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Zadanie

Všeobecné:
Analyzovať vlastnosti modelu krátkodobých odchýlok výmenného kurzu
s diskrétnym časom (t.j. diferenčnej rovnice vyššieho rádu).

Hlavné:
Analyzovať

• podmienku ohraničenosti trajektórií a určiť hodnotu hranice,

• stabilitu modelu v jeho pevných bodoch.
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Abstract Abstrakt

BOKES, Tomáš: Short time oscillations of exchange rates [diplomová práca]. Univerzita Komen-

ského v Bratislave. Fakulta matematiky, fyziky a informatiky; Katedra aplikovanej matematiky a

štatistiky. Školiteľ: prof. RNDr. Pavol Brunovský, DrSc. Stupeň odbornej kvalifikácie: Magister odboru

matematika, špecializácia ekonomická a finančná matematika. Bratislava: FMFI UK, 2007. 33 s.

In this paper we discuss and ana-
lyze deviations of a foreign exchange rate
from its short term equilibrium. The
model was introduced as a delayed dif-
ferential equation in the thesis Erdé-
lyi (2003) [9] and further analyzed in
later works of Brunovský, Erdélyi,
Walther (2004) [6], [7] and was trans-
formed into difference equation in theses
Boďová (2004) [3] and Szolgayová
(2006) [14].

Scope of this paper is to analyze the
discrete time model directly derived from
the differential equation by replacing the
time derivative by time difference. Al-
though an additional factor forcing so-
lutions to be bounded was included in
discrete time model in earlier papers, we
analyze properties of the model without
this element, but with smaller step.

We find a boundary for the initial
values and condition for parameters of
the model that keep trajectories in the
boundary. The functional analysis and
center manifold theory is used to analyze
stability of the only fixed point x̂ = 0.

Key words: difference model, exchange rate,

discretization

V tejto práci sa zaoberáme odchýl-
kami výmenného kurzu z jeho krátkodo-
bej rovnováhy. Tento model bol uvedený
ako diferenciálna rovnica s oneskorením
v diplomovej práci Erdélyi (2003) [9],
hlbšie analyzovaný v neskorších prácach
Brunovský, Erdélyi, Walther
(2004) [6], [7] a jeho transformovaná
verzia na diferenčnú rovnicu bola uve-
dená v diplomových prácach Boďová
(2004) [3] a Szolgayová (2006) [14].

Cieľom tejto práce je analyzovať
model s diskrétnym časom priamo odvo-
dený z diferenciálnej rovnice nahradením
časovej derivácie diferenciou. V pred-
chádzajúcich prácach boli autori nútení
obmeniť model s diskrétnym časom pri-
daním dodatočného ohraničujúceho čini-
teľa, my sa zaoberáme analýzou modelu
bez tohto faktoru, ale s kratším krokom.

Určíme hranicu pre počiatočné hod-
noty a podmienku pre parametre, pre
ktorú trajektória ostáva ohraničená touto
hranicou. Pomocou funkcionálnej analýzy
a teórie centrálnej variety analyzujeme
stabilitu jediného pevného bodu x̂ = 0.

Kľúčové slová: diferenčný model, výmenný kurz,

diskretizácia



Preface
The real foreign exchange rate is one of the basic indicators of stability and
welfare of the country compared to others. Movements of the value of ex-
change rate became an important element for agents interested
in export - import transactions. This is a reason for the need to predict
this feature of world economy. Knowledge of the future values of foreign ex-
change rate would be also very useful for various types of agents speculating
on the currency market. Many models, more or less precise, were developed
during years. Most of them were based on the macroeconomic fundamentals
determining the long term state of economy.

In the long term, the exchange rate is believed to be determined by eco-
nomic fundamentals, expectations and other macroeconomic influences. The
general model of real exchange rate is given by

S(t) = f(θ(t)) + x(t), (p.1)

where f(θ(t)) holds for the natural exchange rate, if state of economic fun-
damentals is θ(t). None of the input factors, except for the expectations,
changes in the short term horizon, the long term value S∗ is a short term
equilibrium. The term x(t), representing expectations of agents, is a devia-
tion shifting the value from equilibrium S∗. This value was modeled in many
ways. The model we are presenting is one of them.

We are not introducing this model, because some of its features were
already analyzed in earlier papers. Our aim is to perform further analysis
to obtain more precise evidence of the behavior of model. We introduce a
modification of the model which can be understood as a bridge between the
continuous time and discrete time model.
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Introduction
The real foreign exchange rate is a powerful feature of the world economy.
Only extremely high long term changes in the value of exchange rate can sig-
nificantly influence the country wealth and economy. But short term move-
ments, although not high, are still relevant for the individual merchants try-
ing to profit from their international portfolio. If they were able to predict the
future value of these short term deviations, hedging of their portfolio would
be much easier. There is a possibility to explain the foreign exchange rate
employing some economic features, but applying such methods can cause a
lack of information. Even if it is impossible to predict the real value exactly,
including the expectation of agents trading the currency brings an important
improvement of the model.

The model that we are going to talk about is based on decisions of the agents,
their expectations and the impact on the value of real foreign exchange rate
in the short term. This model was introduced in thesis Erdélyi (2003) [9]
and further analysis was done in works Brunovský, Erdélyi, Walther
(2004) [6], [7] and theses Boďová (2004) [3] and Szolgayová (2006) [14].

In Erdélyi (2003) [9] the model with continuous time was introduced
in form of a nonlinear retarded differential equation:

ẋ(t) = a(x(t)− x(t− 1))− b|x(t)|x(t), (i.1)

where a, b > 0 are real parameters. Now we discuss both terms at the right-
hand side.

