
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production and prices for different sectors and countries, financial variables, and
other macroeconomic data for six European countries in the estimation of the
indicator.

The graph of the indicator represents the euro area business cycle. The
interpretation of the graph is so intuitive. If the graph has a positive slope,
the rate of growth is increasing. A negative slope indicates decreasing rate of
growth. The negative value of the indicator indicates falling economic activity.
If the EuroCOIN™ is positive but less (more) than the historical average of

GDP, it is rising (decreasing) at a slower rate than average of GDP.

EuroCOIN versus euro area GDP

Nov 01

EuroCOIN
—— GDP of euro areg
Nov 92 == Average of GDP

-1.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
7 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
Year

Figure B.1: The comparison of EuroCOIN™ and GDP of the euro area: 1988 —
2005

The Figure B.1 represents the comparison of EuroCOIN™ and GDP of the
euro area from 1988 to 2005. This figure proves all propositions about the leading
coincident indicator of the euro area business cycle described above.

NT ig clean from seasonal

Thus, we can see from the figure that EuroCOI
and short-run effects in spite of GDP. It is also clear that there are 4 periods of
recession in the euro area from 1988 to 2005. The starting and ending points
of recession respectively is defined as the turning points of the cycle and they

are also illustrated in figure. By means of the dashed line that represents the
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historical average of euro area GDP we can detect the periods with low or high
growth.

This appendix introduce the main guidelines following the EuroCOIN™ -
leading coincident indicator of euro area business cycle published each month by
CEPR2. Thus, it should be the best comparing criterion for the results of our

analysis.

2CEPR: Centrum for Economic Policy Research.
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