• The first term a(x(t)−x(t−1)) ≈ a(S(t)−S(t−1)) - agents see the trend
of the value of real exchange rate and they set up their expectations
according to it.

If the exchange rate is increasing (decreasing), the foreign currency
appreciates (depreciates). Agents expect that the exchange rate will
further rise (fall) so they purchase (sell) foreign currency, what implies
further appreciation (depreciation).

• The second term −b|x(t)|x(t) - agents know that large deviation is
unsupportable, so they expect the trend will turn back.

As long as the absolute value of deviation from the equilibrium |x(t)|
increases (i.e. foreign currency appreciates if the deviation is positive
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and depreciates if negative), there is a growing number of agents real-
izing that the trend will turn back and they start to counteract (i.e.
sell the foreign currency if x(t) > 0 and purchase if x(t) < 0). This
forces the value of the real exchange rate back to the equilibrium. (This
explains the −bx(t).)

The second order of the term is caused by a lack of precise knowledge
of the precise exchange rate equilibrium. This leads to the assumption
that the higher deviation is, the more agents realize the foreign ex-
change rate will be pushed back to the equilibrium. (The second term
is weighted by absolute value of the x(t).)

When the behavior of agents is impacted by these two types of expecta-
tions, it makes us believe that the trajectory of retarded difference equation
(i.1) oscillates around zero. Numerical simulations give us evidence of this
property of our model (as shown in Figure i.1).

Figure i.1: Solution of the model

This model was analyzed in the mentioned thesis and papers. First the
stability of the only fixed point x̂ = 0 was analyzed. It was found unstable
for a > 1 and applying the center manifold theory and Lyapunov’s second
method it was proven asymptotically stable for a < 1. There is still no
sufficient information about behavior of the system for a = 1 to prove or
disprove stability. Boundedness of the solution was also shown for the initial
values inside the boundary and later also the limit behavior of the trajectories
with general initial values was established.
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Later in papers Brunovský, Erdélyi, Walther (2004) [6], [7] fur-
ther analysis was carried out. Since there is no explicit solution for the
model, behavior of the trajectories was analyzed also by numerical simu-
lations. Constant parameters a and b were replaced by various stochastic
processes (AR(p), MA(q), ARMA(p, q)) what brought the model closer to
the reality. The time derivative of deviation ẋ(t) was also changed by the
white noise to decrease the predictability of future values.

In theses Boďová (2004) [3] and Szolgayová (2006) [14], a model with
discrete time is analyzed. The equation becomes a difference equation and
agents make their decisions simultaneously in discrete time moments.

xn+1 = xn + a(xn − xn−1)− bxn|xn|, (i.2)

While analyzing the new model a problem of divergence of the trajectories
occurred. [As we will show, this is caused by a large ratio between the step
size and parameter a.] This problem was solved by implementing a new
factor in the model, which holds the value in reasonable boundary (it is done
by replacing the constant parameter a with parameter dependent on xn, i.e.
a(xn) = a(M − |xn|)+):

xn+1 = xn + a(xn − xn−1)(M − |xn|)+ − bxn|xn|, (i.3)

where (z)+ = max(z, 0) and M > 0 is a constant denoting the number of
agents relevant for the model. To get rid of M we can simply rewrite (i.3),
by substituting yn = Mxn and ã = Ma, b̃ = Mb. Finally we have

yn+1 = yn + ã(yn − yn−1)(1− |xn|)+ − b̃yn|yn|. (i.4)

This model was analyzed in the similar manner as the model with continuous
time.
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In this paper we analyze the relation between the model with continu-
ous time and the model with discrete time without the additional element
(M − |xn|)+.

In the first part we determine the boundary of the trajectories with
bounded initial values. Solving the problem of mathematical programming,
we find the condition for the ratio of parameter a and the time step for which
the trajectories do not diverge.

The second part analyzes the stability of the model. For the origin, the
only fixed point, we prove the same behavior as in the model with continuous
time. We analyze the eigenvalues of the characteristic equation of the model.
Using the center manifold theorem we prove asymptotic stability of the origin.

In the third part, numerical simulations of the trajectories of model are
presented. We include examples of results obtained in the first and the second
part. Also numerical simulations for the model with a = 1 are carried out.
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1 Discrete time model analysis
In this part we examine difference version of our model. Its recurrent rule is

x(t+ ∆t) = x(t) +
[
a
(
x(t)− x(t− 1)

)
− b|x(t)|x(t)

]
∆t. (1.1)

It is obtained by replacing the time derivative by time difference in the model
with continuous time (i.1),

ẋ(t) =
dx(t)

dt
=
x(t+ ∆t)− x(t)

∆t
. (1.2)

1.1 Boundedness of trajectories

We begin the analysis of boundedness of the trajectories of difference equation
(1.1) that have their initial values in range [−A,A] by computing A, the
upper bound of the solutions.

Let us have a function f : R2 → R

f(x, y) = x+
(
a(x− y)− b|x|x

)
∆t. (1.3)

To determine the value of A we have to solve following problem:

max
{
f(x, y)

∣∣∣ |x|, |y| ≤ A } ≤ A. (1.4)

First, we solve mathematical programming problem (i.e. the left side of
inequality (1.4)).

We are searching for a maximum of f in the compact set

K = [−A,A]2 ⊂ R2, (1.5)

and function f(x, y) is continuous in both arguments, so we are sure about
existence of the extreme that we are searching for. We have

∂f

∂x
= 1 +

(
a− 2b|x|

)
∆t (1.6)

∂f

∂y
= −a∆t (1.7)

We can easily see, there is no (x̂, ŷ), such that ∇f(x̂, ŷ) = 0.
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Remark 1.1. Note that the derivative of function g(z) = |z| is equal to

function h(z) = sgn(z) =


1 if z > 0
0 if z = 0
−1 if z < 0

except of 0. The global extreme

of function f(x, y) is not at 0 (because f(−ε, ŷ) ≤ f(0, ŷ) ≤ f(ε, ŷ), when
0 < ε << 1 ⇒ ε2 << ε), so we can use g′(z) = h(z) for our purpose.

The preceding facts imply, that there does not exist an inner extreme.
Let us search for extremes on ∂K (i.e. boundary K). Thanks to (1.7) we
know, that the maximum has to be on the part of boundary lying on the line
y = −A. [Recall that all parameters are positive, so (1.7) is always negative.]

We have to look for candidates on this part of the boundary. By fixing y
we obtain a function of one variable F (x) = f(x, ỹ). We have

F ′(x) =
∂f

∂x

∣∣∣
(x,y)=(x,ỹ)

= 1 +
(
a− 2b|x|

)
∆t. (1.8)

Let us search for x̂ such that F ′(x̂) = 0. This equation has two solutions

x̂1,2 = ±a+ τ

2b
, (1.9)

where τ = 1
∆t

. The set |x̂| ≤ A being closed implies that the function F
attains its maximum also on the boundary. Sequently we have

x̂ ∈
{
− a+ τ

2b
,
a+ τ

2b
,−A,A

}
∩ [−A,A]. (1.10)

The value of ŷ was already determined by the negativity of ∂f
∂y

: all maxima
have to satisfy

ŷ = −A. (1.11)

So we obtained the candidates for extrema (x̂, ŷ), where x̂ and ŷ are
defined by (1.10) and (1.11) respectively.
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To proceed we distinguish two cases.

Case I a+τ
2b
≥ A ⇒ x̂1,2 = ±A.

Figure 1.1: Case I

Let us compute the value of f(x, y) in the candidates for extremum:

ξ1 = f(x̂1, ŷ) = A+
(
a(A+A)− bA2

)1

τ

= A
(
1 +

2a

τ
− b

τ
A
)

(1.12)

ξ2 = f(x̂2, ŷ) = −A+
(
a(−A+A) + bA2

)1

τ

= −A
(
1− b

τ
A
)

(1.13)

The first partial derivative of f with respect to x (1.6) has only positive
values on K (because zero values of this expression lie outside of K). So the
point (x̂2, ŷ) = (−A,−A) is a minmax saddle point (Figure 1.1).
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If Case I holds true, then the global maximum is the point (x̂1, ŷ) = (A,−A).
Now we examine the inequality

ξ1 = f(A,−A) ≤ A.

Let us compute:

A
(
1 +

2a

τ
− b

τ
A
)
≤ A

2a

τ
− b

τ
A ≤ 0

2a

b
≤ A. (1.14)

Because our aim is to find the optimal boundary, we put A = 2a
b
. Now we

have to find the condition under which also Case I holds true for A:

A =
2a

b
≤ a+ τ

2b
3a ≤ τ (1.15)

Recall that τ = 1
∆t

. Thus (1.15) means

∆t ≤ 1

3a
. (1.16)

Hence, in Case I we have A = 2a
b

if (1.16) holds true.

Case II Let now a+τ
2b

< A hence, x̂1,2 = ±A and x̂3,4 = ±a+τ
2b

.
For the additional candidates for extreme, we have

f(x̂3, ŷ) =
a+ τ

2b
+

(
a
(a+ τ

2b
+A

)
− b
(a+ τ

2b

)2
)

1

τ

=
a2 + 2aτ + τ 2

4bτ
+
aA
τ

=
(a+ τ)2

4bτ
+
aA
τ

(1.17)

f(x̂4, ŷ) = −a+ τ

2b
+

(
a
(
− a+ τ

2b
+A

)
+ b
(a+ τ

2b

)2
)

1

τ

= −a
2 + 2aτ + τ 2

4bτ
+
aA
τ

= −(a+ τ)2

4bτ
+
aA
τ

(1.18)
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Figure 1.2: Case II

We summarize values of all candidates

ξ1 = f(x̂1, ŷ) = A
(
1 +

2a

τ
− b

τ
A
)

ξ2 = f(x̂2, ŷ) = −A
(
1− b

τ
A
)

ξ3 = f(x̂3, ŷ) =
(a+ τ)2

4bτ
+
aA
τ

ξ4 = f(x̂4, ŷ) = −(a+ τ)2

4bτ
+
aA
τ
.

Since we know the optimal value of y = ỹ we can fix it and investigate
function F (x) = f(x, ỹ). We have

F ′′(x) =
∂2f

∂x2

∣∣∣
(x,y)=(x,ỹ)

= −2b sgn(x)∆t, (1.19)

F ′′ is negative (i.e. F is concave) only for x positive. That implies that
(x̂4, ŷ) cannot be a maximum (it is a minmax saddle point).
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Let us now investigate the candidates for extremum on ∂K. For any ỹ, it
holds

x ∈
[
−A,−a+ τ

2b

)
∪
(a+ τ

2b
,A
]
⇒ ∂f(x, ỹ)

∂x
< 0. (1.20)

The value of function f increases if x ↘ −A, on the contrary if x ↗ A it
decreases. So the second maximum is the point (x̂2, ŷ) = (−A,−A). The
point (A,−A) is a minmax saddle point of f on K.

We have to determine a condition for each maximum to be the global
one. To solve problem (1.4) in Case II, we require both inequalities to hold
true simultaneously.

For the first of them for ξ2:

ξ2 = −A
(
1− b

τ
A
)
≤ A

b

τ
A ≤ 2

A ≤ 2
τ

b
. (1.21)

For the second one:

ξ3 =
(a+ τ)2

4bτ
+
aA
τ

≤ A

(a+ τ)2

4bτ
≤ A

(
1− a

τ

)
. (1.22)

If 1− a
τ
≤ 0 ⇔ τ ≤ a there does not exist any A ∈ R for which inequality

(1.22) holds true.
So let 1− a

τ
> 0 ⇔ τ > a. For A we have the inequality

(a+ τ)2

4b(τ − a)
≤ A. (1.23)

To satisfy Case II, value A has to be

A ∈
[ (a+ τ)2

4b(τ − a)
, 2
τ

b

]
. (1.24)

We search for a condition for the set in (1.24) not to be empty:

(a+ τ)2

4b(τ − a)
≤ 2

τ

b

a2 + 2aτ + τ 2 ≤ 8τ(τ − a)

0 ≤ 7τ 2 − 10aτ − a2 (1.25)
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The solution of the inequality for τ is the set

τ ∈
(
−∞, a

5− 4
√

2

7

]
∪
[
a
5 + 4

√
2

7
,∞
)
. (1.26)

Following from Case I, τ has to satisfy the inequality 3a > τ (because Case II
is complementary of Case I).

For Case II, let us put A = (a+τ)2

4b(τ−a)
if τ ∈ (a5+4

√
2

7
, 3a), i.e.

∆t ∈ (
1

3a
,
4
√

2− 5

a
). (1.27)

To complete the analysis of boundedness we have to determine the value
of the lower bound B, i.e. we have to solve the problem

min
{
f(x, y)

∣∣∣ |x|, |y| ≤ B } ≥ B, (1.28)

where function f is defined in (1.3).
Since f is odd in both variables, one has

min
|x|,|y|≤B

f(x, y) = − max
|x|,|y|≤B

f(x, y) (1.29)

so the lower bound has value −A.

Remark 1.2. While analyzing minimum of f , the optimal value of variable
ŷ = A (because the partial derivative of f (1.7) is negative). So values of
variable x, that we stated as a saddle points in combination with ŷ = −A,
become minimums with ŷ = A and vice versa.

Before we summarize the information obtained, it is useful to introduce
following definition.

Definition 1.1. Let τ = 1
∆t

be an integer. A set M will be called an
invariant set of the equation Φ in case every its solution satisfying x(t) ∈M
for t = k∆t, 0 ≤ k ≤ τ yields x(t) ∈M for all t = k∆t, k ∈ N.

12



Theorem 1.1. The set |x| < A with

A(a, b, τ) =

{
2a
b

if a
τ
≤ 1

3
(a+τ)2

4b(τ−a)
if a

τ
∈ (1

3
, 4
√

2− 5]
(1.30)

is an invariant set of the equation

x(t+ ∆t) = x(t) +
[
a
(
x(t)− x(t− 1)

)
− b|x(t)|x(t)

]
∆t.
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2 Stability of the zero solution

2.1 Center manifold theory

While analyzing the stability of a nonlinear dynamic system we always need
to talk about eigenvalues of the linearization of system in a fixed point.
Discrete dynamic system is stable in a fixed point if all eigenvalues are in the
unit circle (of the complex plane). If there is at least one eigenvalue lying
outside of the unit circle, the system is unstable. If the system has one or
more eigenvalues lying on the unit circle, we have to do further analysis to
determine the stability of the fixed point. The reduction to center manifold
is the solution of this problem.

Let the linearization of dynamic system in the origin defined on Rn has
m ∈ N eigenvalues lying on the unit circle. The center manifold theory
guarantees the existence of a m-dimensional center manifold tangential in
the origin to the eigenspace belonging to eigenvalues lying on the unit circle.

In following theorems we introduce the center manifold theory. More
precise theory can be found in Brunovský (1993) [5], Carr (1981) [8],
Guckenheimer and Holmes (1983) [10] and Iooss (1979) [11]. Similar
technique was also used in thesis of Boďová (2004) [3] and Erdélyi (2003)
[9].

Theorem 2.1. (Center Manifold Theorem)
Let g be a Cr mapping, g : Rn → Rn, with property g(0) = 0 and let

A = Dg(0). Divide the spectrum of A into three parts, σs, σc, σu with

|λ|


< 1 if λ ∈ σs,
= 1 if λ ∈ σc,
> 1 if λ ∈ σu.

Let the (generalized) eigenspace of σs, σc and σu be Es, Ec and Eu, respec-
tively. Then there exists a Cr invariant manifold W c tangent to Ec at the
origin. The manifold W c is called the center manifold for the mapping of g
at 0.

Remark 2.1. The only reference for the center manifold for discrete dy-
namical systems we found was Guckenheimer and Holmes (1983) [10].
However, in Guckenheimer and Holmes (1983) [10] the center manifold
is claimed to be Cr−1 only. Other sources (Chow and Hale (1983) [13])
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which establish the center manifold to be Cr are presented only for continu-
ous time systems. Their proof, however, carries over to discrete dynamical
systems.

Let σu = ∅. Then, in suitable coordinates, we have

xn+1 = Bxn + ϕ(xn, yn)
yn+1 = Cyn + ψ(xn, yn)

; (xn, yn) ∈ Rm × Rk, (2.1)

where B ∈ Rm×m and C ∈ Rk×k are matrices whose eigenvalues lie on and
in the unit circle respectively, ϕ(0, 0) = 0 and ψ(0, 0) = 0, Dϕ(0, 0) = 0 and
Dψ(0, 0) = 0.

Since the center manifold is tangent to Ec we can locally represent it as
a graph

W c = {(x, y)|y = h(x)}; h(0) = 0, (2.2)

where h : U → Rk is defined in some neighborhood U ⊂ Rm of the origin.
We now consider the projection of the mapping on y = h(x) onto Ec:

xn+1 = Bxn + ϕ(xn, h(xn)). (2.3)

Since h(x) is tangent to y = 0, we have for the solution of equation (2.3)

Theorem 2.2. If the origin x = 0 of (2.3) is locally asymptotically sta-
ble (unstable) then the origin of (2.2) is also locally asymptotically stable
(unstable).

2.2 Reduction to center manifold

First we recall difference equation of our model introduced in (1.1)

x(t+ ∆t) = x(t) +
[
a
(
x(t)− x(t− 1)

)
− b|x(t)|x(t)

]
∆t.

Now we again substitute ∆t = 1
τ
. Realizing that agents are revising their

decisions τ times a day (or during another fixed unit of time), we consider τ
as integer.

As argued above, our model is a difference equation of order τ + 1, so we
rewrite it as a system of τ + 1 equations of first order.

yn+1 = Ayn +B(yn), (2.4)
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where yn+1, yn ∈ Rτ+1, A ∈ R(τ+1)×(τ+1) and B : Rτ+1 → Rτ+1. Rewriting in
matrices one has

yn+1
0

yn+1
1
...

yn+1
τ−1

yn+1
τ

 =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1
−a

τ
0 0 . . . 1 + a

τ




yn

0

yn
1
...

yn
τ−1

yn
τ

+


0
0
...
0

− b
τ
yn

τ |yn
τ |

 ,

where yn+i
j = x(t+ (i+ j − τ)∆t).

2.2.1 Eigenvalues

The characteristic equation of the system (2.4) is

λτ+1 − (1 +
a

τ
)λτ +

a

τ
= 0. (2.5)

Theorem 2.3. The equation (2.5) has the root λ0 = 1 for all a. The second
root λ1(a) ∈ R+ satisfies

λ1(a)


< 1 if a < 1
= 1 if a = 1
> 1 if a > 1

.

The rest of roots lies inside the unit circle (of the complex plane) and there
are 2 cases:

• if τ is even, λ2 ∈ R− and λj ∈ C, =m(λj) 6= 0 for j = 3, . . . , τ ;

• if τ is odd, λj ∈ C, =m(λj) 6= 0 for j = 2, . . . , τ .

There is no multiple root if a 6= 1 and if a = 1, λ0 = λ1 = 1 is the only
double root.

Proof First we examine real roots. We define

p(λ) = λτ+1 − (1 +
a

τ
)λτ +

a

τ
.

It denotes the characteristic polynomial of system (2.4). By direct inspection
we verify that λ0 = 1 is its root. To determine the nature of rest of real roots
we use the first derivative of p(λ):

p′(λ) = (τ + 1)λτ − (τ + a)λτ−1.
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Figure 2.1: Case τ = 2k + 1

There are three intervals the monotonicity of p(λ) which need to be ex-
amined

p′(λ)
(
−∞, 0

) (
0, τ+a

τ+1

) (
τ+a
τ+1

,∞
)

τ even + − +
τ odd − − +

Let us search for positive roots. We already have one positive root (λ0 =
1) so there is at most one left. Since p′(1) = 1 − a, p(0) = a

τ
> 0 and

lim
λ→∞

p(λ) = ∞, we consider three cases (Figure 2.1-2.2):

• a < 1, hence τ+a
τ+1

< 1; together with p′(1) > 0 this implies λ1 ∈ (0, 1);

• a = 1, hence τ+a
τ+1

= 1; together with p′(1) = 0 this implies one is double
root so λ1 = 1;

• a > 1, hence τ+a
τ+1

> 1; together with p′(1) < 0 this implies λ1 > 1.

If τ is odd we are done with real roots, but if τ is even, we know that
f(−1) = −1 − 1 − a

τ
+ a

τ
= −2 < 0 since f(0) > 0 there is a third real root

|λ2| < 1.
As the second step we prove that all imaginary roots are inside the unit

circle if a ≤ 1. We use the goniometric representation of complex number

λ = η(cosϕ+ i sinϕ),

where η ∈ R+
0 and ϕ ∈ (−π, π].
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Figure 2.2: Case τ = 2k

By applying Moivre lemma and separating real and imaginary parts we
obtain the system of two equations

0 = ητ+1 cos(τ + 1)ϕ− (1 +
a

τ
)ητ cos τϕ+

a

τ
(2.6)

0 = ητ+1 sin(τ + 1)ϕ− (1 +
a

τ
)ητ sin τϕ. (2.7)

Since λ = 0 is not a solution of (2.5), we have η 6= 0 and, in addition,
sin(τ +1)ϕ 6= 0. Indeed sin(τ +1)ϕ = 0 iff ϕ = k

τ+1
π, k = 0, 1 ⇒ if k = 0 the

root is not imaginary and if k = 1, sin( τ
τ+1

)π 6= 0 for τ ∈ N because τ
τ+1

6∈ N.
So, from (2.7) we have

0 = η sin(τ + 1)ϕ− (1 +
a

τ
) sin τϕ −→ η =

(
1 +

a

τ

) sin τϕ

sin(τ + 1)ϕ
. (2.8)
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Substituting (2.8) into (2.6) we obtain

a

τ
=

[(
1 +

a

τ

) sin τϕ

sin(τ + 1)ϕ

]τ+1(
sin(τ + 1)ϕ

sin τϕ
cos τϕ− cos(τ + 1)ϕ

)
.

If we use the substitution (2.8) again, but in the reverse way, the equation
becomes

a

τ
= ητ+1

(
sin(τ + 1)ϕ

sin τϕ
cos τϕ− cos(τ + 1)ϕ

)
. (2.9)

We now simplify the expression in the brackets:

sin(τ + 1)ϕ

sin τϕ
cos τϕ− cos(τ + 1)ϕ =

sin(τ + 1)ϕ cos τϕ− cos(τ + 1)ϕ sin τϕ

sin τϕ

=
sin[(τ + 1)ϕ− τϕ]

sin τϕ
=

sinϕ

sin τϕ
. (2.10)

Employing (2.10) we obtain a function η = η(ϕ)

η = τ+1

√
a

τ

sin τϕ

sinϕ
. (2.11)

Our aim is to show that η ≤ 1 for a ≤ 1. Equivalent to this, we can show
that ητ+1 < 1 and we prove that∣∣∣∣∣aτ sin τϕ

sinϕ

∣∣∣∣∣ < 1, (2.12)

we show that for ϕ ∈ (−π, π)− {0} the inequality is strict. [The expression
is equal to one only for ϕ → 0 or for ϕ → π, if ϕ ∈ (−π, π] as defined and
a = 1.]

Solving this problem for a = 1, guarantees us that the inequality holds
true also for all a < 1. Moreover, sin x is odd, so sin τϕ

sin ϕ
is even. Thanks to this

symmetry we are free to analyze only the case ϕ ∈ (0, π), where sinϕ > 0.
The final form of our inequality is∣∣∣1

τ
sin τϕ

∣∣∣ < sinϕ. (2.13)
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Expressions on both sides of the inequality are equal to zero at the end-
points of interval (0, π). Now it suffices if we show that the right-hand side
is increasing faster than the left-hand side until the first maximum of the
latter and is decreasing faster since the last maximum of the latter [sinϕ
has only one maximum in π

2
, but

∣∣∣ 1τ sin τϕ
∣∣∣ has maximum in π

2τ
+ k

τ
π for

k = 0, . . . , τ − 1].
Let ϕ ∈

(
0, π

2τ

)
= IL so we can examine the left side of the interval. We

want to show that the following inequality holds true

0 <
(1

τ
sin τϕ

)′
< (sinϕ)′,

i.e.
cos τϕ < cosϕ.

Since cosx is decreasing on (0, π),

τϕ > ϕ

i.e.
τ > 1.

So this inequality holds true for all τ ∈ N−{1}, it is enough for our purpose
[for τ = 1, 2 there are any imaginary roots of (2.5)].

Now ϕ ∈
(
π− π

2τ
, π
)

= IR. While analyzing right-hand side of the interval,
there are two cases to be discussed.

In the first case τ = 2k + 1, k ∈ N. Then 1
τ

sin τϕ > 0 for ϕ ∈ IR while
(sinϕ)′ < 0. Hence (2.13) is equivalent to

0 >
(1

τ
sin τϕ

)′
> (sinϕ)′,

i.e.
cos τϕ > cosϕ.

Recalling cosx is decreasing function on (0, π), we have

τϕ− 2mπ < ϕ,

where m ∈ N is the largest possible to keep τϕ − 2mπ ∈ (0, π). If ϕ ∈ IR,
τϕ ∈

(
(2k + 1)π − π

2
, (2k + 1)π

)
. Now it is clear that m = k and

(2k + 1)ϕ− 2kπ < ϕ

ϕ < π,
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which is satisfied on all IR.
In the second case τ = 2k, k ∈ N, hence 1

τ
sin τϕ < 0 for ϕ ∈ IR.

0 >
(
− 1

τ
sin τϕ

)′
> (sinϕ)′

− cos τϕ > cosϕ.

Employing − cosx = cos(x+ π) we have

cos(τϕ+ π) > cosϕ

τϕ+ π − 2mπ < ϕ.

Again we have to determine m. If ϕ ∈ IR then (τϕ+π) ∈
(

π
2
+2kπ, π+2kπ

)
,

hence m = k,

2kϕ+ π − 2kπ < ϕ

ϕ < π,

so we have the same inequality as in the first case.
Thanks to symmetry of an even function, this inequality behaves in the

same manner for negative ϕ. We have proven that for a = 1 inequality (2.12)
holds true. As we mentioned above, this implies that it holds true also for
all a < 1.

Solving the previous problem we showed that |λ| = |η| ≤ 1 (λ ∈ C) if
a < 1.

In the final part of the proof we show that the eigenvalues are distinct if
a 6= 1 and one root is double for a = 1.

If there existed some double root λω for equation (2.5), λω would be a
root of the equation (

λτ+1 − (1 +
a

τ
)λτ +

a

τ

)′
= 0

i.e.
(τ + 1)λτ − (τ + a)λτ−1 = 0

as well.
This equation has τ roots. There is a (τ − 1)-multiple root λ′k = 0 for

k = 1, . . . , τ − 1 and the last root is λ′0 = τ+a
τ+1

. Any of these roots is not
also a root of (2.5) if a 6= 1. This implies the characteristic equation has no
multiple roots if a 6= 1. For a = 1 we have λ′0 = 1 and since λ0 = 1 is root of
(2.5), λ0 = 1 is double root.

This completes the proof of theorem. �
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2.2.2 Center manifold

Our aim is to reduce the system (2.4) to the center manifold belonging to
eigenvalue λ0 = 1. Now we determine form of the nonlinear part of system.

We need to derive matrix of projection mentioned.

Definition 2.1. The resolvent of operator T ∈ L(Rn,Rn) is defined as
RT

λ = (λI − T )−1, where λ ∈ R and I is the identity matrix.

Definition 2.2. Let T ∈ L(Rn,Rn). We define a class U(T ) of complex
functions g such that

• the domain D(g) of g is an open set in the complex plane;

• the (complex) derivative of g exists in each point x, x ∈ D(g).

By Taylor (1973) [15] we know that for all ψ ∈ U(T ) the following
equation holds true

ψ(T ) =
1

2πi

∫
C

ψ(ζ)RT
ζ dζ, (2.14)

where C is an anticlockwise oriented simple Jordan curve containing all eigen-
values of T in its interior.

More generally, we have

ψ(T )
∣∣∣
E

=
1

2πi

∫
C

ψ(ζ)RT
ζ dζ, (2.15)

if E is an invariant subspace of spectral set σE and C encircles σE, but σ \σE

lies outside the curve C.
According to this theorem we set the curve C a circle with λ0 = 1 as

center that does not contain any of the other eigenvalues. The right-hand
expression becomes the matrix of projection we are searching for [recall that
A is a linear operator]:

P Def
=

1

2πi

∫
C

RA
λ dλ. (2.16)

The nonlinear part of (2.4) can be written as

B(yn) =
(
− b

τ
yn

τ |yn
τ |
)
e, (2.17)

where e = (0, . . . , 0, 1)T ∈ Rτ+1.
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As we can see, the value b
τ
yn

τ |yn
τ | is the norm of B(yn). We are free to

omit the constant part with respect to λ (i.e. the norm multiplied by −1)
and calculate the projection of (2.17):

ẽ = Pe =
1

2πi

∫
C

(λI − A)−1edλ =
1

2πi

∫
C

d(λ)dλ, (2.18)

where d is the solution of
(λI − A)d = e, (2.19)

i.e., in components, λ −1 . . . 0
...

...
. . .

...
0 0 . . . −1
a
τ

0 . . . λ− (1 + a
τ
)

 d0

...
dτ−1

dτ

 =

 0
...
0
1

 . (2.20)

We have

λdi = di+1 for i = 0, . . . , τ − 1

λdτ − (1 +
a

τ
)dτ +

a

τ
d0 = 1,

hence
di =

λi

λτ+1 − (1 + a
τ
)λτ + a

τ

∀i = 0, . . . , τ. (2.21)

It is useful to rewrite (2.21) in the form

di =
λi

(λ− 1)(λτ − a
τ

∑τ−1
j=0 λ

j)
∀i = 0, . . . , τ. (2.22)

Now we can find the projection of e. For each k = 0, . . . , τ we have

ẽk =
1

2πi

∫
C

dk(λ)dλ =
1

2πi

∫
C

ϕk(λ)

λ− 1
dλ, (2.23)

where

ϕk(λ) =
λk

λτ − a
τ

∑τ−1
j=0 λ

j
. (2.24)

The function ϕk(λ) being holomorphic on the interior of C, according to
Cauchy formula for the circle, we have

ẽk = ϕk(1) =
1

1− a
. (2.25)
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Thus, the projection of nonlinear part of (2.4) to E has form

PB(y) = − b

τ(1− a)
yn

τ |yn
τ |v0, (2.26)

where v0 is the eigenvector of eigenvalue λ0 = 1 [i.e. v0 = (1, . . . , 1)T ].

According to the center manifold theory, the center manifold is defined as

y
Def
= {uv + h(u)| u ∈ R}, (2.27)

where v is the eigenvector belonging to eigenvalue lying on the unit circle,
function h : R → Rτ+1 and h(u) is o(u) in all components.

Remark 2.2. Recall that for f, g : D(f) ⊂ R → R, D(f) is an open set,
we set f(x) = o(g(x)) for x→ x̄, where g : D(g) ⊂ R → R if

lim
x→x̄

∣∣∣f(x)

g(x)

∣∣∣ = 0.

If we follow the center manifold flow y (⇒ y = y(u)), we find that the
norm of B(y) equals to

‖B(y(u))‖ =
b

τ
|u+ o(u)|(u+ o(u)). (2.28)

The projection of (2.4) to the eigenspace of eigenvalue λ0 is

un+1v0 = unv0 −
b

τ(1− a)
|un + o(un)|(un + o(un))v0. (2.29)

Simplifying and changing the notation in (2.29) we obtain

un+1 = un −
b

τ(1− a)
|un + o(un)|(un + o(un)). (2.30)

2.3 Stability

Theorem 2.4. If b > 0 and τ ∈ N then the fixed point ŷ = (0, . . . , 0) ∈ Rτ+1

of (2.4) is

• asymptotically stable if a < 1;

• unstable if a > 1.
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Proof According to the Center manifold theorem 2.2 we analyze the
stability of ŷ on the center manifold flow. We prove the statement in the
theorem for system (2.30) and û = 0. The center manifold theory implies
the same behavior for system mentioned in Theorem 2.4.

Remark 2.2 implies that there exists δ > 0 so that sgn(un + o(un)) =
sgn(un), for all |un| < δ and we have

un+1 = un −
b

τ(1− a)
(un + o(un))2sgn(un). (2.31)

We omit elements of higher order in the square

un+1 = un −
b

τ(1− a)
u2

nsgn(un) + o(u2
n)

= un −
b

τ(1− a)
un|un|+ o(u2

n). (2.32)

For |un| < ε and sufficient small ε > 0 it holds true

o(u2
n) <

b

2τ(1− a)
u2

n. (2.33)

Substituting (2.33) into (2.32) we have

|un+1| < |un| −
b

τ(1− a)
u2

n +
b

2τ(1− a)
u2

n

< |un|
(
1− b

2τ(1− a)
|un|

)
. (2.34)

To prove the theorem we need to consider two cases. First let a < 1.
We have to solve the following problem

0 < 1− b

2τ(1− a)
|un| < 1. (2.35)

We have (1−a) > 0 and recall that b, τ > 0. This implies that the right-hand
inequality holds true. The left-hand inequality holds true if |un| < 2τ(1−a)

b
.

If |un| < min
{
δ, ε, 2τ(1−a)

b
}, following inequality holds true

|un+1| < |un|. (2.36)
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This implies that û = 0 is asymptotically stable point of the system (2.30)
and the center manifold theory guarantees that the first part of theorem
holds true (i.e. ŷ is asymptotically stable for a < 1).

On the other hand if a > 1, we have λ1 > 1 as we have proved above in
part 2.2.1. This implies instability of the origin. �
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3 Numerical simulations

In this section we present numerical simulations of the model. All simulations
are performed in mathematical software Matlab 7.0.

Remark 3.1. The value of parameter b does not affect the solution of model
directly. By substituting x̃(t) = bx(t) into (1.1) and multiplying both sides of
equation by b we have

x̃(t+ ∆t) = x̃(t) +
[
a
(
x̃(t)− x̃(t− 1)

)
− |x̃(t)|x̃(t)

]
∆t. (3.1)

The parameter b sets the scale of x(t). Increase in b decreases x(t) and vice
versa.

According to Remark 3.1 the value of parameter b is held constant in the
presented sample. Without loss of generality we set b = 1 in all examples of
trajectories of the model.

3.1 Boundedness

For a certain ratio of parameters a and τ = 1
∆t

, there exists a boundary for
trajectories having their initial values inside this boundary (Theorem 1.1).

We set the value of parameter a > 1 in all examples. The simulations
indicate instability of the model at its only fixed point x̂ = 0 and the solution
oscillates around zero. The model with a < 1 is asymptotically stable so we
expect that trajectory of such model does not exceed the initial boundary (we
do not present any example of such model in this section). The trajectory of
model with a = 1 is analyzed in Section 3.3.

We set the initial values of trajectories in the examples as points lying on
curve

x(t) = t, t =
k

τ
, for k ∈ {−τ, . . . , 0}. (3.2)

Figure 3.1 presents trajectories of the model with ratio of parameters a
τ

= 0.3.
[The first trajectory is a solution of the model with τ = 9 and the second
one has τ = 20.] The ratio is less than 1

3
so the boundary A = 2a

b
. [We have

A = 5.4 and A = 12 in the first and the second case, respectively.]
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Figure 3.1: Ratio a
τ

= 0.3

Both solutions of model presented in Figure 3.2 have ratio of the
parameters a

τ
= 0.6. [The value of parameter τ is the same as before.] Hence

a
τ
∈ (1

3
, 4
√

2 − 5) and the boundary A = (a+τ)2

4b(τ−a)
. [We have A = 14.4 and

A = 32 in the first and the second case, respectively.] The trajectory of both
models exceeds the lower boundary Ã = 2a

b
. [Ã = 10.8 and Ã = 24 for the

first and the second trajectory, respectively.]

Figure 3.2: Ratio a
τ

= 0.6
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3.2 Stability

Stability of the model in its fixed point x̂ = 0 depends only on the value of
parameter a (Theorem 2.4).

Figure 3.3: Stability; τ = 20

The first trajectory in Figure 3.3 is the solution of model with a = 0.9,
i.e. the model is asymptotically stable in its fixed point. On the other hand
the second trajectory belongs to the model with a = 1.1 and the solution is
unstable.

3.3 Trajectories in case a = 1

For a = 1, the linearization of model at its fixed point has two eigenvalues
lying on the unit circle. Also the numerical simulations confirm that the
stability of such system is not very transparent.

We set the initial values for all solutions in this section as

x(t) = sin(t), t =
k

τ
, for k ∈ {−τ, . . . , 0}. (3.3)
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Figure 3.4: Trajectories; a = 1

The first trajectory in Figure 3.4 is the solution of model with the value of
parameter τ = 1. According to the simulations, amplitudes of the trajectories
of rest of solutions seem to be decreasing in t. In fact, there is no evidence
for such statement. The model of the second and the third trajectory has
the value of parameter τ = 2 and τ = 20, respectively.

30



Conclusions
In this paper we analyze the model for deviations from the short term equi-
librium of foreign exchange rate. The original model, introduced in Erdélyi
(2003) [9], has a form of delayed differential equation - reflects the situation
where decisions are made continuously. We modify the model into difference
equation - where decisions are made in certain time moments. Although
there were earlier works (Boďová (2004) [3] and Szolgayová (2006) [14])
analyzing the discrete version of model, this approach needed an extra factor
to be included into model to keep the boundedness of the trajectories. To
eliminate this factor we use smaller step instead.

Our aim was to analyze particular properties of the model with continu-
ous time that were causing difficulties in the discretization. First we set the
values of parameters and boundary for the trajectories with bounded initial
values (by the same boundary).

We found that eigenvalues of the linearization of the model are not out-
side the unit circle (of complex plane) for a < 1. Since there is always one
eigenvalue lying on the unit circle, we had to make further analysis of sta-
bility of the system. The system (belonging to the model) is asymptotically
stable for a < 1 and is unstable for a > 1.

As we already stated, the model presented in this paper can be understood as
a bridge between the model with continuous and discrete time. The property
of boundedness of trajectories and their limits (for bounded and unbounded
initial values, respectively) observed in the continuous time model is vanish-
ing in the discretization. According to numerical simulations and analysis of
our model there exists a range, increasing with τ , where the property holds
true. Although we decrease the step to keep the property of boundedness,
other properties, as stability, are not affected by the discretization.

One can say that the model is not a sufficient image of the real world behav-
ior of foreign exchange rate. We must agree that the basic version of model
is too simple to be good approximation of the reality, but there are various
ways to improve the model by employing some stochastic feature into it (e.g.
a→ a(t), b→ b(t), etc.).
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